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Abstract  

Polymer density functional theory (PDFT) is a computationally efficient and popular statistical 

mechanics theory of complex fluids for capturing the interfacial microstructure of grafted polymer 

brushes (PBs). Undoubtedly, the intramolecular and intermolecular interactions in PDFT (e.g., 

excluded volume interactions and electrostatic interactions) are affected by the grafting behaviors. 

However, how to treat these interactions coupled with the physical constraints of end-grafted PBs 

remains unclear in the literature. Even worse, there are remarkable differences in the density 

profiles of PBs between the predictions from PDFT and simulations. Herein, we propose a PDFT 

for studying neutral and charged grafted PBs, and provide its rigorous derivation and numerical 

details. This PDFT is successfully validated, where the density distributions of neutral and weakly 

charged PBs predicted by the PDFT are in excellent agreement with the results from Monte Carlo 

(MC) and molecular dynamics (MD) simulations. This work provides a powerful and accurate 

theoretical method to reveal the interfacial microstructure of grafted PBs.  
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Introduction 

Polymer brushes (PBs) are assembled by anchoring polymeric chains onto a surface, triggering 

an increasing interest due to the unique chemical and structural characteristics of polymeric 

chains.1-2 So far, PBs have made significant contributions to a broad range of traditional and 

emerging applications such as biological lubrication3, thermal and electrical stimuli-responsive 

surface4, colloidal stabilization and surface protection5, novel substrate modification,6-7 biosensing 

and nanomaterial synthesis, etc.8 These applications are highly dependent on the interfacial 

microstructure of PBs and straightforwardly benefited from its precise tuning.9-10 Thus, accurate 

density distribution of PBs on the molecular level become a focus of attention in surface 

modification. 

The interfacial microstructure of PBs has been investigated extensively using experiments, 

simulations, and theories in the last decades.11 However, the high-throughput measurements of 

interfacial microstructure are difficult and inefficient for experimental methods (e.g., atomic force 

microscopy12). Currently, simulations and theories have become increasingly irreplaceable for 

microstructure evaluation and molecular design. Despite the success and accuracy of Monte Carlo 

(MC) and molecular dynamics (MD) simulations, it remains challenging due to the computational 

cost.13-16 For example, the charged PBs require special methods to compute the long-range 

Coulomb interactions, which needs long runtimes to guarantee the data reliability in the MC/MD 

simulations. Differently, the theoretical approach provides a low-cost alternative for the 

systematical study of PBs by controlling a series of key parameters such as grafting density, chain 

length, block features, etc. Specifically, Alexander17 and de Gennes18 pioneeringly proposed a 

simple scaling theory based on a step-function density distribution to analyze the thermodynamic 

properties of PBs. Later, self-consistent field theory was adopted to study PBs,19 and presented a 
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parabolic density distribution under specific conditions.20 In recent years, Lian et al.21 captured the 

parabolic-like density distribution of PBs with the help of lattice density functional theory (DFT). 

At the same time, they mentioned that there is a clear difference in the interfacial density profiles 

between lattice DFT and simulations. Undoubtedly, consistent predictions between theories and 

simulations are required to assert the reliability and accuracy of theoretical methods.22-24  

Polymer DFT (PDFT) is a well-established statistical mechanical theory for complex fluids, in 

which the polymer chains in fluids are modeled as tangentially jointed hard spheres with 

considering excluded-volume interactions and electrostatic interactions, etc.25-26 Successfully, the 

density profile predictions of polymers in fluids from PDFT agree well with the simulation 

results.27-29 Yet, the application of PDFT in grafted PBs is not apparent owing to the physical 

constrains from the grafting behaviors. In other words, the limited accessible space of grafted PBs 

greatly alters the translational and conformational entropies of the untethered polymer chain in the 

vicinity of the surface. In the last few decades, PDFT has been used to study grafted PBs.30-37 

However, the significant deviations in the interfacial density distributions between PDFT and 

simulations are found in the literature.38 The accurate and reliable predictions of PDFT leave much 

to be desired in the relevant thermodynamic and structural properties (e.g., the capacitance of 

supercapacitors). 

In this work, we revisit the application of PDFT in the end-grafted PB systems. Firstly, a rigorous 

derivation of PDFT coupled with the physical constraints of end-grafted PBs is provided. Then, 

the equilibrium density profiles of neutral and charged end-grafted PBs from MC and MD 

simulations are introduced to calibrate the PDFT predictions. We find the excellent agreement 

between PDFT and MC/MD simulations for the neutral and weakly charged PBs, demonstrating 

the reliability of PDFT. And a little deviation is captured within the cases with strongly charged 
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PBs, which may be due to the difference in model between PDFT and MD simulations and the 

increasing contribution of ion-ion electrostatic correlations. 

The remainder of this work is organized as follows. Firstly, molecular model and theory are 

given, including three different grafted PBs, rigorous derivation of PDFT, theoretical numerical 

details, and MD simulation implementations. Next, the comparisons of neutral and charged PBs 

between PDFT and MC/MD simulations are presented. Finally, the main points are summarized. 

