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Abstract  

Solvents are one of the key variables in the optimisation of a synthesis yield or properties of a 

synthesis product. In this paper, contemporary solvent models are applied to predict the rates of SN2 

reactions in a range of aqueous and non-aqueous solvents. High-level CCSD(T)/CBS//M06-2X/6-

31+G(d) gas phase energies were combined with solvation free energies from SMD, SM12 and ADF-

COSMO-RS continuum solvent models as well as molecular mechanics (MM) explicit solvent 

models with different atomic charge schemes to predict the rate constants of three SN2 reactions in 

eight protic and aprotic solvents. It is revealed that popular solvent models struggle to predict their 

rate constants to within 3 log units of experimental values and deviations as large as 7.6 log units 

were observed. Amongst the implicit solvent models, the ADF-COSMO-RS model performed the 

best in predicting absolute rate constants with an average accuracy of 1.5 log units while the SM12 

and CGenFF/TIP3P MM explicit solvent models were most accurate in the prediction of relative rate 

constants in different solvents due to systematic error cancellation. Free energy barriers obtained from 

umbrella sampling with explicit solvent QM/MM simulations led to excellent agreement with 

experiment provided that a validated level of theory is used to treat the QM region.  
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Introduction 
 
Nucleophilic substitution reactions are amongst the most widely used reactions in synthetic organic 

chemistry and biochemistry. Prominent examples include methyl transfer reactions catalysed by 

methyltransferase enzymes1 and in Williamson ether synthesis (“O-methylation”),2 as well as carbon-

carbon bond forming alkylation reactions that are ubiquitous in organic synthesis. Despite their 

importance, it remains very challenging to reliably predict the kinetics and thermodynamics of these 

reactions in a consistent fashion.  

A reason underlying this difficulty is the lack of robust methods that can accurately describe solvent 

effects. Notably, the vast majority of synthetic and biochemical reactions occur in the solution phase, 

and solvents can have a profound influence over the outcome of the reaction. For example, the barrier 

for the SN2 identity reaction (Cl- + CH3Cl) is increased by more than 25 kcal mol-1 going from the 

gas phase to water,3 which corresponds to 18 orders of magnitude reduction in rate constant at room 

temperature. One way to quantify solvent effects is to consider a thermodynamic cycle which 

expresses the Gibbs free energy change of a solution phase process (DGsoln) in terms of the gas phase 

free energy change (DGgas) and the solvation free energies (DGS) of the reactants, products and/or 

transition state. Figure 1 illustrates an example cycle for the calculation of the solution phase barrier 

of a nucleophilic substitution SN2 reaction. In Equation 1, DDGS refers to the net gain or loss in 

solvation free energy due to the reaction. An advantage of using a thermodynamic cycle is that it 

allows one to analyse a free energy change in terms of intramolecular and intermolecular 

contributions, where one can think of DDGS as the thermodynamic driving force due to the solvent. 

Additionally, when highly accurate QM methods (such as CCSD(T)/CBS) are employed for the 

calculation of DGgas (Equation 1) and the assumptions of transition state theory hold true, the 

discrepancy between calculated and experimentally measured rate constants can be directly attributed 

to the quality of the calculated DDGS. 
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Figure 1. Thermodynamic cycle that expresses the solution phase SN2 Gibbs free energy barrier in 
terms of the gas phase barrier and solvation free energies of reactants and transition state. 

 

    (1) 

At present, quantum mechanical (QM) continuum solvent models (also known as implicit solvent 

models) are the most popular approach for the prediction of DGS due to their low-cost, moderate 

accuracy, and ease of use.4 Examples include the polarisable continuum model and its variants (e.g. 

C-PCM,5-6 the SMx (x = 8, 12, D)7-8 and COSMO-RS9-10 models. Many of these models have been 

parameterised to reproduce experimental data and hence are generally valid only at room temperature 

for selected neat solvents. While these models have reported accuracies of about 1 kcal mol-1 for the 

prediction of hydration free energies of neutral solutes, errors of many kcal mol-1 are common for 

ionic solutes.11 This is presumably due to the implicit nature of these models which do not directly 

account for short-range specific interactions such as hydrogen bonding. Some improvements have 

been reported when the interactions between the solute and a small number of explicit solvent 

molecules are modelled using quantum chemical methods;12-13 however, these cluster-continuum 

approaches introduce other complications such as the number of solvent molecules that should be 

added, and the treatment of conformational and anharmonic vibrational effects.11 Hybrid implicit-

explicit approaches such as 3D-RISM14 has also been reported though they remain under 

development and are not yet broadly applicable. It is worth pointing out that in order to predict a rate 

or equilibrium constant to within an order of magnitude of experiment, the error in the calculated 

Nu—(soln)      +     R—X (soln)                            [Nu---R---X]—(soln)

Nu—(g)          +     R—X (g)                                 [Nu—R—X]—(gas)

ΔGsoln

ΔGgas

-ΔGS(Nu—) -ΔGS(R—X) ΔGS(TS)

ΔGsoln
≠ = ΔGgas

≠ + ΔGS (TS)− ΔGS (R-X)− ΔGS (Nu- )

           = ΔGgas
≠ + ΔΔGS
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DGsoln in Equation 1 must be smaller than 1.4 kcal mol-1 at room temperature. This level of rigor is 

also known as chemical accuracy, and previous work has shown that continuum solvent models often 

represent the bottleneck in terms of accuracy when combined with high-level QM methods.15    

