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ABSTRACT:	We	 report	 the	development	 of	 an	open-source	Experimental	Design	via	Bayesian	Optimization	platform	 for	
multi-objective	reaction	optimization.	Using	high-throughput	experimentation	(HTE)	and	virtual	screening	datasets	contain-
ing	high-dimensional	continuous	and	discrete	variables,	we	optimized	the	performance	of	the	platform	by	fine-tuning	the	
algorithm	components	such	as	reaction	encodings,	surrogate	model	parameters	and	initialization	techniques.	Having	estab-
lished	the	framework,	we	applied	the	optimizer	to	real-word	test	scenarios	for	the	simultaneous	optimization	of	reaction	
yield	and	enantioselectivity	in	a	Ni/photoredox-catalyzed	enantioselective	cross-electrophile	coupling	of	styrene	oxide	with	
two	different	aryl	iodide	substrates.	Starting	with	no	previous	experimental	data,	the	Bayesian	optimizer	identified	reaction	
conditions	that	surpassed	the	previously	human-driven	optimization	campaigns	within	15	and	24	experiments,	for	each	sub-
strate,	among	1,728	possible	configurations	available	in	each	optimization.	To	make	the	platform	more	accessible	to	non-
experts,	we	developed	a	Graphical	User	Interface	(GUI)	that	can	be	accessed	online	through	a	web-based	application	and	
incorporated	features	such	as	conditions	modification	on-the-fly	and	data	visualization.	This	web-application	does	not	re-
quire	 software	 installation,	 removing	any	programming	barrier	 to	use	 the	platform,	which	enables	 chemists	 to	 integrate	
Bayesian	optimization	routines	into	their	everyday	laboratory	practices.

INTRODUCTION	
	
Reaction	optimization	is	essential	to	synthetic	chemistry.	

Typically,	an	optimization	campaign	requires	the	explora-
tion	of	reaction	conditions	consisting	of	multiple	categorical	
and	 continuous	 reaction	 variables,	 such	 as	 catalyst,	 addi-
tive,	solvent,	temperature,	etc.	In	a	synthetic	chemistry	la-
boratory,	a	common	optimization	strategy	involves	search-
ing	the	literature	for	similar	reactions	to	select	components	
that	are	anticipated	to	give	a	higher	chance	of	success,	test-
ing	one	factor/variable	at	a	time	(OFAT	or	OVAT)	to	isolate	
the	effect	of	a	single	component,	and	studying	the	structure-
activity	 relationship	 to	predict	better	 conditions.	This	ap-
proach	has	served	chemists	well	for	reaction	optimization,	
but	it	neglects	interactions	between	variables	which	are	es-
sential	in	searching	for	the	global	optimum.		
Another	viable	strategy	to	determine	the	optimal	condi-

tions	is	to	evaluate	all	possible	combinations	of	the	search	
space.	For	example,	recent	advances	in	high-throughput	ex-
perimentation	 (HTE)	 have	 allowed	 chemists	 to	 rapidly	
screen	up	to	thousands	of	reactions	in	parallel.1,2	However,	
the	 number	 of	 possible	 reaction	 condition	 configurations	
scales	exponentially	as	reaction	variables	vary	from	tens	to	

thousands	 of	 components.	 As	 a	 result,	 given	 limited	 time	
and	 material	 resources,	 evaluating	 the	 entire	 condition	
space	 is	 often	 inefficient	 from	 an	 economic	 and	 environ-
mental	standpoint.	
The	simultaneous	improvement	of	multiple	reaction	ob-

jectives	 adds	 another	 layer	 of	 complexity	 to	 the	 existing	
multidimensional	 challenge	 in	 reaction	 optimization.3	 In	
fact,	many	optimization	problems	in	chemistry,	both	in	aca-
demia	and	the	chemical	industry,	require	simultaneous	op-
timization	of	two	or	more	reaction	objectives.4	Examples	of	
these	objectives	are	yield,	selectivity	(regio-,	site-,	enantio-,	
chemo-),	cost,	environmental	sustainability,	and	properties	
of	products.	An	example	of	a	multi-objective	optimization	in	
chemistry	is	shown	in	Figure	1A.5	In	many	cases,	there	is	no	
single	solution	to	multi-objective	optimizations	such	as	this	
one.	Instead,	locating	a	set	of	non-dominated	optimal	con-
ditions,	 or	 the	Pareto	 front,	 requires	balancing	 the	 trade-
offs	in	the	objectives.6	In	other	words,	the	improvement	of	
one	objective	is	sometimes	only	possible	at	the	expense	of	
other	objectives,	which	makes	 the	 identification	of	 global	
maxima	in	a	condition	search	space	much	more	challenging.	
In	 the	 past	 decade,	 data	 science	 and	machine	 learning	

methods	 have	 been	 applied	 to	 address	 numerous	



	