Molecular Model and Theory 

Molecular Model  

A flexible sequence-defined polymer chain is modeled as freely-jointed tangential hard spheres, 

composed of pN  blocks, where the thm  block of a polymer chain has p

mN  monomers. Therefore, 

the total number of monomers in a polymer chain is equal to 
p

p p1

m N m

m
N

=

=
= , also known as the 

polymerization of chain. Here, the diameter and valency of each monomer i  are denoted by i  

and iZ , respectively. Moreover, the monomers in a block have identical features. Thus, the 

diameters and valence of monomers in the thm  block are denoted by p

m  and p

mZ , respectively. In 

this work, we set that the first block is formed by a neutral monomer, i.e., 
1

pN  = 1 and 
1

pZ  = 0 ( 1Z  

= 0), and the remaining blocks have different features. Figure 1 (a) displays three representative 

neutral and charged polymer chains. For Case I, the neutral chain has two blocks (i.e., pN  = 2), 

where the second block consists of multiple neutral monomers (e.g., 
2

pN  > 1 and 
2

pZ  = 0). For 

Case II, the partially charged polymer chain is assembled from alternating neutral and charged 

monomers, in which the charged monomer carries a single unit of negative charge, iZ e , where iZ  

= -1 and e  is the elementary charge. For Case III, the fully charged polymer with two blocks is 
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considered, in which the valency of all monomers in the second block is 
2

pZ  = -1. As shown in the 

right inset of Figure 1 (a), the end-grafted PBs are formed by anchoring the first neutral monomers 

of M  chains to a flat structureless hard wall along the z direction. If the surface area of hard wall 

is S , the grafting density of the end-grafted PBs is g /M S = . 

Figure 1 (b)-(d) show three well-assembled PBs: neutral PB (Case I), partially charged PB 

(Case II) and fully charged PB (Case III). For the charged PBs, the counterions with diameter c  

and valency cZ  = +1 are added to ensure the electroneutrality of system. Its number is determined 

by the net charges of PBs and the charges loaded on surface (i.e., surface charge density sQ ). Note 

that the subscripts p  and c  represent polymer chain and counterions, respectively. In this work, 

the diameters of all particles are   = 0.4 nm, i.e., p

m  = i  = c  =  . 

 

Figure 1. Schematic representation of the simulative PBs anchored on the hard wall at z  = 0. (a) 

three representative cases; (b) neutral PB; (c) partially charged PB; (d) fully charged PB. 
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In our model, two adjacent monomers in a polymer chain are tightly connected by the bonding 

potential ( )b

pV R , i.e., 

 ( )
( )

( )

p

p

1 , 11
p p p1b

p 2
, 1

1
p

exp
4

i i i i

i i
i

d
V a

d






+ +−
−

+
=

− −
 − =  

r r
R  (1) 

where B1/ k T =  with Boltzmann constant Bk  and temperature T . ( )p1

p p, ,R r r  presents the 

spatial coordinates of all monomers in a polymer chain. The normalization parameter a  can be 

specified as the cube of thermal de Broglie length, and its precise value has no thermodynamic 

consequences. 
, 1

p

i id +
 is the bond length between two tangentially adjacent monomers. Thus, it has 

( ), 1 1

p p p / 2i i m md  + += +  at the junction of the thm  block and the ( )
th

1m +  block, otherwise 

, 1

p p

i i md + = . Apparently, Eq. (1) is essentially the bonding potential of an ideal flexible chain (i.e., 

random-walk or freely-jointed chain).27 

The external interaction between hard wall and particle i  is described via hard-wall potential, 

 ( )ext

, / 2

0, / 2

ii

i

z
V z

z





 
= 


 (2) 

where z  is the distance from the hard wall; and p p1, , , 1i   +  , in which p1, ,i =  is 

the monomers in a polymer chain and p 1i = +  specifically refers to the counterions. It is worth 

to note that there is no counterion for neutral PB systems. Thus, i  only belongs to p1, ,   . 

Here, we define ( )p

i z  as the one-dimensional density profile of monomer i  along the z 

direction perpendicular to the surface. Since one end of the grafted chain is anchored at 10.5z =

, the physical constraint of grafted PBs is  
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 ( )1 1
p g

2
z z


  

 
= − 

 
 (3) 

where ( )1

p z  is the density distribution of the grafted monomer, and 1  is the diameter of the 

grafted monomer.   is the Dirac-delta function. In addition, another physical constraint of grafted 

PBs is that the accessible stretching space is limited by the chain length. Thus, the density profile 

of the remaining monomers satisfies, 

 ( )p g p
/2

, 2,3, ,
i

i

l
i z dz i


 = =  (4) 

where 
, 1

1 p

i i

i il l d −

−= +  with 1 1 / 2l = , representing the maximum stretching distance of the thi  

monomer in the grafted PBs.  

According to the physical constraints of grafted PBs, the theoretical calculations of PDFT are 

carried out in NVT ensemble, i.e., particle number N, system volume V, temperature T are fixed. 

Even for charged PBs, the counterions tend to surround the charged monomers via electrostatic 

interactions. Therefore, NVT ensemble is reasonable when all counterions and monomers are 

encapsulated in a sufficiently large box.  