Another approach is to employ explicit solvent simulations where the solute-solvent interactions are 

modelled explicitly in molecular dynamics (or Monte Carlo) simulations and statistical free energy 

methods are used to extract the free energy of solvation (DGS), or solvation free energy changes along 

a reaction path (DDGS). As these methods require extensive configurational sampling to obtain 

converged values, they are generally implemented using approximate molecular mechanics (MM) 

force fields where inter and intra-molecular interactions are modelled classically. Nevertheless, these 

models have been very successful in the prediction of solvation free energies of neutral solutes in 

aqueous and organic solvents,16-17 though they are less widely used to model ionic solutes or transition 

states.3, 18-20 

An alternative to the use of a thermodynamic cycle is to perform direct dynamics using ab initio or 

hybrid quantum mechanics/molecular mechanics (QM/MM) potentials along the reaction path.21-26 

In this approach, the solution phase energy changes are directly determined (i.e. no separate gas phase 

calculation) using statistical free energy methods in conjunction with configurational sampling using 

molecular dynamics (MD) or Monte Carlo simulations. For example, Acevedo and Jorgensen have 

demonstrated successful applications of QM/MM and polarisable OPLS-AAP force field simulations 

of many organic reactions, including Menchutkin and ionic SN2 reactions.27-29 Similarly, Higashi and 

Truhlar have reported the use of density functional theory in conjunction with electrostatically 

embedded multiconfigurational molecular mechanics to study a model SN2 reaction.30 However, 

these methods require significantly more computational resources where construction of a reaction 

profile involving 20-50 sampling windows can easily consume many tens of thousands of CPU hours 

depending on the choice of QM treatment. This is approximately 3-4 orders of magnitude more 

resources compared to a QM implicit solvent calculation. Additionally, the quality of QM/MM 
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simulations depends on a number of parameters such as size of the QM region and pairing of QM and 

MM potentials that can have a significant impact on accuracy.31-33 These considerations have limited 

the wide use of these approaches.  

Thus, it is of interest to examine if computationally expensive QM/MM simulations translate to more 

accurate predictions, particularly when off-the-shelf continuum solvent models fail. In this context, 

there have been very few studies that directly compare the performance of these two approaches. 

Stirling and co-workers have compared the use of QM/MM molecular dynamics and static DFT 

continuum solvent calculations to evaluate the energetics of Ag-catalysed furan ring formation and 

concluded that the latter was adequate in uncovering the mechanistic features of the reaction.34 The 

Shao group has also compared the performance of various continuum solvent models, MM and 

QM/MM explicit solvent models to evaluate the hydration free energies of neutral solutes. It was 

observed that the use of computationally expensive QM/MM potentials did not lead to a significant 

improvement in overall performance.35 Henchman and co-workers have also employed an energy-

entropy method to calculate the barriers of SN2 reactions in water using QM/MM MD simulations 

and DFT implicit solvent calculations.21 The authors observed that the implicit solvent model (IEF-

PCM) incurred very large errors whilst the QM/MM values are in better agreement with experiment.  

In this work, we sought to examine the ability of contemporary solvent models to predict solvent 

effects on the rates of SN2 reactions. In particular, can these models reliably predict solvent induced 

changes in: (1) the reactivity of a nucleophile, and (2) the relative reactivity between different 

nucleophiles. This will enable chemists to make informed decisions concerning the choice of 

computational methods to guide the choice of solvents and reagents to optimise reaction yields and/or 

kinetics. To this end, we compared the performance of widely used QM continuum solvent models, 

namely Minnesota solvation models (SMD, SM12) and ADF-COSMO-RS as well as MM and 

QM/MM explicit solvent models for predicting absolute and relative rate constants of three SN2 

reactions depicted in Figure 2. These reactions were chosen because they have experimentally 
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measured rate constants in eight different solvents that span up to six orders of magnitude. These 

small rigid systems also permit the use of highly accurate quantum chemistry methods to calculate 

DG‡gas as well as minimise complications associated with anharmonicity and conformational 

contributions so that one can directly assess the ability of the models to describe solvation effects.  

 

Figure 2. The three SN2 reactions examined in this study. 

 

Computational details 
 
Gas phase calculations. All gas phase electronic structure calculations were performed using the 

Gaussian1636 and ORCA (versions 4.2.0 and 5.0.1)37-38 programs. Gas phase geometries and 

harmonic frequencies were calculated at the M06-2X/6-31+G(d) level of theory;39 the LANL2DZdp40 

basis set was used for iodine. Harmonic frequency calculations confirm that the transition state 

structures were first order saddle points, and intrinsic reaction coordinate (IRC) calculations were 

performed to verify that they connect the correct reactants and products.  

