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ABSTRACT: Three-dimensional (3D) covalent organic frameworks (COFs) exemplify a new generation of crystalline ex-
tended solids with intriguing structures and unprecedented porosity.  Notwithstanding substantial scope, the reticular syn-
thesis of 3D COFs from pre-designed building units leading to new network topologies yet remains a demanding task owing 
to the shortage of 3D building units and inadequate reversibility of the linkages between the building units. In this work, by 
linking a tetragonal prism (8-connected) node with a square planar (4-connected) node, we report the first 3D COF with scu 
topology.  The new COF, namely TUS-84, features a two-fold interpenetrated structure with well-defined porosity and a 
Brunauer−Emmett−Teller surface area of 679 m2 g-1. In drug delivery applications, TUS-84 shows efficient drug loading and 
sustained release profile. 

An emerging class of porous organic materials devel-
oped from linking molecular building blocks with strong 
covalent bonds into crystalline, extended (two-
dimensional) 2D and (three-dimensional) 3D structures 
called covalent organic frameworks (COFs)1-14 have recent-
ly aroused great interest in catalysis15,16, sensing17,18, sepa-
ration,19 semiconduction,20 proton conduction,21 biomedi-
cine22,23, among others. COFs emerged in 200524 as the sec-
ond series of reticular materials, the first one being metal-
organic frameworks (MOFs)25,26. ‘Reticular’ means ‘any-
thing that has the structure of a net’. By reticular synthesis, 
we refer to the extended structure regime that combines 
(i) molecular-level control over matter and (ii) robust-
ness.27-29 A top-down reticular synthesis scheme starts 
with a desired net topology followed by disassembling it 
into vertices and edges, finding secondary building units 
with the right connectivities and aligning them with the 
vertices, obtaining an augmented net by replacing the ver-
tices of an n-connected net by a group of n-vertices, and 
finally linking the molecular building blocks by robust 
bonds into crystalline extended structures.1,30-34 Alterna-
tively, the bottom-up scheme of reticular synthesis pro-
ceeds from pre-designed building units leading to unprec-
edented network topologies.35 COFs feature one of the 
highest open-pore scaffolds. The COF scaffold is built out of 
organic units and it imparts tunable chemical environ-
ments for encapsulating a wide array of guest molecules. 

Based on the extension of their covalent connectivity, COFs 
can be categorized into 2D and 3D COFs.36 With covalent 

connectivity extending only in 2D, 2D COFs crystallize as 
layered structures in which the layers are stacked through 
non-covalent interactions (π‒π stack, Van der Waals inter-
actions, hydrogen bonds), giving rise to 1D straight chan-
nels.14,37 On the other hand, with covalent connectivity ex-
tending along the entire 3D scaffold, 3D COFs often have 
the upper hand over 2D COFs, attributed to their intercon-
nected channels and readily accessible active sites.38  

Topological consideration is crucial to 3D extended struc-
tures considering that it largely dictates their pore archi-
tecture, active site formation and mass transport behav-
ior.38 Albeit highly sought after, discovery of new 3D COF 
topologies yet remains a herculean task because the high-
ly-connected 3D organic building blocks are hard to come 
by and it is very difficult to solve the crystal structures. 
Thus far, the type of 3D topologies of COFs is limited to 
about 20.38 The tetratopic (Td)-based 3D COF nets are 
bor,39 ctn,39 dia,40 pts,41 rra,42 lon,43 and ljh44. Fang et al. 
and He et al. prepared several hexatopic (D3h)-based 3D 
COFs e.g. stp,45 acs,46,47 ceq,47,48 and hea49,50. Different from 
triangular prismatic (D3h) nodes, Mateo-Alonso et al. uti-
lized triangular antiprismatic (D3d) nodes to construct pcu 
topology 3D COFs.51 Other unprecedented 3D COF topolo-
gies reported are ffc,52 srs,53 fjh,54 tbo,55 and nbo56. Recent-
ly, octatopic nodes have been used to prepare pcb57 and 
bcu58 topology 3D COFs.  

Herein, we report for the first time a novel 3D COF, namely 
TUS-84, with scu topology formed though the combination 
of a tetragonal prism (8-connected) node with a square

  

 

 



 

Scheme 1. Strategy for Constructing 3D COF with the scu Topologya 

 

aThe condensation reaction of a D2h-symmetric linker, DPTB-Me, and a C4-symmetric linker, TAPP, yielding 3D COF with a scu-c 
net, which belongs to scu topology. 

planar (4-connected) node. TUS-84 exhibits a two-fold 
interpenetrated scu net, denoted as scu-c (c for catenat-
ed), with permanent porosity and a Brunau-
er−Emmett−Teller (BET) surface area of 679 m2 g-1. Struc-
tural elucidation of the COF was carried out thoroughly 
through different characterization techniques. Interesting-
ly, the COF shows efficient drug loading and extended-
release profile in simulated physiological media. Scheme 1 
depicts the strategic approach to construct 3D COFs with 
scu-c net via the [8+4] imine condensation reaction of a 
D2h-symmetric linker, 4',5'-bis(3,5-diformylphenyl)-3',6'-
dimethyl-[1,1':2',1''-terphenyl]-3,3'',5,5''-
tetracarbaldehyde (DPTB-Me), and a C4-symmetric linker, 
5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP). 