Polymer Density Functional Theory 

In the presence of an external potential, the free energy of the system brush  is expressed as  

 ( ) ( ) ( ) ( ) ( ) ( )p c

brush p ext p c ext c

1 1
ln lnd V d d V d

P C
   

   
= + + + +   

   
   R R R r R r r r r r  (5) 

where P  and C  are the self-consistent parameters determined by the physical constraints of the 

grafted polymer chain and counterions, respectively. ( )c r  is the density profiles of counterions 

and ( )p R  is the density profiles of entire polymer chain. The relation between ( )p R  and 

( )p

i r  follows  
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 ( ) ( ) ( )p p p

i id  = −r R r r R . (6) 

Typically, Helmholtz free energy  in Eq. (5) is divided into two parts: the ideal gas 

contribution id  and the excess term due to the intramolecular/intermolecular interactions ex . 

The former is well-known as  

 
( ) ( )  ( ) ( ) 

( ) ( )

id p p p c c c

b

p p

ln 1 ln 1d d a

d V

    

 

 =  − + −   

+

 



R R R r r r

R R R
 (7) 

where p

p pa = . pa  and ca  are volume scales of monomer and counterion respectively, set to 

p ca a a= = . By minimizing brush  with respect to density profiles under the physical constraints 

of grafted PBs (i.e., Eq. (3) and Eq. (4)), we can obtain the Euler-Lagrange equations,  

 
( ) ( )

( )
( )

( ) ( ) 

pp

p

p

b ex
p p ext1

p

b

p p1

exp

exp

i

ii

i

i

a P V V

P V


  



  

=

=

   
= − − +  

    

= − −





R R r
r

R r

 (8) 

 ( )
( )

( ) ( ) cex
c c ext c

c

exp expa C V C


  


   
= − + = −  

   

r r r
r

 (9) 

where ( )p

i r  and ( )c r  are the local chemical potential of the thi  monomer in a polymer chain 

and the counterions, respectively. ( )p

i r  and ( )c r  can be understood as the effective energy 

field in the presence of an external potential. According to Eq. (6), the density profile of the thi  

monomer in a polymer chain ( )p

i r  is  

 ( ) ( ) ( ) ( ) pb

p p p p p1
expi i i

i
a P d V    

=
= − − − r R r r R r  (10) 

Incorporating with the bonding potential shown in Eq. (1), Eq. (10) is rewritten as 

 ( ) ( ) ( ) ( )p p p L Rexpi i i ia P G G  = − r r r r  (11) 
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where ( )L

iG r  and ( )R

iG r  are left and right propagators of the thi  monomer in a polymer chain, 

which is determined by the recurrence relation. Consequently, coupled with the local energy field 

(i.e., ( )p

i r  and ( )c r ) and the propagators (i.e., ( )L

iG r  and ( )R

iG r ), the density profiles of 

monomers and counterions can be obtained with the help of the self-consistent parameters (i.e., P  

and C ). In this work, only one-dimensional density profiles of monomers and counterions along 

the z direction will be calculated, i.e., ( )p

i z  and ( )c z , owing to the translational invariance in 

the x and y directions. Next, the rigorous derivation of the local energy field and propagators for 

grafted PBs will be presented. 

I. Excess Helmholtz Free Energy  

In this work, the excess Helmholtz free energy in neutral PBs is 
ex hs=  and that in charged 

PBs includes two terms, 
ex hs C= + . Specifically, 

hs
 describes the excess contributions 

from hard-core interactions including the excluded volume effect from hard-sphere fluid o

hs  and 

the non-bonded chain connectivity ch

hs
. The former can be computed through the modified 

fundamental measure theory (MFMT).39-40 ch

hs
 can be calculated through the first-order 

perturbation theory (TPT1).29, 41 C  stands for the direct Coulomb interactions. 

A. Excess Free Energy from Hard-Core Interactions 

The excess Helmholtz free energy due to the excluded volume effect from hard-sphere fluid is 

given by 

 ( )  ( ) o o

hs hs p p, 1, , , 1i kd n i    = = +   r r r  (12) 
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where ( ) ( )i

i p =r r  for 
p1, ,i =  and ( ) ( )

p 1 c + =r r . ( ) o

hs kn  
 r  is the excess free 

energy density dependent on six weighted densities, i.e., 0n , 1n , 2n , 3n , 
1Vn  and 

2Vn . Each 

weighted density is calculated by ( ) ( )p 1

1

i

k ki
n n

+

=
=r r , where ( )i

kn r  is the weighted density of 

particle i . According to the MFMT, the excess free energy density reads 

 ( )  ( )
( )

( )
1 2 2 2

3

1 2 2 2 3o

hs 0 3 22

3 3 3 3

3 ln 1 1
ln 1

1 36 1

V V V V

k

n n n n n
n n n

n n n n




 − − −
  = − − + + +   − −  

n n n n
r  (13) 