Single point calculations were performed using various levels of wavefunction and density functional 

theory (DFT) methods. This includes CCSD(T),41-44 TightPNO-DLPNO-CCSD(T)45-49 (both with 

CBS extrapolation) as well as DSD-PBEP86-D3(BJ),50-51 B3LYP-D3(BJ),52-54 M06-2X,39 ωB97M-

V,55 and ωB97X-V56  in conjunction with the def2-SVP, def2-TZVPP, def2-QZVPP, ma-def2-SVP, 

ma-def2-TZVPP, ma-def2-QZVPP, cc-pVTZ, cc-pVQZ, and aug-cc-pVTZ and aug-cc-pVQZ basis 

sets. For double-hybrid DFT and wavefunction calculations with Dunning’s basis sets, the 

Cl—(soln)  +  CH3Br(soln)                        Cl---CH3---Br   (soln)

Cl—(soln)  +  CH3I(soln)                           Cl---CH3---I    (soln)

Reaction I

Reaction II

SCN—(soln)  +  CH3I(soln)                       SCN—CH3—I   (soln)Reaction III
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1s22s22p63s23p63d10 orbitals (28 core electrons) of bromine and iodine were frozen, with the SK-

MCDHF-RSC for iodine-containing systems. For the Aldrich’s basis sets the 1s22s22p63s23p6 orbitals 

(18 core electrons) of bromine were frozen, and the 1s22s22p63s23p63d10 orbitals (28 core electrons) 

of iodine were frozen, with the def2-ECP used for iodine-containing systems. CBS extrapolations 

were performed using the aug-cc-pVXZ (X = T, Q) basis sets;57 the pseudopotential aug-cc-pVXZ-

PP and ECP SK-MCDHF-RSC was used for the iodine containing systems.57-58  

Continuum solvent calculations. The SMD, COSMO-RS and SM12 continuum solvent calculations 

were performed in the Gaussian16, ADF (version 2020.102) and Q-Chem (version 5.3.1) programs 

respectively, and applied at the levels of theory that are consistent with their parametrisation.59 Gas 

phase geometries of each species were reoptimized using the SMD model (for the eight solvents) at 

the M06-2X/6-31+G(d) level of theory with the LANL2DZdp basis set for iodine atoms. Single point 

SM12 calculations were performed on the SMD optimised geometries at the M06-2X/6-31+G(d) 

level of theory; the MIDI! basis set was used for iodine atoms.7 Single point COSMO-RS single point 

calculations were performed on SMD optimised geometries at the BP/TZP level of theory, with the 

ZORA/TZ2GP basis set for iodine. As these are fixed concentration free energies of solvation, a 

standard state correction (-1.89 kcal mol-1) is applied when they are combined with the gas phase 

barriers (standard state 1 atm) to yield a standard state (1 M) solution phase Gibbs free energy barrier.  

MM explicit solvent simulations. The molecular mechanics solvation free energy calculations were 

obtained using the CHARMM General Force Field (CGenFF)60-61 to simulate the solute and organic 

solvents; the TIP3P model was used for water. Simulations were performed using NAMD 2.1462 with 

periodic boundary conditions (PBC) at constant temperature (298.15 K) with the Langevin algorithm 

at a pressure of 1.0 bar using the Nose−Hoover Langevin Piston method (time step = 2.0 fs). All 

covalent bonds involving hydrogens were kept rigid with the RATTLE algorithm. The Particle Mesh 

Ewald (PME) algorithm was applied for long-range electrostatic interactions with a 12 Å distance 

cut-off. Each solute was fixed at their M06-2X/6-31+G(d) – SMD optimised geometries 
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(LANL2DZdp for iodine), with fixed atom forces turned on, and embedded in a 4 nm cubic periodic 

box with the appropriate number of solvent molecules to reproduce the density of that solvent. No 

counter ion was added. For this reason, only the MM non-bonded parameters (vDW and atomic 

charges) were needed for the solutes in these simulations. Intramolecular contributions to the 

solvation free energies were not considered as they expected to be negligible for the small rigid 

solutes considered in this work. 

For solutes where there are no CGenFF parameters (i.e. transition states and SCN- anion) or the 

parameters have high penalty scores (CH3I and SCN-), the Force Field Toolkit Plugin63 in VMD64 

was used to determine their atomic charges. These charges are optimised to reproduce monohydrate 

interaction energies and dipole moment calculated at the HF/6-31+G(d) and MP2/6-31+G(d) levels 

of theory respectively with LANL2DZdp basis set for iodine. The QM interaction energies were 

scaled by 1.16 for neutral species, and 1.0 for charged species. All QM optimised distances were 

offset by -0.2 Å. Additionally, different atomic charge calculation schemes were used for the solutes, 

namely restrained and unrestrained electrostatic potential (RESP and ESP) charges obtained in the 

gas phase and in the SMD continuum solvent model at the M06-2X/6-31+G(d) level of theory with 

LANL2DZdp basis set for iodine. Overall, the use of CGenFF Lennard Jones parameters together 

with atomic charges optimised to reproduce monohydrate interaction energies produced the best 

results (see Figure 8 and Table S5 in the Supporting Information). Hence, all MM explicit solvent 

simulation results reported in Figures 1-3 employ this combination which is labelled CGenFF. 