	

challenges	 in	synthetic	chemistry,	 such	as	multi-step	syn-
thetic	planning,7–9	prediction	of	reaction	outcomes,10,11	au-
tomated	synthesis,12–14	and	drug	design	and	discovery.15,16	
There	have	also	been	important	advances	in	applying	ma-
chine	learning	methods	to	reaction	optimization,17,18	build-
ing	off	of	data	science	tools	such	as	partial	or	full	factorial	
design	of	experiments	(DOE).19–21,22	Recently,	our	group	de-
veloped	EDBO	(Experimental	Design	via	Bayesian	Optimi-
zation),	 a	platform	 for	Bayesian	 reaction	optimization	 for	
chemical	 synthesis	 (Figure	 1B).18	 Bayesian	 optimization	
(BO)	is	a	global	optimization	algorithm	that	can	interpolate	
response	surfaces	by	evaluating	only	a	small	subset	of	total	
possible	 combinations,	 thus	 minimizing	 requirements	 to	
generate	a	large	number	of	experimental	observations.23,24		
However,	EDBO	can	only	perform	single-objective	opti-

mization	and	limited	effort	thus	far	has	been	reported	for	
the	application	of	active	 learning	strategies	 like	BO	to	the	
simultaneous	 optimization	 of	 multiple	 objectives	 in	 syn-
thetic	chemistry.	25–27	Aspuru-Guzik	and	coworkers	devel-
oped	Chimera28	and	Gryffin,29	packages	for	multi-objective	
optimization	that	combine	the	concepts	of	a	priori	scalariz-
ing	with	lexicographic	approaches.	The	same	group,	in	col-
laboration	 with	 Hein,	 Sigman,	 and	 Merck,	 later	

demonstrated	its	utility	in	an	autonomous	process	optimi-
zation	of	a	stereoselective	Suzuki-Miyaura	coupling.30	The	
group	 of	 Jensen	 and	 Jamison	 also	 applied	multi-objective	
BO	to	a	computer-proposed	multistep	synthesis	of	the	small	
molecule	 sonidegib	 on	 an	 automated	 robotic	 flow	 plat-
form.31	However,	 these	 tool	are	 less	accessible	 to	non-ex-
perts	and	lack	valuable	functionality	such	as	the	ability	to	
visualize	 output	 predictions	 and	 modify	 condition	 space	
during	 the	 course	 of	 an	 optimization	 campaign.	 Recently,	
the	Vlacho	group	developed	NEXTorch,32	a	toolkit	that	im-
plements	BO	routines	through	PyTorch.33	However,	its	ap-
plication	in	multi-objective	optimization	was	only	demon-
strated	using	a	search	space	consisting	of	continuous	varia-
bles.		
These	 important	 advances	 notwithstanding,	 for	 these	

tools	to	be	integrated	with	the	current	synthetic	chemistry	
practices	it	is	essential	to	develop	machine	learning	surro-
gate	models	that	are	not	only	tuned,	validated,	and	tested	
on	synthetic	experimental	chemistry	data,	but	also	provide	
improved	accessibility	and	functionality	tailored	to	reaction	
optimization.	 For	 example,	 enhancements	 related	 to	 aug-
mentation	of	the	condition	space	on-the-fly	(adding	or	re-
moving	reaction	condition	configurations),	data

	

	
	

Figure	1.	(A)	Example	of	a	multi-objective	optimization	problem	in	chemistry.	R1	=	pyrrole	fragment,	R2	=	imidazole	fragment,	or	Br,5	(B)	
Previous	workflow:	single-objective	Experimental	Design	via	Bayesian	Optimization	(EDBO).	(C)	Current	workflow:	multi-objective	reaction	
optimization	framework	using	EDBO+	through	its	web	application.