The excess Helmholtz free energy due to the non-bonded chain connectivity ch

hs
 follows  

 ( )  ( ) ch ch

hs hs p, 1, ,i kd n i    = =   r r r  (14) 

where the excess free energy density ( ) ch

hs kn  
 r  is calculated by the TPT1, 

 ( )  ( )
p p 1p

ch hs,p hs,p0
hs p p , , 1

1 1p

1 ln ln

N N

m

k m m m m

m m

n
n N g g 

−

+

= =

 
  = − −  

  
 r  (15) 

with 

 
( ) ( )

1 2 1 2

1 2 1 2 1 2

2
2

p p p phs,p 2 2
, 2 3

3 p p p p3 3

1

1 2 1 18 1

m m m m

m m m m m m

n n
g

n n n

    

   

 
= + +   − + +− −  

 (16) 

where ( )
2 2

2
p p p

p 21 /V V n = − n n  and ( )
2 2

2

21 /V V n = − n n . p

0n , p

2n  and 
2

p

Vn  are the weighted 

densities of polymer chain, i.e., 
pp

0 01

i

i
n n

=
= , 

pp

2 21

i

i
n n

=
=  and 

p

2 2

p

1

i

V Vi=
=n n .  

Apparently, the excess Helmholtz free energy from the hard-core interactions is closely 

associated with the weighted densities in the MFMT and TPT1. The weighted density of particle 

is calculated through 

 ( ) ( ) ( );i

k i k in R d   = −r r r r r  (17) 
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where ( );k iR −r r  is the weighted function with k  = 0, 1, 2, 3, 1V  and 2V . The weighted 

functions 2 , 3  and 
2Vω  are  

 ( ) ( )2 ; i iR R  − = − −r r r r  (18) 

 ( ) ( )3 ; i iR R  − = − −r r r r  (19) 

 ( ) ( )
2

;V i iR R − = − −
r

ω r r r r
r

 (20) 

The remaining weighted functions 0 , 1  and 
1Vω  can be obtained via  

 ( )
( )2

0 2

;
;

4

i

i

i

R
R

R






−
− =

r r
r r  (21) 

 ( )
( )2

1

;
;

4

i

i

i

R
R

R






−
− =

r r
r r  (22) 

 ( )
( )

2

1

;
;

4

V i

V i

i

R
R

R

−
− =

ω r r
ω r r  (23) 

According to the translational invariance in the x and y directions, ( )2

in z , ( )3

in z , ( )
2

i

V zn  are 

derived in the cylindrical coordinate with 0.5i iR = . 

 ( ) ( )2
2

2

i

i

z
i

i i
z

n z z dz


 
+

−

 =   (24) 

 ( ) ( ) ( )
222

3

2

0.25
i

i

z
i

i i
z

n z z z z dz


  
+

−

   =  − −
   (25) 

 ( ) ( )( )
2

2

2

2
i

i

z
i

V i
z

z z z z dz
z



 
+

−

  = −
z

n  (26) 

Correspondingly, 0

in , 1

in , and 
1

i

Vn  are obtained with the help of 2

in  and 
2

i

Vn . As mentioned above, 

the density profile of the first monomer is fixed by the physical constraints of end-grafted PBs. 
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Therefore, for i  = 1, incorporating Eq. (3) into Eqs. (24), (25), and (26), the weighted densities of 

the end-grafted monomer 1

2 ( )n z , 1

3( )n z  and ( )
2

1

V zn  are  

 
1

1

1 g 11 12
2 1 g

2 1

,0
( )

2 0 ,

z

z

z
n z z dz

z





  
  



+

−

  
 = − =  

  
  (27) 

 ( )
1

1

22

1 12
2 g 11 1 12

3 g

2

1

,0
( ) 4 2

2 4
0 ,

z

z

z z
n z z z z dz

z





 
  

  



+

−

   
− −          = −  − − =         

    


  (28) 

 ( )
1

12

1
g 11 12

g

2

1

2 ,0
( ) 2 2

2
0 ,

z

V
z

z z
z z z z dz z

z
z






 

  



+

−

  
−       = − − =   

   



z
z

n  (29) 

B. Direct Coulomb Interactions 

The excess Helmholtz free energy due to the direct Coulomb interactions in mean field is 

described through a point charge model,  

 ( ) ( ) ( )p
21 0 r

C 1 2
i ii

Z e d d
 

  
+

=
= −     r r r r r  (30) 

where 0  is vacuum permittivity and r  is the relative dielectric constant. In this work, we 

consider an implicit aqueous solvent model, where r  = 78.5. ( ) r  is the electrostatic potential 

and can be computed via Poisson equation. In one-dimensional space along the z direction, the 

electrostatic potential ( )z  satisfies  

 ( ) ( )p 12 1
1 g2

0 r 2
i ii

e
z Z z Z z


   

 

+

=

  
 = − + −  

  
  (31) 

According to the boundary condition, i.e., ( )   = 0 and 
( ) s

0 r0z

d z Q

dz



 
=

− = , the electrostatic 

potential of grafted PBs is derived.  
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For 1

2
z


  

 

( ) ( ) ( ) ( ) ( )

( )

p p1 1

2 20 0
0 r 0 r

s 1
1

0 r 0 2

L z

i i i ii i

g

r

e e
z L z Z z dz z z Z z dz

Q e
L z Z L

  
   




   

+ +

= =
     = − − −

 
+ − + − 

 