TUS-84 was synthesized by the solvothermal reaction of 
DPTB-Me (19.0 mg, 0.03 mmol) and TAPP (40.48 mg, 0.06 
mmol) in a 5:5:2 (v/v/v) mixture of mesitylene, 1,4-
dioxane, and 6 M aqueous acetic acid under 120 °C for 3 
days. The acid-catalyzed Schiff-base condensation reaction 
yielded the COF as a dark purple crystalline solid at a yield 
of 76%. The solid-state 13C cross-polarization magic angle 
spinning (CP/MAS) NMR and Fourier-transform infra-red 
(FT-IR) spectroscopies provided definitive evidence for 
atomic-level connectivity of the imine linkage in TUS-84. 
The 13C CP/MAS NMR spectrum displayed a characteristic 
peak at 158 ppm for the imine carbon of TUS-84 (Figure 

S1). In the FT-IR spectrum of TUS-84, the C=N vibration 
peak at 1625 cm−1 was observed. Significant attenuation of 
the N-H (3433, 3465 cm−1 for TAPP) and C=O (1703 cm−1 
for DPTB-Me) stretching vibration bands in the FT-IR spec-
trum of TUS-84 implies high degree of polymerization for 
the imine COF (Figure S2). Isometric microcrystals of TUS-
84 were observed from scanning electron micrographs 
(Figure S3). High-resolution transmission electron micros-
copy (HRTEM) imaging (Figure 1b,c, S4,5) showed the or-
dered structure of TUS-84, comprising rhombus pores 
viewed along the z-direction in the simulated structure 
(Figure 2a). Thermogravimetric analysis (TGA) curve indi-
cates high thermal stability for TUS-84 retaining 95% of its 
weight up to 500 °C (Figure S6). Chemical stability of the 
COF was substantiated from its preservation of crystallini-
ty and imine linkage after treatment with organic solvents, 
water, and aqueous HCl and NaOH solutions, as can be 
seen from the PXRD profiles (Figure S7) and FT-IR spectra 
(Figure S8). 

The crystal structure of TUS-84 was unraveled by powder 
X-ray diffraction (PXRD) analysis combined with structural 
modeling and simulation (Figure 1a). Geometry optimiza-
tion (energy minimization) was performed in Materials 
Studio 7.059 Forcite program that afforded the unit cell pa-
rameters of TUS-84 with a scu-c net and Pm space group 
as a = 39.9205 Å, b = 18.7162 Å, c = 23.6564 Å, α =β = γ = 



 

90°. The simulated PXRD pattern (Figure 1a, green curve) 
showed great alignment with the observed diffraction pat-
tern (Figure 1a, red dots). Sharp Bragg peaks observed at 
4.38 and 6.44° correspond to the (200) and (111) facets, 
respectively and relatively weak peaks at 9.10, 10.23, 
11.15, 12.83, 14.38 and 16.19° correspond to the (112), 
(020), (221), (222) (130) and (132) facets, respectively 
(Figure 1a). Pawley refinement was applied against the 
experimental PXRD data using Reflex that resulted in a 
space group of Pm with unit cell parameters a = 39.9179 Å, 
b = 18.7054 Å, c = 23.6772 Å, α = β = γ = 90° and good 
agreement factors Rp = 4.37%, Rwp = 3.19%. The Pawley 
refined PXRD pattern (black curve, Figure 1a) shows good 
consistency with the experimental PXRD pattern (red 
dots), as indicated by the minor difference plot (blue 
curve). Furthermore, we also explored alternative topolo-
gies for TUS-84, including the non-interpenetrated scu net 
(Figure S16, Table S2), and csq topology (Figure S17, Table 
S3). However, the simulated PXRD patterns did not accord 
with the experimental PXRD pattern. All things considered, 
we propose the scu-c net for TUS-84. 

 

Figure 1. (a) PXRD patterns of TUS-84: experimental pattern 
(red dots), Pawley refined (black curve), simulated (green 
curve) pattern from the scu-c modeled structure, and the dif-
ference plot (blue curve) between the experimental and re-
fined patterns. The Bragg positions are denoted by magenta 
ticks. (b,c) HRTEM images of TUS-84. Inset in Figure b shows 
the fast Fourier transform (FFT) pattern acquired from the 
area enclosed by the white box. 

