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ABSTRACT: Two-photon absorption has wide applications in bioimaging, photodynamic therapy, and three-dimensional 
printing. Designing molecules with a large two-photon absorption cross section (TPACS) is thus highly desirable for advancing 
these technologies. Here we used machine learning to analyze a TPACS dataset of ca. one thousand molecules collected from 
literature reports. We found that the length of the conjugated structure is the most important feature to determine the TPACS 
in a power law of ~1.8 order. The effect of donor and acceptor substitutions and structural coplanarity on the TPACS can be 
adequately addressed by another three features obtained by empirical rules. Combining these four molecular features with 
the experimental wavelength and solvent used in the measurement, we derived an interpretable model to predict molecular 
TPACS with an accuracy comparable to that of experimental measurements and common theoretical calculations. Our ap-
proach not only provides insight into the factors that are critical to TPACS but, as we demonstrate, also allows high-through-
put screening of new TPA molecules. 

Introduction 

Two photon-absorption (TPA) is a nonlinear coherent 
process in which a molecule simultaneously absorbs two 
photons.1, 2 TPA has been crucial in many technologies, in-
cluding upconverted laser3, 4, two-photon bioimaging5-7, 
two-photon photodynamic therapy8-10, and three-dimen-
sional printing11-13. A range of molecules and materials with 
high TPA cross sections (TPACS, �) were discovered,14-17 as 
determined by the Z-scan18 and two-photon excited fluores-
cence methods19. 

A general design principle is established for constructing 
TPA molecules: creating donor (D)-acceptor (A) push-pull 
structure together with a long π-conjugation in the mole-
cule.14, 17 Both features can lead to large transition dipole 
moments. In addition, quadrupolar D-π-A-π-D / A-π-D-π-A 
or multipolar DAn / ADn structures are also considered to be 
beneficial to obtaining large TPACS according to a Frenkel 
exciton model17, 20. However, these observations were made 
on a limited selection of systems and were not extensively 
tested considering all the experimental results obtained by 
the research community over the past years. 

High-accuracy quantum chemical (QC) models can test 
the validity of these empirical design rules from the first 

principles.21, 22 However, most QC methods still suffer from 
poor performance in predicting TPACS,23-25 and the high-
level QC calculations are usually expensive for examining 
many molecules with diverse structures and often, of con-
siderably large size. 

Machine learning (ML) can complement the QC methods 
to accelerate materials discovery26-29. Here we used an ML 
approach to study the structure-property relationship of 
TPA molecules based on reported experimental data con-
taining TPACS of 856 molecules. In this study, we emphasize 
the interpretability of ML and aim to answer the following 
questions: 

(1) Is there a quantitative relationship between the 
TPACS and the conjugation length of a molecule ?14 

(2) Does a branched DAn or ADn structure have an edge 
over a simple D-A conjugation after eliminating the contri-
bution of elongated conjugation length?30 

(3) Are there other critical structural features beyond 
the donor-acceptor, conjugation, and multipolar to deter-
mine the TPACS? 

Besides these scientific questions, our ML model also tar-
gets efficient high-throughput virtual screening (HTVS) to 



 

identify lead TPA compounds. This approach provides new 
opportunities for designing molecules with high TPACS. 

Results 

Dataset 

An experimental dataset of 929 unique organic chromo-
phores was collected from 275 literature reports (see the 
Supplementary Information, SI, Section 1). The dataset con-
tains the TPACSs, the SMILES, names of the molecules, 
wavelengths of the TPA test, TPA measurement methods, 
solvents, and DOI number of the source publication. 443 
molecules have only one TPACS value measured at a single 
wavelength, while the remaining 486 molecules have 2–11 
TPACS values measured at different wavelengths (Figure 
1a). The accuracy of the reported TPACS is difficult to check, 
but the level of accuracy is partially reflected by comparing 
the TPACS values of Rhodamine B at 798–802 nm from 
seven different sources31, which are 52±41 GM (or 1.7±0.3 
in logarithm) (Figure S1). We use lg(TPACS) in the following 
studies considering this level of accuracy. In addition, we 
also put all the molecular features for ML in the datasets, 
which are described in the next section. 

The distribution of the molecular weights is shown in Fig-
ure 1c, while the distribution of the logarithm of TPACS per 
molecular weight is shown in Figure 1d; both are close to 
the normal distribution. The molecules in the dataset con-
tain many elements, C, H, N, O, S, F, B, Cl, Br, P, Si, and I (in 
the order of their abundance), but the majority of molecules 
(564) contains only C, H, N, O (Figure 1b). The count of mol-
ecules measured in each solvent is shown in Figure 1e; 
many of the molecules (273) were measured in toluene, 
while altogether 21 different solvents were used. In order 
to avoid inaccuracy due to sparse data near the boundaries, 
only data points measured at wavelengths from 600 to 1100 
nm were used, and the molecules containing P, Si, I elements 
were eliminated. A dataset containing 856 molecules were 
used in the following study. 