  
 (32) 

For 1

2
z


  

 

( ) ( ) ( ) ( ) ( )

( ) ( )

p p1 1

2 20 0
0 r 0 r

s
1 g

0 r 0

L z

i i i ii i

r

e e
z L z Z z dz z z Z z dz

Q e
L z Z L z

  
   


   

+ +

= =
     = − − −

+ − + −

  
 (33) 

where L  stands for the distance from the surface along the z direction, which must be sufficiently 

large to ensure that all of the counterions are encapsulated in the system. In this work, we set 1Z  

= 0, sQ  = 0 and L  = 80 nm, the electrostatic potential is then computed through 

 ( ) ( ) ( ) ( ) ( )p p1 1

2 20 0
0 r 0 r

L z

i i i ii i

e e
z L z Z z dz z z Z z dz  

   

+ +

= =
     = − − −    (34) 

II. Propagators 

Left and right propagators of the thi  monomer in a polymer chain (i.e., ( )L

iG r  and ( )R

iG r ) 

satisfies the recurrence relation, i.e., 

 ( )
( )

( ) ( )
1 , 1

p p pL p 1 1 1 1 1

p p p L p2
, 1

p

1 , 1

exp , 1
4

i i i ii i

i i i i i

i i

i

dG
d G i

d






− −

− − − − −

−

=
  − −=     −   



r rr

r r r
 (35) 
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 ( ) ( )
( ) ( )

1 , 1

p p p1 1 1 1 1

p p p R p p2
, 1

R p

p

exp ,
4

1 ,

i i i i

i i i i i

i i i i
p

d
d G i

G d

i






+ +

+ + + + +

+

  − −
   −   = 


=


r r

r r r
r  (36) 

When polymer chains are tethered to hard wall, the left propagator is specified due to the fixed 

density profiles of the grafted monomer, see Eq. (3). For example, ( )2 2

L pG r  is 

 ( )
( )

( ) ( )
2 1 2,1

p p p2 2 1 1 1 1 1

L p p p p L p2
2,1

p

exp
4

d
G d G

d






 − −
   = − 

 
r r

r r r r  (37) 

According to the translational invariance in the x and y directions, ( )2

LG z  is derived in the 

cylindrical coordinate, 

 ( ) ( )
2,1
p

2,1
p

2 1

L p2,1

p

1
exp

2

z d

z d
G z z dz

d


+

−
 = −   (38) 

In this work, 
2,1

pd = . Then, Eq. (38) is normalized to 

 ( ) ( )
g2 1

L p g

, 0 1.5

2 0, otherwise

z z

z z

z
G z z dz z dz

 

 

 
  

+ +

− −

  
= = − =  

  
   (39) 

Theoretical Numerical Iteration 

In accordance with the above introduction, we get a clear understanding of end-grafted PBs, i.e., 

the interfacial properties including the microstructures and excess free energies of grafted PBs are 

significantly influenced by the physical constraints of the grafted monomer. In the theoretical 

numerical implementations of grafted PBs, the density profiles of monomers and counterions are 

set to be step-function density distributions in the first iterative step (i.e., t  = 1) according to the 

physical constraints of grafted PBs. Then, the new density profiles at the next iterative step are 
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calculated with the help of two key self-consistent determined parameters (i.e., P  and C ). The 

numerical details are introduced as follows. 

I. Initial Density Profiles 

The density profiles of monomers and counterions in the tht  iterative step are defined as ( )p,

i

t z  

and ( )c,t z , respectively, which are initialized through grafting density, chain length, and charge 

amount. According to the physical constraint given by Eq. (4), the initial density profile of the thi  

monomer in a polymer chain, ( )( )p, =1 p2, ,i

t z i = , is calculated via 

 ( )
g

p, =1

/ , / 2

0 , / 2 and

i i ii

t

i i

l z l
z

z z l

 




  
= 

 
 (40) 

where / 2i i il l  = − , in which il  is the accessible space of the thi  monomer in a polymer chain 

along the z direction. 

Based on the electroneutrality of system, the initial density profile of counterions is 

 ( )
( )

( )pgs 1
c, =1 p, =12

c c c/ 2 / 2

ii
t ti

Q ZZ
z z

Z L Z L Z


 

  =
= − − −

− −
  (41) 

where the three terms on the right-hand side of Eq. (41) stand for the counterions from the opposite 

charges loaded on the surface, the grafted monomer, and the remaining monomers in a polymer 

chain, respectively. It is worth to note that we only consider salt-free cases in this work. In fact, 

Eq. (41) is rewritten as ( ) ( )p

c, =1 p, =12
c

ii
t ti

Z
z z

Z
 

=
= −  owing to 1Z  = 0 and sQ  = 0.  