Alchemical free energy perturbation (FEP)65 was performed using 20 evenly distributed λ-windows, 

with 100,000 equilibration steps and 250,000 production steps per window. To prevent numerical 

instabilities as atoms were created or destroyed, a soft-core potential was used with 

alchVdWShiftCoeff = 5.0. These were carried out under the NPT ensemble (25 oC and 1 atm) and 

periodic boundary conditions. Both forward and reverse FEP was performed to check that hysteresis 

was smaller than 1 kcal mol-1. All MM solvation free energies were obtained using the Bennett 

Acceptance Ratio (BAR) method.66  
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For ionic solutes, the solvation free energies further include the contribution due to the interaction of 

the solute with periodic images and also the surface potential of the solvent. The former is recovered 

through the use of the keyword “Alchdecouple OFF” in the NAMD simulations, whilst the correction 

due to the surface potential of the solvent was excluded as this contribution would cancel out in the 

calculation of the barrier. All solvation free energies (implicit and explicit solvent models) reported 

in this study correspond to fixed concentration intrinsic solvation free energies. 

QM/MM explicit solvent simulations. The QM/MM umbrella sampling simulations were performed 

using ORCA/NAMD interface67 and the weighted histogram analysis method (WHAM) was used to 

extract the free energy profile. The reaction coordinate was defined as R = r(Nu-C) – r(C-LG) 

(Nu=nucleophile and LG=leaving group) and there is a total of 30 windows spaced 0.1 Å apart. For 

each window, a classical MD simulation was performed with a harmonic biasing potential and fixed 

force constant (50 kcal mol-1 Å-2) on the reaction coordinate. The starting structures for the QM/MM 

MD simulations were taken from the last frame of each of the classical simulation trajectories. During 

the QM/MM MD simulations, the solutes were described by the wB97M-V/ma-def2-SVP level of 

theory whilst the solvent molecules were described by the TIP3P or CGenFF force fields. For each 

window, the force constant was set to be 200 kcal mol-1 Å-2 at a specific value of the reaction 

coordinate and the system was equilibrated for 5 ps followed by 5-10 ps production run, depending 

on the solvent. Checks were made to ensure that the PMF free energy profiles have converged with 

respect to the length of the trajectory – see Figure S1 for example. To convert the PMF to a 1 M 

standard state free energy barrier, a correction DG(v0 à vcage) which corresponds to approximately to 

the change of effective concentration of 1 M to ~55 M is applied as recommended by Warshel et al. 

This correction is about 2.4 kcal mol-1 at 298 K.68  

Transition state theory. The rate constants were determined using the transition state theory 

expression shown in Equation (2). 

    (2) 
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Here, k(T)  is the tunnelling correction (assumed to be unity here), T is the temperature at 298.15 K, 

kB and h are Boltzmann and Planck’s constants, co is the standard state concentration 1 mol L-1, m is 

the molecularity of the reaction (m=2 for SN2 reactions) and   is the Gibbs free energy of activation. 

Results and discussion 

Gas phase barriers. To accurately determine rate constants through a thermodynamic cycle, accurate 

gas phase reaction barriers must be calculated. Due to the relatively small size of the systems of 

interest, it is possible to use the ‘gold standard’ CCSD(T) extrapolated to the complete basis set (CBS) 

limit. However, the computational cost of CCSD(T) scales steeply with the size of the system so it 

is generally not applicable for larger systems. Consequently, it is of interest to understand the ability 

of approximate methods to reproduce ‘gold standard’ results. A range of DFT methods (DSD-

PBEP96-D3(BJ), M06-2X, B3LYP-D3(BJ), wB97X-V and wB97M-V) and the wavefunction 

method TightPNO-DLPNO-CCSD(T) were investigated with a variety of basis sets. Figure 3 

summarises the mean signed errors of selected levels of theory against the CCSD(T)/CBS//M06-

2X/6-31+G(d) (LANL2Dzp for iodine) gas phase barriers of the three SN2 reactions. (See Table S1 

in the Supporting Information for complete set of data). 
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Figure 3. Mean signed deviation (MSD) of predicted gas phase activation free energy barriers at 
different levels of theory relative to CCSD(T)/CBS values. All calculations are based on M06-2X/6-
31+G(d) (LANL2Dzp for iodine) optimised geometries and thermal corrections. The error bars 
represent the standard deviation over the three reactions. 

For these reactions, it appears that the predicted barriers are relatively insensitive to the size of the 

basis sets for both CCSD(T) and DFT calculations. However, the inclusion of diffuse functions is 

important, and can change the calculated energy barrier by more than 2 kcal mol-1. The ma-def2-

TZVPP represents a cost-effective basis set, and in most cases the ma-def2-SVP basis set also gives 

good results. The DLPNO-CCSD(T) method accurately reproduced canonical CCSD(T) barriers to 

within 1.4 kcal mol-1 (chemical accuracy) for all three systems; however, it should be noted that the 

error in the DLPNO approximation is also size-extensive and very TightPNO threshold settings may 

be needed if it was applied to larger systems.69 Of all the DFT methods using the ma-def2-TZVPP 

basis set, the range-separated hybrid functional ωB97M-V is in best agreement with CCSD(T)/CBS 

with a mean absolute deviation (MAD) of 0.5 kcal mol-1 while the other range separated 

functionals ωB97X-V displayed larger errors of 1.6 kcal mol-1. Interestingly, the B3LYP-D3(BJ) 
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functional performed the worst with a MAD close to 5 kcal mol-1, which is consistent with previous 

assessment studies.70  Both DSD-PBEP86-D3(BJ) and M06-2X show reasonable agreement with 

CCSD(T)/CBS with a MAD of 1.4 kcal mol-1 and 1.6 kcal mol-1 respectively. 