	 	



	

	

	
visualization	and	access	to	the	predictive	estimates	of	the	
surrogate	models	can	enable	the	adoption	of	Bayesian	tools	
in	chemistry.	Furthermore,	the	requirement	of	prior	coding	
knowledge	is	a	major	obstacle	for	most	synthetic	chemists	
to	apply	BO	in	their	day-to-day	laboratory	activities.		
Herein,	we	report	EDBO+,	an	open-source	multi-objective	

active-learning	platform	based	on	Bayesian	theory	and	its	
accompanying	 web	 application	
(https://www.edbowebapp.com/	 )	 (Figure	 1C).	 Several	
features	have	been	incorporated	into	EDBO+	including	the	
ability	to	modify	the	reaction	conditions	space	during	an	op-
timization	campaign	and	the	 inclusion	of	visualizations	of	
model	 predictions	 and	uncertainties.	 The	 online	 platform	
can	 be	 accessed	 through	 a	 web	 browser,	 removing	 a	 re-
quirement	for	any	software	installation,	which	would	allow	
users	with	 limited	programming	experience	 to	adopt	 sin-
gle-	and	multi-objective	BO.	In	this	work,	we	use	HTE	and	
virtual	screening	datasets	 to	optimize	 the	performance	of	
EDBO+	by	fine-tuning	the	algorithm	components	such	as	re-
action	encodings,	surrogate	model	parameters	and	initiali-
zation	techniques.	We	then	apply	EDBO+	to	a	real-word	test	
case	 –	 a	 Ni/photoredox-catalyzed	 enantioselective	 cross-
electrophile	coupling	of	styrene	oxides	with	two	different	
aryl	iodide	substrates.	
	
RESULT	AND	DISCUSSIONS	
	
General	Workflow.	The	general	workflow	for	EDBO+	be-
gins	with	input	from	the	synthetic	chemist	on	identifying	(a)	
the	reaction	conditions	space	(e.g.,	catalysts,	temperatures	
and	concentrations)	that	will	be	explored	in	the	optimiza-
tion	 campaign,	 (b)	 the	 featurization	 for	 categorical	 varia-
bles	(i.e.,	mathematical	representation	of	the	reaction	com-
ponents),	 (c)	 the	objectives	and	accompanying	thresholds	
to	be	optimized,	and	(d)	the	number	of	experiments	to	be	
evaluated	 in	 parallel	 per	 round	 (batch	 size).	 This	 initial	
search	space	can	be	modified	at	any	stage	of	the	optimiza-
tion	(expanding	or	reducing	the	number	of	components	to	
consider).	Once	 these	are	defined,	 the	algorithm	will	 sug-
gest	an	initial	set	of	experimental	conditions	(following	an	
initialization	method,	see	Optimizer	Development	section).	
After	completing	the	suggested	experiments	in	the	labora-
tory,	 the	 chemist	 introduces	 the	 outputs	 of	 these	 experi-
ments	(e.g.,	yields	and	selectivities)	back	into	the	platform.	
EDBO+	builds	 a	 regression	model	using	 the	 experimental	
data	and	predicts	the	target	objectives	for	all	the	remaining	
untested	 conditions	 included	 in	 the	 reaction	 condition	
space.	Next,	an	acquisition	function	ranks	the	untested	con-
ditions	 based	 on	model	 predictions	 and	 recommends	 the	
next	set	of	conditions	for	experimental	evaluation	to	close	
the	 active-learning	 cycle.	 Iterations	 of	 the	 active	 learning	
cycle	will	 increase	 the	 accuracy	 of	 the	 regression	 predic-
tions	by	providing	 the	algorithm	with	more	experimental	
observations,	 ultimately	 improving	 the	 predictions	 of	 the	
surrogate	model.	This	workflow	can	be	executed	 through	
either	a	command-line	interface	or	a	web-based	application	
for	single-	and	multi-	objective	optimizations.		
	

Optimizer	Development.	To	optimize	the	performance	of	
EDBO+	 (e.g.,	 initialization	 methods,	 featurization	 tech-
niques,	and	acquisition	function),	we	selected	two	high-di-
mensional	 screening	 datasets:	 (a)	 Pd-catalyzed	 Suzuki-

Miyaura	coupling,34	and	(b)	Pd-catalyzed	C–H	arylation18	as	
ground	 truth.	 The	 condition	 space	 for	 these	 two	datasets	
consists	of	a	combination	of	continuous	(e.g.,	temperature	
and	concentration)	and	categorical	variables	(e.g.,	solvent,	
base	 and	 ligand).	 The	 Pd-catalyzed	 Suzuki-Miyaura	 cross	
coupling35,36	 dataset	 involves	 the	 reaction	 of	 an	 indazole-
containing	boronic	acid	and	6-bromoquinoline,	in	which	the	
objectives	 are	 to	maximize	 the	 conversion	and	 selectivity	
simultaneously	 (Figure	 2A).34	 Heteroaromatic	 biaryls	 are	
attractive	scaffolds	due	to	their	prevalence	in	bioactive	mol-
ecules37,38	but	their	preparation	via	cross	coupling	is	often	
accompanied	 by	 homocoupling,	 protodeboronation,	 and	
protodehalogenation,	 as	 captured	 in	 the	 selectivity	objec-
tive.39–41	This	dataset	consists	of	352	datapoints,	including	
11	ligands,	4	solvents,	and	8	bases.		
	