II. Numerical Iteration Process 

In the iteration process of the PDFT, Eqs. (8)-(11) are solved numerically under the physical 

constraints of grafted PBs and counterions. Firstly, the initial density profiles of monomers and 
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counterions, ( )p, =1

i

t z  and ( )c, =1t z  are required as input, and the effective energy fields of 

monomers and counterions (i.e., ( )p

i z  and ( )c z ) and the propagators of polymer chain (i.e., 

( )L

iG z  and ( )R

iG z ) are calculated via the initial densities. Secondly, the temporary density 

profiles of monomers and counterions at the second step are obtained 

 
( ) ( ) 

( ) ( ) ( ) ( )

c, 2 c c

p, 2 p p L R

ˆ exp

ˆ exp

t

i i i i

t

z a C z

z a P z G z G z

 

 

=

=

 = −


 = −  

 (42) 

where the self-consistent determined parameters P  and C  can be calculated through the 

following two equalities: 

 ( )p, 2 g p
/2
ˆ , 2,3, ,

i

i

l
i

t z dz i


 = = =  (43) 

and 

 ( )c c, 2 brush s
0

ˆ
L

tZ z dz Q Q =− = +  (44) 

where brushQ  is the charge storage of grafted PBs, i.e., 

 ( )p

brush p, 2 1 g20
ˆ

L
i

i ti
Q Z z dz Z ==

= +  (45) 

Finally, the new density profiles of monomers and counterions at second iterative step is updated 

by the following mixing rule, 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

p, 2 p, 2 p, 1

c, 2 c, 2 c, 1

ˆ 1

ˆ 1

i i i

t t t

t t t

z z z

z z z

   

   

= = =

= = =

 = + −


= + −

 (46) 

where   is a mixing parameter in the Picard iteration. In the new iterative step, the density profiles 

( )p, 2

i

t z =  and ( )c, 2t z =  are used as input. This iterative loop is repeated until the iterative process 
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converges to the equilibrium state where the difference between t  and ( )1t +  iterative steps in the 

density profiles is less than an error tolerance  . In this work,   = 0.01 and   = 110-7. 

Molecular Dynamics Simulations 

MD simulations are implemented to verify the accuracy of PDFT by comparing their equilibrium 

density profiles of monomers and counterions. The MD simulations are performed using 

LAMMPS package with Lennard-Jones (LJ) units, e.g., the reduced distance * /z z = ; the 

reduced temperature *

B /T k T =  with energy parameter  .  

LAMMPS package provides many pairwise interaction potentials to capture the 

intramolecular/intermolecular interactions. To model the hard-core interactions, shifted Lennard-

Jones (LJ) potential iju  is used to impose a purely repulsive interaction between two particles, i.e., 

 

12 6

cut

cut

4 ,

0 ,

ij ij

ij ij

ij ijij

ij

C r r
r ru

r r

 


     
  − +         =      




 (47) 

where ij i j  =  is the energy parameter; and ij  is the effective size, equal to ( ) / 2ij i j  = +

. cutr  is the cutoff distance and C  is a constant to make 0.0iju =  at its cutoff. To simulate the hard 

sphere model, 
ij  = 100 Bk T  and cutr =  (C  = 0.0) are used in MD simulations. Although the 

cutoff distance in this work can cause discontinuity of the force at cutr , this discontinuity point has 

little influence on the simulation results in LAMMPS. Therefore, it is widely used to simulate 

systems with polyelectrolyte chains in the presence of counterions.42-46 

Furthermore, the harmonic bonded potential with a sufficiently large energy parameter K  = 

2000 Bk T  is utilized to assemble two freely jointed hard sphere, 
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 ( )
2

bond bu K r r= −  (48) 

where br  is the stretching bond length, equal to 
1,

b p

i ir d += . 

Besides, due to lack of the hard wall potential ( )ext

iV z  (see Eq. (2) ) in LAMMPS package, we 

construct a strongly repulsive wall potential by using a LJ potential 
w

iu  with large energy 

parameter w  = 100 Bk T , i.e.,  

 ( )

12 6

w

4 , 0.5
0.5 0.5

0 , 0.5

i i
w ii

i i

i

z
u z z z

z

 
 

 



     
  −     

= + +      




 (49) 

Additionally, the Coulomb interactions are calculated using particle-particle-particle mesh 

(PPPM) method.47 That is, the Coulomb pair interactions are divided into short-range and long-

range contributions. Within short cutoff distance cutr r , the Coulomb potential is directly 

computed,  

 C

r

i jq q
u

r



=  (50) 

where   is an energy-conversion constant. r  is relative dielectric constant of implicit solvent 

(e.g., r  = 78.5 for mimicking the aqueous solution). iq  (or 
jq ) is the charge of particle and 

normalized by 
*

0/ 4i i iq q   =  = ±11.84 with i  =   = 4.0  10-10 m and Bk T =  = 4.1154  

10-21 J (or 
2

2

kg m

s


). The Bjerrum length is ( )2

B 0 r B/ 4l e k T =  = 7.144 Å (i.e., B 1.786l = ). In 

this work, we set cut 10r = . Beyond the short-range cutoff distance, PPPM method is used to 

compute the long-range Coulomb pairwise interactions in reciprocal space with a maximum 

relative error of 10-5. Accounting for the non-periodic property from hard wall in the z direction, 
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the migration of particles is confined within a periodic unit cell of slab geometry. Typically, the 

periodic unit cell is set as 3. 