QM continuum solvent prediction of absolute rate constants. The CCSD(T)/CBS//M06-2X/6-

31+G(d) gas phase barriers were combined with solvation free energies obtained from the SMD, 

SM12, COSMO-RS continuum solvent models and CGenFF/TIP3P MM explicit solvent model to 

obtain the solution phase barriers. The SMD optimised geometries of the transition state were nearly 

identical in the different solvents (see Table S3) though there are noticeable differences compared to 

the gas phase optimised geometry. Specifically, comparison of the gas phase and SMD (water) 

transition state geometries for the SN2 reaction between the chloride with bromo- and iodomethanes 

(Reactions I and II; Figure 2) indicates a significant lengthening of the carbon-leaving group distance 

by as much as 0.07 Å (See Figure 4). This is to be expected since the DG of these reactions is largely 

determined by the relative solvation free energies of nucleophile (Cl-; hydration free energy = -74.6 

kcal mol-1) and the leaving group (Br- and I-; hydration free energies = -68.6 and -59.9 kcal mol-1 

respectively).71 In accordance with Hammond’s postulate,72 the DG of these reactions should become 

increasingly positive (or less negative) in solvents compared to the gas phase, and the transition state 

becomes more product-like. In contrast, the SN2 reaction between thiocyanate and iodomethane is 

accompanied by a very slight shortening of the carbon-leaving group distance (by at most 0.02 Å) 

which suggests that iodide and thiocyanate have similar solvation free energies, although there is no 

experimental data for the latter to confirm this. 



 12 

 

Figure 4. Bond distances for the transition state of the reaction between bromomethane and the 
chloride anion in the gas phase (left) and water (right) based on M06-2X/6-31+G(d) optimised 
geometries. A full list of bond distances in the eight solvents can be found in Table S3. 

 
The signed errors in calculated solution phase rate constants (log k) are summarised in Figures 5 to 

7; the log k values are provided in Table 1. For the SM12 models, three different charge schemes 

(Merz-Kollman, CHelpG and CM5) were compared. It appears that the SM12-MK scheme yielded 

the best agreement with experiment (see Table S4); all subsequent discussions of the SM12 model 

are based on this charge scheme. Overall, the ADF-COSMO-RS model is the best performing model 

with the lowest mean and maximum absolute deviations (MAD and ADmax) of 1.5 and 3.2 log units, 

respectively. The SM12-MK performed comparably well with a MAD of 1.6 log units; however, its 

performance is much more system-dependent. Notably, the SM12 model incurred errors of 5 or more 

log units in predicted rate coefficients for the SN2 reaction between chloride anion and bromomethane 

(Reaction I) while its errors are significantly smaller (by three-fold or more) for the other two 
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reactions involving iodomethane. For example, the signed errors in the SM12 predicted rate constants 

for Reactions I and II in water are 5.5 and 0.1 log units respectively.  

To better understand the origin of the inconsistent performance of the SM12 models, we used the 

thermodynamic cycle in Figure 1 together with the CCSD(T)/CBS//M06-2X/6-31+G(d) gas phase 

Gibbs free energy barrier and the experimental solvation free energies of bromomethane and 

iodomethane to indirectly estimate the “experimental” hydration free energies of the SN2 transition 

states. This data is presented in Table 2. Interestingly, the SM12 model over-estimates the 

experimental solvation free energies of the chloride anion as well as its SN2 transition state with 

iodomethane by about 7 and 9 kcal mol-1 respectively, resulting in significant error cancellation. On 

the other hand, the hydration free energy of the corresponding transition state with bromomethane 

(TS I) was accurately predicted by the SM12 model to within 1 kcal mol-1 of its experimental value. 

This inconsistent performance explains why SM12 incurred much higher errors for the reaction 

involving bromomethane. 

Of the continuum solvent models considered, SMD was the worst performing model with an overall 

MAD of 2.9 log units. The large MAD is mostly due to the significantly higher errors incurred by 

this model for the predicted rate constants in formamide. In particular, the deviation from experiment 

is 7.6 log units for the reaction of chloride and iodomethane (Reaction II) whilst the SM12 model and 

ADF-COSMO-RS displayed errors of less than 1.5 log units for this reaction. On the basis of these 

results, the ADF-COSMO-RS solvent model is preferred over the Minnesota solvation models for 

the prediction of the absolute rate constants of simple SN2 reactions in aqueous and organic solvents. 

This conclusion is also consistent with previous work which showed that COSMO-RS performed 

significantly better than SMD and SM8 models in the prediction of the free energy barriers of SN2 

reactions in methanol.73  
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Figure 5. Signed error in predicted rate constants of Reaction I in various solvents. DMF is 
dimethylformamide. The CCSD(T)/CBS//M06-2X/6-31+G(d) gas phase barrier was used in these 
calculations. Horizontal dashed line represents an error of 1 log unit.  

Figure 6. Signed error in predicted rate constants of Reaction II in various solvents. FA is formamide, 
DMA is dimethylacetamide, and DMF is dimethylformamide. The CCSD(T)/CBS//M06-2X/6-
31+G(d) gas phase barrier was used in these calculations.  Horizontal dashed line represents an error 
of 1 log unit. 
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Figure 7. Signed error in predicted rate constants of Reaction III in various solvents. FA is formamide 
DMA is dimethylacetamide and DMF is dimethylformamide. The CCSD(T)/CBS//M06-2X/6-
31+G(d) gas phase barrier was used in these calculations. Horizontal dashed line represents an error 
of 1 log unit. 
 