	
Figure	 2. Overview	 of	 the	 Pd-catalyzed	 Suzuki-Miyaura	 cou-

pling	dataset.	(A)	Schematic	representation	of	the	reaction	and	its	
components	along	with	the	desired	and	side	products.	aconversion	
=	 (total	 product)/(total	 product	 +	 remaining	 starting	 mate-
rial)*100%,	 bselectivity	 =	 (desired	 product)/(total	 prod-
ucts)*100%	(B)	Ground	truth	scatter	plots	for	the	two	objectives	
in	 this	reaction	(product	conversion	and	selectivity)	color-coded	
by	(left)	ligand	and	(right)	solvent.	The	dashed	gray	lines	show	the	
connections	for	the	set	of	‘non-inferior’	solutions	in	the	objective	
space	(Pareto	optimal	solutions).	(C)	Experimental	conditions	for	
labeled	experiments	in	B.	
	



	

	

The	second	HTE	dataset	consists	of	1,728	total	conditions	
(12	ligands,	4	solvents,	4	bases,	3	temperatures,	and	3	con-
centrations)	for	the	Pd-catalyzed	C–H	arylation	of	N1-me-
thyl-1H-imidazole-4-carbonitrile	 and	 1-bromo-2-fluoro-
benzene	(see	Ref.	18).	In	this	case,	we	set	the	optimization	
goal	to	be	finding	reaction	conditions	that	maximize	reac-
tion	yield	while	minimizing	the	overall	cost	of	the	reaction.	
To	extend	the	range	of	applicability,	we	also	tested	the	per-
formance	of	EDBO+	against	a	virtual-experimentation	da-
taset	 built	 for	 nucleophilic	 substitution	 reactions42	which	
exclusively	contains	continuous	variables	(see	SI).		
Using	all	three	datasets,	we	found	that	optimal	optimiza-

tion	performance	can	be	achieved	using	a	Gaussian	process	
surrogate	 model	 and	 q-Expected	 HyperVolume	 Improve-
ment	(q-EHVI)	as	the	acquisition	function	(See	SI).43	q-EHVI	
has	been	shown	to	maximize	hypervolume	of	predicted	ex-
perimental	outputs	with	respect	to	the	Pareto,	and	is	intrin-
sically	formulated	to	be	efficient	for	batch	sampling.	Inde-
pendent	of	the	featurization	methods	used,	q-EHVI	is	found	
to	be	optimal	when	compared	to	other	common	acquisition	
functions	 such	 as	 upper	 confidence	 bound	 (UCB)	 and	 ε-
greedy	 (see	SI).	 It	 requires	 fewer	experiments	 to	 find	 the	
optimal	values	and	achieves	 the	highest	 rate	of	hypervol-
ume	expansion	at	the	end	of	the	optimization	campaign.	The	
hypervolume	indicator	is	one	of	the	most	used	set-quality	
indicators	in	multi-objective	optimization	problems	since	it	
allows	evaluation	of	the	performance	of	optimizers	by	con-
sidering	the	diversity,	spread	and	proximity	of	the	collected	
experimental	values	to	the	Pareto	front.	
Next,	we	compared	the	performance	of	EDBO+	for	the	Su-

zuki-Miyaura	dataset	using	different	featurization	methods:	
(a)	One-Hot	Encoding	(OHE)	which	creates	a	new	variable	
for	each	categorical	feature,	(b)	quantum	mechanics-based	
features	 from	 Density	 Functional	 Theory	 (DFT)	 calcula-
tions,	 and	 (c)	 chemical	 informatics-based	 features	 using	
Mordred	featurization44.	To	visualize	the	distribution	of	the	
objective	values	for	this	reaction,	we	color-coded	the	data-
points	in	Figure	2B	according	to	the	two	categorical	varia-
bles	in	this	dataset:	ligands	(left	panel)	and	solvents	(right	
panel).	Interestingly,	we	observe	that	no	single	ligand	dom-
inates	 the	 Pareto	 front	 (see	 Figure	 2B,	 C).	 From	 an	 algo-
rithm	design	standpoint,	 this	allows	us	 to	 test	 the	perfor-
mance	of	EDBO+	on	data	that	can	be	represented	either	as	
discrete	or	continuous	depending	on	the	featurization.	On	
the	other	hand,	methanol	(MeOH)	appeared	to	populate	the	
Pareto	front	as	the	optimal	solvent	for	this	transformation.		
For	 each	 of	 the	 three	 featurization	 methods,	 we	 com-