Featurization of molecules 

The wavelengths and solvents used in the TPA measure-
ments were extracted as part of the features. The solvent in-
formation is encoded by three descriptors (ET(30), dielec-
tric constant, and dipole moment). The ET(30)32, 33 is de-
fined by electronic transition energy of betaine 30 in differ-
ent solvents to parameterize effect of solvent polarity. The 
information of the measurement methods is not used in the 
ML study, as many entries lack this information. 

564 of the features come from molecular fragment finger-
print (MFF) featurization.34 In MFF, molecular fragments 
were generated by the extended-connectivity fingerprints 
(ECFP) method using a radius of 436 supported by the 
Deepchem python toolkit.35 A vector recording the appear-
ance times of each fragment in a molecule36 was then cre-
ated (Figure 2). Note that this is different from the unhashed 
Morgan fingerprints, as the MFF counted fragment struc-
tures without considering their further linkage to other 
parts of the molecule, while the Morgan fingerprints contain 
this information. The MFF is thus a simplification of the 
Morgan fingerprints to fit into the needs of analyzing a small 
dataset. An additional 107 features were generated by the 
RDKit Python toolkit36, 37, which provide geometrical and 
electronic structural information of the molecule. 

 
Figure 1. Dataset of TPACS of organic compounds. (a) Scatter 
plot of the distribution of wavelengths at which TPACS was 
measured; markers are color-coded according to lg(TPACS). 
Histograms of (b) elements contained in this dataset, (c) molec-
ular weight, (d) the lg(TPACS) per molecular weight, and (e) 
solvents. 

Given the well-known importance of conjugation for 
TPACS38, we also created 21 conjugation features to de-
scribe the size, shape, and electronic properties of the con-
jugation structure (SI Section 2).  

Overall, we obtained 696 initial features (Table 1), all of 
which have clear physical definitions and can be calculated 
very fast. More features are introduced in the following sec-
tions. 

Feature selection 

We assess the importance of these features using three ML 
models: Least Absolute Shrinkage and Selection Operator39 
(LASSO), Gradient Boosting Regression Tree40 (GBRT), and 
Extreme Gradient Boosting41 (XGBoost) regressor. In the 
ML process, the datasets were randomly split into the train-
ing set and the test set via cross-validation (CV), and the 
Mean Squared Error (MSE), Mean Absolute Error (MAE), 
and R2 score of the test sets were calculated to evaluate 
model performance.  

For LASSO, importance of a given feature is manifested by 
the magnitude of the regression coefficient of the feature. 
For the GBRT and XGB Regressor, SHAP42, a Python toolkit 
to calculate Shapley values, was implemented to generate 
more interpretable feature importance. We then combined 
the feature importance indexes of the three regressors 



 

 
Figure 2. Featurization and feature selection. A scheme explain-
ing molecular fragment fingerprint (MFF) featurization, conju-
gation features, experimental features, and the procedure of 
the feature selection. (MFF-MOE: MFF-based Molecular Oper-
ating Environment features. Conju-Max-Distance: The maxi-
mum conjugated length in one molecule. Conju-Branch-Ratio: a 
parameter to describe branching in the conjugated system. 
Conju-Atom-Wt: The atomically averaged weight in one mole-
cule.) 

(averaged over 240 CV runs) into a weighted one (SI Section 
3, Figures S2), which was used to remove the least im-
portant features one at a time from the feature matrix. 

Through this deletion process, we obtained 50 features that 
can retain the performance of the models (Table S1, Figure 
3a), as shown by the scatter plots of true vs predicted values 
of testing sets (Figures 3b). 

As there were still highly correlated features within the 50 
features shown by correlation coefficients matrix (Figure 
S3), we further reduced the number of features by stepwise 
regression. The most important feature among the 50 ones 
was the conjugation length that is measured by the number 
of bonds linking the farthest atom pair in a conjugation sys-
tem (“Conju-Max-Distance”). We then calculated the perfor-
mance gain after adding each of the rest 49 features using 
the XGBoost model. The feature providing the highest per-
formance gain was added to the selected feature set. This 
procedure was repeated to select the third feature, and so 
on. We found that a minimum of an additional 9 features 
plus the “Conju-Max-Distance” can retain the performance 
of the XGBoost model: “MaxPartialCharge”, “MaxAbsPartial-
Charge”, “SMR_VSA10”, “VSA_EState3”, “MaxEStateIndex”, 
“VSA_Estate1”, “VSA_EState2”, “Wavelength (Exp nm)”, 
“ET(30) (Solvent)”.  