Table 1. Predicted log k values in different solvents.  

Solvent Experiment74 SMDa SM12-MKa ADF-COSMO-RSb CGenFFc  
Reaction I 

H2O -5.1 -4.0  -10.6  -3.2  -1.1  
DMF -0.4 -4.1  -4.3  -1.4  3.5  

MeOH -5.2 -4.1  -10.5  -2.0  -0.1  
Acetone 0.5 -3.8  -4.6  -1.4  4.7  

Reaction II 
FA -4.3 3.3  -5.7  -3.2  -4.3  
H2O -5.5 -2.9 -5.4  -3.9  -6.0  

DMA 0.9 -3.2  1.6  -1.9  4.8  
MeCN -0.9 -3.2  0.5  -2.5  3.0  
DMF 0.4 -3.1  1.6  -1.9  2.8  

Nitromethane  -1.3 -3.1  0.7  -3.1  -0.6  
MeOH  -5.5 -3.1  -5.4  -2.5  -3.5  

Acetone  0.7 -2.9  1.1  -1.9  4.1  
Reaction III 

FA -2.8 2.2  -3.5  -3.9  1.3  
H2O -3.5 -3.6  -3.4  -4.8  1.7  

DMA -0.8 -4.0  -2.2  -1.7  1.7  
MeCN -2.0 -4.1  -2.5  -2.1  1.0  
DMF -1.1 -4.0  -2.2  -1.8  0.9  

Nitromethane -2.0 -4.0  -2.4  -2.4  0.4  
MeOH -3.3 -3.9  -3.5  -3.8  0.7  

Acetone -0.8 -3.9  -2.2  -1.8  1.0  
MSD  0.9 1.0 0.5 -2.9 
MAD  2.9 1.6 1.5 2.9 
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ADmax  7.6 5.5 3.2 5.2 
a Calculated at the M06-2X/6-31+G(d) level of theory. b Calculated at the BP/TZVP level of theory. c MM 
simulations used charges optimised to reproduce HF/6-31+G* monohydrate interaction energies. 

Table 2. Experimental and calculated hydration free energies of selected species in kcal mol-1.  
Species Expt SMD SM12-MK ADF-COSMO-RS CGenFF 

 
CH3Br -0.8a -1.2  -1.4  -1.0  -0.3  
CH3I -0.9b -1.2  -2.7  -1.3  0.1  
Cl— -74.7c -65.1  -81.6  -70.8  -80.4e  
Cl— + CH3Br (TS I) -52.7d -45.0  -52.7  -51.7  -63.3e 
Cl— + CH3I (TS II) -51.7d -45.8  -60.4  -50.3  -55.6 e 

a Experimental value from Reference 8. b Experimental value from Reference 75. c Experimental value 
from Reference 76. dEstimated from Equation (1) using CCSD(T)/CBS gas phase barrier and 
experimental solvation free energies of Cl-, CH3Br and CH3I. e Surface potential of TIP3P water (11.6 
kcal mol-1)77 was added as it has been reasoned that proton solvation free energy of -265.9 kcal mol-

1 that is used to derive the experimental solvation free energy of Cl- includes contributions from the 
surface potential.78 
 
 
Absolute rate constants in MM explicit solvents. In addition to continuum solvent models, we have 

further investigated the use of molecular mechanics (MM) explicit solvent models to calculate DGS 

and DDGS (see Computational Details). Recent work from the Sunoj and Harvey groups have shown 

that this approach was very effective in describing solvent effects on zwitterionic transition states and 

intermediates associated with the mechanism of the Morita-Baylis-Hillman reaction.79-80 In that work, 

the authors fixed the geometry of the transition states and intermediates at the coordinates of the 

continuum solvent model optimised geometries so that bonded parameters for these species were not 

needed in the free energy perturbation simulations; the intramolecular thermal contributions to the 

free energy were recovered separately from continuum solvent calculations.15, 81  
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Figure 8 – Mean Absolute Errors using different charge schemes to define the solute charges in 
explicit solvent simulations. Error bars represent the standard deviation of errors in all relevant 
solvents.  

 

A similar approach has been employed here, and the use of different atomic charge calculation 

schemes to describe the solute-solvent interaction has been examined. This includes gas phase and 

SMD derived restrained and unrestrained electrostatic potential (RESP and ESP) charges calculated 

with M06-2X/6-31+G(d), as well as charges optimised to reproduce monohydrate interaction 

energies and dipole moments at the more modest HF/6-31+G(d) level of theory, as is consistent with 

the parameterisation of the CHARMM force field (Figure 8). Solvation free energies calculated with 

these charge schemes can be found in Table S9. We have not included the contribution of the surface 

potential in the MM calculated solvation free energies of the ionic species as this will cancel out in 

the calculation of the reaction barriers.11 Overall, the use of atomic charges optimised to reproduce 

monohydrate interaction energies (see Computational Details) appears to be most effective, and their 

results (labelled CGenFF) are also presented in Figures 5 to 7 and Table 1. Whilst the use of ESP 
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based charge schemes perform well for Reactions I and II, this approach incurs a large error for the 

third reaction. Comparatively, the charges optimised to reproduce monohydrate energies are more 

consistent for all three reactions. This charge scheme performed better than the direct QM charges 

presumably because the atomic charges are optimised to be consistent with the Lennard Jones 

parameters, resulting in error cancellation which is not seen when the two parameters are optimised 

separately. Interestingly, the MM explicit solvent model incurred the equal highest MAD value of 