pleted	five	optimization	campaigns	starting	from	different	
initial	experimental	conditions.	First,	we	analyzed	the	dis-
tribution	of	conversion	and	selectivity	values	at	each	step	of	
the	optimization	campaigns	(Fig.	3A).		The	left	panels	in	Fig.	
3A	show	the	evolution	of	the	objective	values	in	each	of	the	
five	optimization	runs	and	the	right	panels	indicate	the	den-
sity	 of	 the	 objective	 values	 after	 completing	 these	 cam-
paigns	(after	30	experiments).	The	density	plots	obtained	
using	the	random	sampling	(Fig.	3A,	in	green)	show	that,	in	
absence	of	a	predictive	model,	there	is	a	high	probability	of	
finding	 low	yield	 and	 selectivity	 values	 in	 this	dataset.	 In	
contrast,	 the	 probability	 of	 obtaining	 optimal	 conditions	
(with	higher	yield	and	selectivity)	is	increased	when	using	
EDBO+	and	DFT	featurization	(see	blue	density	plots	in	Fig.	
3A).	We	observe	this	trend	for	all	three	featurization	meth-
ods	and	in	all	three	datasets	(see	SI).		

	
Figure	3. Optimizer	performance	as	a	function	of	the	featuriza-

tion	method.	(A)	Conversion	and	selectivity	values	at	each	step	of	
the	 optimization	 campaigns	 when	 using	 DFT	 featurization	 (in	
blue)	and	random	sampling	(in	green)	are	shown	in	the	left	panels	
while	 the	 right	 panels	 show	 their	 corresponding	 distribution	 of	
conversion	and	selectivity	over	 the	30	experiments	collected	 for	
each	run.	Different	color	shades	are	used	to	distinguish	the	five	dif-
ferent	optimization	campaigns.	(B)	Normalized	hypervolume,	min-
imum	distance	 to	 trade-off	 experimental	 values,	 highest	 conver-
sion	and	selectivity	as	a	function	of	the	collected	experimental	val-
ues,	averaged	over	5	runs	with	seeded	initialization.	The	solid	lines	



	

	

indicate	the	average,	and	the	shaded	areas	represent	the	upper	and	
lower	values	at	each	stage	of	the	optimization	campaign.	
	
In	 order	 to	 obtain	 a	 deeper	 understanding	 of	 the	 algo-

rithm’s	 performance	 when	 using	 different	 featurization	
methods,	 we	 measured	 the	 hypervolume	 covered	 by	 the	
collected	 experimental	 values	 at	 each	 optimization	 step	
(Figure	3B).	In	addition,	we	tracked	the	minimum	distance	
from	any	collected	experimental	output	to	the	high-tradeoff	
experimental	value	(in	the	knee	region	of	the	Pareto	front,	
see	Ref.	45)	as	well	as	the	maximum	values	for	conversion	
and	selectivity	collected	at	each	step	of	the	optimization.	We	
found	that	DFT-encoded	features	provide	slightly	improved	
performance	over	other	featurization	methods,	suggesting	
experimental	conditions	with	optimal	conversion	and	selec-
tivity	values	(above	90%)	in	earlier	stages	compared	to	the	
optimizations	using	OHE	and	Mordred	featurization.	This	is	
consistent	 with	 the	 single-objective	 optimization	 results	
previously	obtained	with	EDBO.18	We	also	note	that	the	DFT	
featurization	 displays	 the	 lowest	 variance	 (difference	

between	 the	 upper	 and	 lower	 bounds	 at	 each	 step,	 high-
lighted	by	the	shaded	regions	in	Fig.	3B)	showing	its	robust-
ness	against	the	selection	of	the	initial	experiments.46		
Another	important	consideration	in	the	success	of	an	op-