Corresponding to the numerical calculations of the PDFT, NVT ensemble is kept by combining 

the Langevin dynamics integrator (its damping factor of approximately 0.001) with a constant 

NVE time integration. The fixed reduced temperature *

B /T k T =  = 1 with T  = 298 K and energy 

parameter   = 4.1154  10-21 J. Because polymer chains are tethered to the surface placed in the 

x-y plane, the periodic boundary condition is employed in the x and y directions in a three-

dimensional simulation box. In the z direction, the non-periodic and fixed boundary condition is 

considered. Additionally, a sufficiently long relaxation time is required to reach the equilibrium 

state of MD simulations. Therefore, the total running time steps of simulations are larger than 1.0 

 109 with a time step of 0.001.  

Results and Discussion 

The important interest of this work is to calibrate the PDFT by comparing the density profiles 

of monomers and counterions with the ones from MC and MD simulations. Corresponding to the 

three cases presented in Figure 1, the PDFT is used to capture the interfacial microstructure of 

neutral and charged PBs with different chain lengths and grafting densities. 

Case I: Neutral PBs 

In 2007, Borówko et al.48 reported high-quality density profiles of neutral PBs using MC 

simulations, which are widely used for benchmarking in other theoretical works.38, 49 However, 

there are remarkable deviations between PDFT and MC simulation, such as overestimated 

interfacial densities and mismatched brush heights. Here, corresponding to the four cases reported 

by Borówko et al., the PDFT and MD simulation are implemented to study the microstructure of 

neutral PBs. Figure 2 (a)-(d) show the density profiles of the second block in the neutral PBs with 
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two grafting densities (i.e., 2

g   = 0.25 and 0.40) and two polymerizations (i.e., 
p

 = 4 and 8). 

For all cases, the density profiles predicted by the PDFT agree well with the results of the MC and 

MD simulations, providing direct evidence for the accuracy of the PDFT. Moreover, two neutral 

PBs with longer chain and lower grafting density are investigated by the PDFT and MD 

simulations, as shown in Figure 2 (e) and (f). The consistent results of density profiles once again 

demonstrate the reliability of the PDFT. 

 

Figure 2. The density profiles of neutral PBs predicted by the PDFT and simulations: (a) 
p

 = 4 

and 2

g   = 0.25; (b) 
p

 = 8 and 2

g   = 0.25; (c) 
p

 = 4 and 2

g   = 0.40; (d) 
p

 = 8 and 

2

g   = 0.40; (e) 
p

 = 30 and 
2

g   = 0.028; (f) 
p

 = 60 and 
2

g   = 0.028. The MC data are 

from Ref. 48. The MD parameters are given in Table S1 in Supporting Information (SI) 

According to Figure 2 (d) for the PBs with long chain and high grafting density, the density 

profile of the second block exhibits multiple peaks owing to the excluded volume interactions. 

This oscillation of density profiles weakens as the grafting density or chain length decreases, see 
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Figure 2 (a)-(c). Besides, a prominent structural feature is that the maximum peak of the density 

profile appears near 1.5z =  due to the tangential connection between the second monomer and 

grafted monomer. Then, along the z direction, the oscillating amplitudes of the remaining peaks 

decrease sequentially. After that, the density profile decreases smoothly at the outer edge of the 

PBs. This smoothly decreasing structure is more pronounced for the PBs with longer chain length 

and lower grafting density, where only a few peaks are captured in the near-interface space, see 

Figure 2 (e) and (f). 

Taking advantage of the significant spatial oscillation in the density profiles, a porous 

geometrical interface of PBs can be constructed to control the transport and adsorption of ions by 

the reversible collapse-extension transition of PBs.50-51 In addition, the uncrowded space closest 

to the interface affords free small ions the opportunity to further tune the interfacial properties.  

Case II: Partially Charged PBs 

Like the inset in Figure 3 (a), partially charged PBs are assembled from alternating neutral and 

charged monomers, where the first monomer grafted to the surface is neutral. Combining the 

excluded volume interactions and direct Coulomb interactions, the PDFT is used to study the 

interfacial microstructure of partially charged PBs. Figure 3 shows the density profiles of each 

monomer and counterions in two partially charged PBs, i.e., (a) 
p

 = 10 and 
2

g   = 0.01; (b) 

p
 = 10 and 2

g   = 0.10. When the grafting density of partially charged PBs is low, the density 

profiles of monomers and counterions predicted by the PDFT and MD simulation are in excellent 

agreement, demonstrating the validity of the PDFT. 

However, when the grafting density is high, a subtle deviation between the PDFT and MD 

simulation is found for the monomers far from the surface. This deviation is not surprising because 

some approximations are introduced into the PDFT as well as the MD simulations. For example, 
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in the MD simulation, the shifted LJ potentials with large energy parameter and short cutoff are 

used to approximate the hard-wall external potential and hard-sphere interactions. Furthermore, an 

important factor is the increasing contribution from ion-ion electrostatic correlations. However, 

the ion-ion electrostatic correlations are ignored in the PDFT. Commonly, in a grand canonical 

ensemble, the excess Helmholtz free energy of ion-ion electrostatic correlations can be computed 

through a quadratic Taylor expansion with respect to a global reference density.41, 52 However, the 

physical picture of this reference density is lack in this work. Thus, the ion-ion electrostatic 

correlations require a novel method to determine its contribution through the local densities of ions 

rather than a global reference density, which will be considered in our follow-up work.  