2.9 log units, which is two times larger than that of ADF-COSMO-RS. This is somewhat concerning 

since the MM explicit solvent models are typically 1-2 orders of magnitude computationally more 

demanding than a static QM continuum solvent model calculation. Nevertheless, the errors in these 

models are highly systematic for a given reaction. The CGenFF model consistently over-estimated 

the rate constants of all three reactions, as indicated by very similar MSD and MAD values. For 

example, the rate constant of Reaction I in water has an error of 4.0 log units. As shown in Table 2, 

this error is due to the significant over-estimation of the hydration free energy of TS I by 10.8 kcal 

mol-1 whilst CGenFF performed comparatively well for the hydration free energy of the Cl- anion 

(overestimated by 5.7 kcal mol-1). In contrast, for Reaction II in water, where the rate constant is 

predicted to within 0.6 log units of the experimental value, the hydration free energy of the transition 

state is overestimated by 4.8 kcal mol-1, and therefore cancelation of errors between the Cl- anion, the 

transition state, and the neutral species results in a highly accurate rate constant. The results indicate 

that MM explicit solvent models are not necessarily more accurate than continuum solvent models in 

predicting the rates of ionic SN2 reactions. More extensive assessment of these models, particularly 

the choice of force fields and inclusion of explicit polarizability,82 are needed to determine their 

broader performance in predicting solution phase barriers.  

QM/MM potential of mean force simulations. Finally, we employed umbrella sampling explicit 

solvation simulations in conjunction with a QM/MM potential to predict the absolute rate constants 

of the three reactions. In this approach, the solution phase barrier is calculated directly from the 
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potential of mean force (PMF) along the reaction path which contrasts with the thermodynamic cycle-

based approach discussed in the previous sections. For this reason, it is important to select a validated 

and economical level of theory to describe the QM region. Table S2 presents the gas phase barriers 

for the three reactions calculated using small basis set DFT calculations as well as various semi-

empirical methods compared to CCSD(T)/CBS values. The data indicates that many of the semi-

empirical methods such as HF-3c or B97-3c incur very large errors and are unsuitable for describing 

the QM region. On the other hand, the wB97M-V/ma-def2-SVP calculation appears to be most 

accurate with an MAD of 0.9 kcal mol-1. Due to the high cost of this QM treatment and the need for 

extensive configurational sampling, the umbrella sampling was only performed for approximately 

half of the reaction profile, i.e. from reactants to TS – see Computational Details. 

Table 3 presents the 1 M standard state solution phase barriers obtained from QM/MM simulations.  

It is reassuring to see that the most physically rigorous model performed the best with a MAD and 

ADmax of 1.0 and 2.2 log units. The performance was particularly good for Reactions I and II where 

the deviation from experiment was typically less than 0.5 log units irrespective of the solvent. 

Reaction III has the highest MAD of 1.4 log units which is still smaller than the overall MAD of the 

best performing continuum solvent model (ADF-COSMO-RS). These results suggest that with the 

judicious selection of QM level of theory to treat the reaction centre, QM/MM PMF simulations can 

give highly accurate predictions.  

Table 3. QM/MM rate constants. The QM level of theory is wB97MV/ma-def2-SVP and 
CGenFF/TIP3P force field was used for the MM layer. 

 log k(expt) log k 
Solvent Reaction I 

H2O -5.1 -4.4 
DMF -0.4 -0.63 

MeOH -5.2 -5.7 
Acetone 0.5 0.96 

   
 Reaction II 

FA -4.3 -4.6 
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H2O -5.5 -5.3 
DMA 0.9 1.6 
MeCN -0.8 1.4 
DMF 0.4 -0.1 

Nitromethane -1.3 -0.8 
MeOH -5.5 -4.2 

Acetone 0.7 2.7 
   
 Reaction III 

FA -2.8 -3.8 
H2O -3.5 -4.8 

DMA -1.1 -2.5 
MeCN -2 -2.3 
DMF -1.1 -2.7 

Nitromethane -2 -4.1 
MeOH -3.3 -5.5 

Acetone -0.8 -2.2 
MSD  -0.1 
MAD  1.1 
ADmax  2.2 

 

Relative rate constants in different solvents. Based on the thermodynamic cycle presented in Figure 

1, the relative rate constants for a solvent (X) relative to methanol are provided by the difference in 

DDGs in the two solvents: 

    (3) 

Table 4 summarises the performance of the solvent models in predicting rate constants measured in 

various organic solvents relative to methanol. As shown, the SM12-MK model performed the best 

with the smallest MAD of 0.8 log units. This is followed by QM/MM and CGenFF explicit solvent 

models with MAD values of 1.0 and 1.4 log units respectively. On the other hand, the ADF-COSMO-

RS which performed the best in the prediction of absolute rate constants has an MAD of 2.5 log units. 