timization	is	the	choice	of	the	initial	conditions	to	start	the	
optimization	campaign.	We	illustrate	the	impact	of	the	ini-
tialization	method	using	the	Pd-catalyzed	C–H	arylation	da-
taset	(see	Ref.	18).	The	values	for	yield	and	cost	for	this	HTE	
dataset	are	presented	 in	Figure	4A.	We	tested	the	perfor-
mance	of	the	algorithm	when	the	optimization	campaigns	
are	 initialized	 using	 the	 Centroidal	 Voronoi	 Tessellation	
(CVT),	Latin	Hypercube	sampling	(LHS)	and	random	sam-
pling	methods.	We	assessed	the	performance	of	the	differ-
ent	methods	and	batch	sizes	using	the	dominated	hypervol-
ume	metric	(Figure	4B).	On	average,	the	LHS	and	CVT	meth-
ods	display	a	higher	 rate	of	hypervolume	expansion	 than	
the	random	sampling	method.	In	particular,	the	highest	hy-
pervolume	 value	 and	 lowest	Mean	Absolute	 Error	 (MAE)	
are	achieved	when	using	the	CVT	method	and	a	batch	size	
of	three	experiments	per	round	(Figure	4B,	C).	

	
	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Figure	4.	Model	performance	for	the	Pd-catalyzed	C–H	arylation	dataset.	(A)	Overview	of	the	objectives	(yield	and	cost)	values,	the	

dashed	lines	highlight	the	Pareto	front.	The	different	ligands	are	color-coded	while	and	different	symbols	are	used	to	distinguish	between	
solvents.	(B)		Hypervolume	covered	by	the	experimental	values	collected	at	each	stage	of	the	optimization	campaign	when	using	different	
initialization	methods	and	batch	sizes.		(C)	Mean	Absolute	Error	(MAE)	for	the	different	initialization	methods	and	batch	sizes.	(D)	the	
distribution	of	yield	(in	blue)	and	cost	(in	red)	values	at	each	optimization	step	when	initializing	the	optimizations	using	the	different	
sampling	methods.	
	



	

	

In	Figure	4D,	we	show	the	distribution	of	 the	yield	and	
cost	values	of	the	experimental	conditions	for	the	different	
initialization	methods	using	three	experiments	per	round.	
A	 similar	 sampling	 pattern	 is	 found	 for	 all	 initialization	
methods:	(1)	an	exploratory	phase	in	the	first	rounds	of	the	
optimizations,	collecting	a	wide	range	of	objective	values,	
followed	by	(2)	exploitation	behavior,	with	a	narrow	distri-
bution	of	objective	values	closer	to	the	optimal	regions	(see	
Figure	4D).	This	indicates	that	the	algorithm	can	suggest	op-
timal	values	starting	from	a	variety	of	initial	experiments,	
showing	 that	 the	 combination	 of	 the	 qEHVI	 acquisition	
function	with	the	GPR	hyperparameters	provide	a	good	bal-
ance	between	exploration	and	exploitation.	
	

Application	 of	 EDBO+.	 Having	 established	 an	 optimized	
framework	 for	EDBO+	on	 the	HTE	datasets,	we	sought	 to	
apply	EDBO+	to	a	real-world	test	case	for	the	simultaneous	
optimization	of	multiple	objectives.	Recently,	our	lab	devel-
oped	an	enantioselective	cross-electrophile	coupling	of	sty-
rene	oxides	and	aryl	 iodides	via	 the	merger	of	nickel	and	

photoredox	 catalysis.47	 This	 transformation	generates	 en-
antioenriched	 2,2-diarylalcohols	 which	 could	 be	 readily	
derivatized	into	chiral	1,1-diarylalkanes,	an	important	me-
dicinally	 relevant	motif	 found	 in	pharmaceuticals	 such	as	
tolterodine,	 sertraline,	 and	podophyllotoxins.48–50	 This	 re-
action	presented	an	ideal	test	case	of	EDBO+	for	the	optimi-
zation	of	both	yield	and	enantioselectivity	simultaneously	
as	a	yield-ee	tradeoff	presented	a	hurdle	in	our	previous	op-
timization	campaign.	In	fact,	the	tradeoff	between	yield	and	
stereoselectivity	has	been	a	longstanding	challenge	in	enan-
tioselective	reactions,	yet	the	two	objectives	must	be	opti-
mized	concertedly.	In	this	study,	we	selected	two	examples	
to	evaluate:	the	first	example	involves	the	model	substrate,	
styrene	 oxide	1	 and	 4-iodobenzoate	2,	 and	 the	 second	 is	
with	 a	 challenging	 heteroaryl	 iodide,	 2-fluoro-5-io-
dopyridine	4,	 from	the	scope	studies.	The	reaction	condi-
tions	 space	 that	we	 selected	 comprised	 3	 nickel	 precata-
lysts,	16	bioxazoline	and	biimidazoline	ligands,	2	additives,	
3	solvents,	3	concentrations,	and	2	light	source	to	give	a	to-
tal	space	of	1,728	possible	configurations.		