The permanent porosity of TUS-84 was ascertained by N2 
sorption measurements on activated COF sample at 77 K. 
As can be observed in Figure 3a, TUS-84 displayed a re-
versible type-I isotherm with a sharp uptake at low pres 

 

Figure 2. Extended structures of TUS-84. 

sure (P/P0 < 0.1), indicative of its microporous character. 
The BET specific surface area of TUS-84 was evaluated as 
679 m2 g-1 (Figure S9). Applying the nonlocal density func-
tional theory (NLDFT) method, the pore volume of TUS-84 
was derived as 0.7613 cm3 g-1 and its pore size distribution 
was calculated as 0.97 nm (Figure 3b), consistent with the 
pore size predicted from the simulated structure (1.05 
nm). We also evaluated the H2, CO2 and CH4 gas adsorption 
capacities of TUS-84 to reinforce its prospects in carbon 
capture and clean energy applications. As illustrated in 
Figure S10, the H2 uptake capacities at 77 and 87 K under 1 
bar are 131 cm3 g-1 and 88 cm3 g-1, respectively. The iso-
steric enthalpy of adsorption (Qst) of H2 was calculated to 
be 6.8 kJ mol-1 (Figure S11). TUS-84 shows a CO2 uptake 
capacity of 55 cm3 g-1 and 31 cm3 g-1 at 273 and 298 K, re-
spectively, under 1 bar (Figure S12). The Qst of CO2 adsorp-
tion was evaluated as 24.9 kJ mol-1 (Figure S13). The CH4 
sorption isotherms shown in Figure S14 reveal an uptake 
capacity of 14 cm3 g-1 and 10 cm3 g-1 at 273 and 298 K un-
der 1 bar, respectively, and the value of Qst was obtained as 
6.5 kJ mol-1 (Figure S15). 

Intrigued by the 3D functional scaffold with permanent 
porosity and high chemical stability, we utilized TUS-84 in 
in vitro drug delivery studies. Ibuprofen is one of the most 
common nonsteroidal anti-inflammatory drugs (NSAIDs) 



 

 

Figure 3. (a) Nitrogen sorption isotherms and (b) pore size 
distribution profile of TUS-84.  

used for the treatment of rheumatoid arthritis, osteoarthri-
tis, mild‒moderate pain and primary dysmenorrhea.60-62 
The selection of ibuprofen as the drug in this study is 
based on: (a) ibuprofen has short half-life (1.8-2.0 h) that 
calls for extended-release formulations,1 and (b) pore di-
mensions of TUS-84 (1.05 nm) is befitting for encapsula-
tion of ibuprofen with molecular size of 0.5 × 1 nm2.63,64  

For drug loading, 50 mg of TUS-84 was suspended in 30 
mL of 0.1 M hexane solution of ibuprofen under magnetic 
stirring for 5 h. The drug-loaded COF sample was isolated 
from suspension via vacuum filtration, washed with hex-
ane, and subsequently dried at room temperature. 1.0 mL 
of the filtrate was collected and 50 times diluted to evalu-
ate the loading amount of ibuprofen using a UV-Vis spec-
trophotometer by measuring the absorbance at 261 nm of 
ibuprofen in hexane and supernatant (see SI for details). 
UV-Vis absorption data showed 11.05 wt% loading of ibu-
profen in TUS-84 (Figure S23). As can be seen from Figure 
S21, the value of drug loading amount is in good agree-
ment with that obtained from the TGA (11 wt%). PXRD 
analysis (Figure S18) and scanning electron micrograph 
(Figure S19) of ibuprofen-loaded TUS-84 revealed that the 
COF crystalline structure was retained after drug loading. 
The drug release study was performed by placing 40 mg of 
the drug-loaded TUS-84 sample inside a semipermeable  

 

Figure 4. (a) UV-Vis spectra of ibuprofen in simulated body 
fluid (pH 7.4, phosphate buffer solution) at different concen-
trations. (b) Calibration curve of ibuprofen. (c) Release profile 
of ibuprofen from ibuprofen-loaded TUS-84 and correspond-
ing fitting curve. 

bag followed by immersing in 10 mL of phosphate buffer 
solution (simulated body fluid, pH 7.4) at a constant tem-
perature of 37 °C. The dissolution solvent was taken out at 
specified time intervals for evaluation of the ibuprofen 
concentration and replenished with 10 mL of fresh buffer 



 

solution. The ibuprofen concentration was determined UV-
Vis spectrophotometrically using calibration curve (Figure 
4a,b). TUS-84 showed an extended drug release perfor-
mance of about 40% after 5 days (Figure 4c). This long-
acting ibuprofen formulation could deliver sustained con-
centrations of drug over a prolonged period of time, there-
by reducing dosing frequency and ensuring more con-
sistent control of long-lasting pains.65,66 

To conclude, a 3D COF with a novel scu-c topology was 
designed and synthesized, utilizing a D2h-symmetric linker, 
DPTB-Me, and a C4-symmetric linker, TAPP. The resultant 
TUS-84 COF displays an ordered microporous structure 
with high crystallinity and excellent stability. Furthermore, 
TUS-84 shows great promise as drug delivery vehicle ow-
ing to its efficient drug loading and controlled release be-
havior. This study may not only expand the library of 3D 
COF topologies but also facilitate the design of new 3D COF 
structures for biomedical applications.   
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