 

Figure 3. The density profiles of monomers and counterions predicted by the PDFT and MD 

simulation: (a) 
p

 = 10 and 
2

g   = 0.01; (b) 
p

 = 10 and 
2

g   = 0.10. Note that the 2nd 

represents the second monomer in a polymer chain. The MD parameters are given in Table S2 in 

SI. 
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Similar structural characteristics are captured for those two partially charged PBs shown in 

Figure 3. A dramatic decline in the density profiles of the second monomer is observed. This sharp 

peak is formed because the second monomer connected to the grafted monomer is tightly confined 

within its maximum stretching height. Owing to the wider accessible space of the monomer farther 

away from the grafted monomer, we naturally capture a peak with a lower amplitude and a greater 

distance from the surface. Especially, the end monomers (i.e., the 10th monomer) distributes over 

the entire brush region, which determines the effective interfacial functional layer. As a 

consequence, the density profile of the monomer far from the grafted end evolves to a parabolic 

shape, which is different from the sharp curve of the second monomer. Additionally, though the 

counterions can freely move in entire space. Its density profiles show that most of counterions are 

concentrated within the PB layer due to the direct Coulomb interactions. 

Case III: Fully Charged PBs 

The fully charged PBs is assembled from two blocks, in which all of the monomers in the second 

block carry one elementary negative charge. Thus, the electrostatic contribution in this fully 

charged PBs is important. Here, three fully charged PBs are studied, i.e., 
p

 = 10 and 2

g   = 

0.01; 
p

 = 10 and 
2

g   = 0.10; 
p

 = 30 and 
2

g   = 0.028. The PDFT and MD simulation 

are employed to reveal the density profiles of the second block and counterions in the fully charged 

PBs, as shown in Figure 4. Intuitively, the predictions from PDFT are well consistent with the 

results of MD simulations. However, there are subtle numerical differences in the density profiles 

on the outer edge of the fully charged PBs. Important reasons of these deviations have been 

mentioned above, e.g., the lack of ion-ion electrostatic correlations in the PDFT and the differences 

between the two models used in PDFT and MD simulation. Here, we emphasize that despite the 
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little differences in the density profiles of strongly charged PBs, our PDFT provides desirable 

accuracy and reliability in the study of interfacial microstructure of charged PBs. 

 

Figure 4. The density profiles of the monomers in the second block (left panel) and counterions 

(right panel) predicted by PDFT and MD simulation: (a)-(b) 
p

 = 10 and 
2

g   = 0.01; (c)-(d) 

p
 = 10 and 2

g   = 0.10; (e)-(f) 
p

 = 30 and 2

g   = 0.028. Additionally, the density profiles 

of the monomers in the second block of the neutral PBs (grey solid line in the left panel) are given 

for comparison, where the polymerization and grafting density of the neutral PBs are the same 

with the corresponding charged PBs. The MD parameters are given in Table S3 in SI. 

Corresponding to the fully charged PBs, the neutral PBs with same polymerization and grafting 

density are introduced to show the significant effect of the direct Coulomb interactions, see the 

grey line in the left panel of Figure 4. We find that the height of charged PBs is larger than that of 
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neutral ones, and more peaks are observed in the charged PBs. These behaviors indicate that 

electrostatic interactions prefer to promote the oscillation of PBs meanwhile prolong its height, 

which has a positive effect on the interfacial porous energy-storage layer. In addition, when the 

grafting density is small, the density of charged PBs at interface is smaller than that of neutral PBs. 

The opposite consequence is captured for the charged PBs with large grafting density, see Figure 

4 (a) and (c). According to the figures in the right panel of Figure 4, most counterions distributes 

among the entire PB layer. Especially, the uncrowded space adjacent to the surface (which has 

been mentioned in the Case I) is occupied by the counterions. This finding suggests the great 

potential of charged PBs as the porous interfacial energy-storage layer. 
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4 Conclusions 

In summary, a polymer density functional theory (PDFT) is rigorously extended to neutral and 

charged PB systems. Specifically, the hard-core interactions and direct Coulomb interactions are 

coupled with the physical constraints of grafted PBs. Furthermore, the PDFT is calibrated via the 

density profiles of the monomers and counterions provided by the MC and MD simulations. The 

comparison results show that the density profiles of the neutral and weakly charged PBs agree 

excellently with the results from MC and MD simulations, although there is a little difference 

between the predictions from PDFT and MD simulations in the cases with fully charged PBs. This 

subtle deviation may be caused by the model differences in PDFT and MD simulations as well as 

the lack of ion-ion electrostatic correlations in the PDFT. Altogether, beyond providing clear 

insight into the significant consequences of the grafting behavior, an accurate and reliable 

theoretical method is proposed for revealing the interfacial microstructure of neutral and charged 

PBs in the molecular level. We believe that this theory can be used to tune the interfacial functional 

layer in a reasonable way, which is benefit for many applications such as colloidal stabilization, 

ionic separation, and energy-storage devices. 
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