	
	

	

	

	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
Figure	5.	Applications	of	EDBO+:	Ni/photoredox-catalyzed	enantioselective	cross-electrophile	coupling	of	styrene	oxides	and	aryl	iodides.	

DFT	featurization	for	ligand	and	OHE	for	other	variables,	CVT	initialization	and	three	experiments	per	round.	Gray	spots	show	datapoints	
collected	using	previously	optimized	condition,	and	the	shades	of	the	blue	spots	show	the	progress	of	the	optimization	(darker	spots	repre-
sents	datapoints	collected	later	in	the	campaign).	The	inset	plot	in	A	shows	the	average	expected	improvement	values	for	yield	and	ee	at	each	
round	of	the	optimization.		
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We	carried	out	multi-objective	Bayesian	optimization	us-
ing	DFT	encoded	features	for	the	ligands,	running	three	ex-
periments	in	parallel	per	batch,	with	initial	experiments	se-
lected	using	CVT	initialization.	The	optimizer	surpassed	the	
benchmark	result	within	7	rounds	of	optimization	(24	reac-
tions),	affording	an	improved	yield	of	80%	at	the	same	en-
antioselectivity	 (91%	 ee,	 Figure	 5A).	 In	 comparison,	 the	
previously	reported	conditions	for	the	synthesis	of	3	were	
identified	via	a	one-factor-at-a-time	(OFAT)	method	and	af-
forded	 63%	 yield	 and	 91%	 ee	 after	 roughly	 500	 experi-
ments.	However,	it	is	important	to	note	that	this	compari-
son	between	the	number	of	experiments	to	obtain	the	opti-
mal	result	does	not	take	into	consideration	that	the	optimal	
ligand	L10	was	not	available	during	the	earliest	phases	of	
our	 human-driven	 optimization	 campaign.	 Nevertheless,	
this	example	showcases	the	potential	of	EDBO+	to	identify	
conditions	close	to	or	at	the	Pareto	front	and	outperformed	
the	previously	human-drive	optimization	campaign	by	eval-
uating	only	a	small	subset	of	 the	 total	possible	configura-
tions.		
In	 reaction	 discovery,	 the	 optimal	 conditions	 identified	

for	the	model	substrate	are	often	applied	to	a	broad	range	
of	substrates	to	evaluate	the	generality	of	the	method.	How-
ever,	the	optimal	conditions	for	one	substrate	do	not	always	
translate	to	more	complex	or	different	variants.	In	our	pre-
vious	study,	 the	conditions	optimized	 for	 the	model	 reac-
tion	to	generate	3	afforded	47%	yield	and	75%	ee	for	the	
coupling	 between	 styrene	 oxide	1	and	 pyridyl	 iodide	4.49	
Without	pretraining	EDBO+	with	prior	experimental	data,	
we	optimized	the	reaction	of	2	within	the	same	conditions	
space.	We	found	that	within	4	rounds	of	optimization	(15	
reactions),	 EDBO+	 identified	 conditions	 that	 afforded	
higher	yield	and	enantioselectivity	(59%	yield,	77%	ee,	Fig-
ure	5B).	These	conditions	are	unique	in	that	they	feature	a	
different	 ligand	 (biimidazolines	L10	 and	L11	 feature	 the	
same	isopropyl	substituents	but	vary	in	the	aniline	moiety),	
solvent,	nickel	precatalyst,	solvent,	concentration,	and	light	
source	when	compared	to	the	previously	optimized	condi-
tion.	 This	 presented	 a	 case	 where	 Bayesian	 optimization	
learned	 about	 interactions	 between	 variables	 that	 would	
not	typically	be	identified	in	a	OFAT	optimization	campaign.	
	
Optimizer	features	and	user	interface.	Given	the	poten-
tial	utility	of	this	multi-objective	optimization	tool	for	reac-
tion	development	efforts,	we	wanted	to	make	the	algorithm	
more	 accessible	 to	 practicing	 synthetic	 chemists.	 To	 this	
end,	 we	 developed	 EDBOApp	 (www.edbowebapp.com),	 a	
web	application	supported	by	a	cloud-computing	platform.	
No	prior	programming	or	coding	experience	is	required	to	
use	the	web	application.		
We	 also	 incorporated	 a	 number	 of	 functions	 into	 the	