This is not really surprising because the results in Figures 5 to 7 indicate that the errors in the SM12 

RT ln
kX
kMeOH

⎛
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⎞
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and CGenFF models are highly systematic (MSD and MAD are similar magnitude; see Table 1) so 

there is very significant error cancellation in the calculation of relative rate constants in different 

solvents. As noted above, the performance of SMD is highly solvent-dependent, where it generally 

predicts aqueous phase rate constants in water and methanol accurately but incurs significantly higher 

errors in certain solvents such as formamide. As a result, this model fails to correctly predict shifts in 

rate constants between protic and aprotic solvents. For example, the SMD predicted rate constants 

for Reaction (I) in four protic and aprotic solvents are within 0.3 log units of each other whilst the 

experimental data indicates that there is approximately 6 log unit enhancement in rate going from 

water to acetone. As discussed elsewhere,83 the failure of the SMD model in the prediction of classical 

rate enhancement going from protic to aprotic solvents is presumably due to the calculated solvation 

free energies dominated by the electrostatic term as many of the solvents have very high dielectric 

constants. Better discrimination between protic and aprotic solvents may be achieved by tuning the 

non-electrostatic contribution (e.g. cavitation free energy) through the introduction of solvent-

specific atomic radii. These results indicate that the SM12-MK model can be used as a cost-effective 

approach for making predictions about solvent induced changes in nucleophilicity. 

Table 4. Mean Absolute Deviation (MAD) of rate constants predicted in various solvents relative to 
MeOH for each reaction, log(kx/kM). Errors in log units. 
Reaction SMD SM12-MK ADF-COSMO-RS CGenFF QM/MM 

I 3.4 0.6 3.6 1.0 0.8 
II 4.7 1.0 4.2 1.6 1.3 
III 2.3 0.6 0.4 1.4 0.8 

MSD 2.1 -0.5 2.1 0.3 0.1 
MAD 3.5 0.8 2.5 1.4 1.0 
ADmax 6.4 1.9 5.8 2.6 2.1 

 

In addition to the prediction of reaction rates in different solvents, the experimental data in Table 1 

also reveals a number of interesting reactivity trends and it is of interest to see if the solvent models 

can correctly reproduce these trends: 
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(1) Comparison of Reactions I and II indicates that bromide is a better leaving group than iodide in 

protic solvents (water and methanol) while the opposite trend is observed in aprotic solvents 

(N,N-dimethylformamide and acetone). For example, the experimental log k values of Reaction 

I relative to Reaction II, i.e. log(kI/kII) = log(kI) – log(kII), are 0.4 and -0.8 in water and DMF 

respectively.  

This is presumably due to the preferential solvation of the SN2 transition state of Reaction I in 

protic solvents (hydration free energy for TS in Reaction I is about 2.5 kcal mol-1 more negative 

than that of Reaction II; see Table 2) while the preference is reversed in aprotic solvents. As 

indicated from the data in Table 1, none of the implicit solvent models correctly reproduced this 

trend. The only exception is the QM/MM PMF simulation – see Table 3. 

(2) Comparison of Reactions II and III indicates that chloride is a weaker nucleophile compared to 

thiocyanate in protic solvents (formamide, methanol and water) and their relative reactivity is 

reversed in aprotic solvents. This trend parallels the observed solvation free energies of chloride 

which is approximately 12 kcal mol-1 less exergonic in an aprotic solvent such as MeCN 

compared to water;84 the weaker solvation of chloride in aprotic solvents renders it more reactive.  

Only the SM12 and CGenFF models correctly predicted the relative nucleophilicity of the 

chloride and thiocyanate anions in protic and aprotic solvents. 

Conclusions 

Solvents are one of the key parameters for the optimisation of reaction kinetics. Using three simple 

SN2 reactions as test systems, it was shown that (with the exception of ADF-COSMO-RS) popular 

continuum solvent models such as SMD and SM12 failed to accurately predict absolute rate constants 

for these reactions in a variety of protic and aprotic solvents. Overall, the molecular mechanics 

explicit solvent model (CGenFF) displayed the largest error. It is of interest to examine other 

molecular mechanics force fields including polarisable force fields in the future. The performance of 

the solvent models is more favourable in the prediction of relative rate constants in different solvents 
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where the SM12 and CGenFF explicit solvent model performed best due to systematic error 

cancellation. These findings cast doubt over the ability of popular implicit solvent models to address 

chemical questions on reactivity (e.g. why is X- a stronger nucleophile than Y- in water) and reliably 

elucidate reaction mechanisms except in cases where there are very significant differences in 

reactivity, much higher than the intrinsic errors of the models reported in this work.  

QM/MM potential of mean force simulations led to very accurate predictions of absolute rate 

constants provided that a validated QM level of theory was used to treat the QM atoms. However, the 

computational cost of these simulations are 3-4 orders of magnitude more expensive than an implicit 

solvent calculation. As indicated in this work, such expensive treatments are probably unnecessary if 

the aim was to screen solvents that optimise a reaction rate where the SM12 model performed very 

well. Nevertheless, recent developments in machine-learning assisted free energy simulations25, 85 

should significantly accelerate QM/MM simulations and facilitate their wide use in studying reaction 

mechanisms.   

Supporting Information 

Calculated gas phase and solution phase barriers, solvation free energies, electronic energies and 

cartesian coordinates of DFT optimized geometries. 
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