workflow	to	make	EDBO+	amenable	to	human-in-the-loop	
intervention	and	decision-making.	First,	the	ability	to	mod-
ify	the	condition	space	during	an	optimization	campaign	al-
lows	users	to	alter	the	search	space	by	either	adding	or	re-
moving	 reaction	 components	 or	 dimensions.	 Second,	 we	
added	a	data	visualization	tool	that	shows	the	objective	pre-
dictions	and	uncertainties	across	all	conditions	throughout	
the	 optimization.	 This	 function	 enables	 chemists	 to	 track	
the	expected	 improvement	(EI)	of	 the	target	objectives	at	
any	stage	of	 the	optimization	and	informs	when	to	termi-
nate	the	optimization	campaign.	For	instance,	the	small	av-
erage	 EI	 of	 yield	 and	 ee	 (~1%)	 toward	 the	 end	 of	 the	

optimization	for	the	Ni/photoredox	coupling	with	styrene	
oxide	1	and	aryl	iodide	2	indicates	significant	diminishing	
return	to	performing	additional	experiments	(See	Figure	5a	
inset).		
To	 improve	 the	 functionality	 and	 adaptability	 of	 the	

framework,	we	also	incorporated	the	ability	to	select	differ-
ent	batch	sizes	based	on	constraints	in	experimental	set	up	
and	accessibility	of	material	resources.	Thresholds	can	be	
applied	to	the	objectives	to	prioritize	one	reaction	objective	
over	the	others	or	to	focus	on	specific	regions	of	the	pareto	
front.	Finally,	previous	experimental	data	can	be	imported	
into	EDBO+	to	pretrain	the	surrogate	model,	giving	the	user	
a	 head	 start	 in	 the	 optimization	 process.	 These	 features,	
available	 in	 the	 EDBO+	 package	 via	 command-line	 or	
graphic	user	interface,	are	intended	to	provide	flexibility	as	
each	individual	or	process	has	distinct	requirements.	
	
CONCLUSIONS	
	
We	 report	 the	 development	 of	 EDBO+,	 an	 open-source	

multi-objective	optimization	platform	and	an	accompany-
ing	web	application	that	allows	chemists	to	apply	Bayesian	
optimization	 methods	 into	 everyday	 synthetic	 chemistry	
practices.	The	framework	relies	on	building	a	surrogate	ma-
chine	learning	model	by	combining	the	predictive	estimates	
with	acquisition	functions	that	balance	the	exploration/ex-
ploitation	trade-off	of	single-	and	multi-objective	optimiza-
tions.	EDBO+	was	tested	on	a	selection	of	datasets	that	in-
clude	both	categorical	and	continuous	reaction	dimensions	
to	 identify	 surrogate	 model	 configurations	 that	 could	 be	
broadly	 applicable	 to	 optimization	 problems	 in	 synthetic	
chemistry.	In	a	real-world	test	case	of	a	Ni/photoredox-cat-
alyzed	enantioselective	cross-electrophile	coupling	of	sty-
rene	oxides	with	aryl	iodides,	the	optimizer	identified	con-
ditions	 that	 surpassed	 the	 originally	 reported	 conditions	
within	15	and	24	experiments	(for	two	different	aryl	iodide	
substrates)	among	a	total	of	1,728	possible	conditions.	Fur-
ther	investigations	will	focus	on	exploring	the	use	of	recom-
mender	systems	for	the	expansion	of	the	reaction	condition	
space	and	its	application	in	autonomous	process	optimiza-
tion.		
	

ASSOCIATED CONTENT  
	

Code	availability	and	implementation.		
The	command-line	 interface	of	EDBO+	used	to	create	and	
optimize	reaction	conditions	presented	in	this	work,	along	
with	 the	 scripts	 to	 analyze	 the	 performance	 of	 the	 opti-
mizer,	 are	 available	 in	 the	 following	 GitHub	 repository:	
https://github.com/doyle-lab-ucla/edboplus.		
	
Web	application.	
We	developed	EDBOWebApp,	a	web	application	that	makes	
the	Bayesian	optimizer	more	accessible	to	users	with	lim-
ited	knowledge	of	programming	languages.	This	web	appli-
cation	can	be	accessed	in	https://www.edbowebapp.com/	
through	 a	web-browser.	 The	 back-end	 is	 supported	 by	 a	
cloud-computing	platform	to	perform	the	computations	re-
quired	for	creating	and	optimizing	reaction	conditions.	This	
makes	our	routines	accessible	through	any	device	that



	

	

enables	web	browsing	without	 having	 to	 install	 any	 soft-
ware	or	packages.
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