The wavelength and solvent index are molecule-independ-
ent features that are related to the experimental measure-
ments. The other seven features are all “Molecular Operat-
ing Environment” (MOE) features describing the local envi-
ronment of atoms in a molecule. Many of these MOE fea-
tures are additive. As we  

Table 1. The features used in this study. 

Name 
Num-
ber 

Description 

Initial features for model screening and feature selec-
tion (696) 

MFF 564 
Describing molecular struc-
ture and functional groups 

RDKit 107 
Describing molecular shape 
and electronic structure 

Conjugation  21 
Describing the properties of 
conjugation structure 

Solvent  3 
Describing the polarity of sol-
vents 

Wavelength 1 
Experimental TPA wavelength 
in nm 

Adding MFF-based features to enhance interpretability 

MFF-MOE 
features 

80 
Atom-attributed properties 
summed up to MFF 

Other features for SHAP analysis 

DAratio 1 
Distance between donor and 
acceptor divided by conjuga-
tion length 

 

would like to attribute the molecular properties to frag-
ments containing functional groups that are familiar to 
chemists, we established MFF-based MOE features (MFF-
MOE) by a simple summation to replace the atom-based 
ones, including the “PEOE Charge”43, “LogP”44 and “MR”. 
“PEOE Charge” is obtained by summing up the Gasteiger 
charges of atoms in an MFF fragment. LogP is the logarithm 
of oil (octanol)–water partition coefficient of a molecule. 
The summation of atomic attribution of LogP to MFF can 
identify polar groups in the molecule. Similarly, the MR is 
the polarizability of the molecule determined by molar re-
fractivity, and the summation of its atomic attribution to the 
MFF level can describe polarizability of a molecular frag-
ment. 

After adding a series of these new MFF-MOE features to re-
place the seven atomic MOE features, we obtained a new 
feature matrix containing 94 features (Table S2). To our 
surprise, after the stepwise regression, we obtained a fea-
ture set with only 6 features to give quite good performance 
of the XGBoost model, and only four of them are molecule-
based features while the other two are the measurement 
wavelength and solvent feature. Besides the “Conju-Max-
Distance”, “Wavelength (Exp nm)”, and “ET(30) (Solvent)”, 
the newly selected MFF-MOE features are “PEOE-Charge-
Max”, “LogP-Min”, and “MR-Max”.  

 



 

 

Table 2. Performance of 10 regressors on different feature matrices. 

Figure 3. Model performance during feature selection procedure. (a) Mean squared error (MSE) against feature selection proce-
dure: feature importance-based feature selection in LASSO, GBRT and XGBoost were denoted as blue, red, and black circles, 

Performance 

 

Regressor 

[856 × 696] [856 × 6] 

MSEa MAE R2 MSE MAE R2 

AdaBoost 0.32 0.44 0.40 0.36  0.48  0.31  

DNN 0.30 0.40 0.44 0.36  0.45  0.33  

Decision Tree 0.41 0.48 0.22 0.37  0.46  0.29  

ElasticNet 0.30 0.41 0.43 0.38  0.48  0.28  

GBRT 0.22 0.34 0.59 0.23  0.37  0.56  

LASSO 0.30 0.41 0.43 0.39  0.48  0.27  

MLPRegressor 0.33 0.42 0.37 0.40  0.50  0.23  

k-nearest neighbor 0.39 0.47 0.25 0.42  0.49  0.19  

Random Forest 0.23 0.34 0.56 0.23  0.35  0.57  

XGBoost 0.22 0.33 0.59 0.21  0.35  0.58  



 

respectively; black stars represent the stepwise regression; top 6 features selected by stepwise regression were shown on the right 
of the y-axis; the number of features, the metrics and the TPACS are all shown in log scale. Scatter plot of models using (b) [856 
(number of molecules) × 696 (number of features)] and (c) [856 × 6] feature matrices and the XGBoost regressor: the standard 

deviations of the predicted values in the 240 CV runs of the model is represented by the color axis in log scale. (d) The parity plot 
of experimental lg(TPACS) vs. lg(Conju-Max-Distance): three groups of structurally related compounds of different conjugation 

lengths in the dataset are also highlighted by red, blue, and purple circles; note that it is difficult to find examples of homologous 
structures, and these selected series also differ in functional groups.           

Performance of machine learning models 

240 splits of training and testing sets were randomly gener-
ated to evaluate the model performances with a train-test 
ratio of 85:15 (728 samples for training and 128 samples for 
testing). Table 2 listed the average MSE, MAE, R2 scores of 
the testing sets using the full feature matrix [856 × 696] and 
the selected feature matrix [856 × 6] with a bunch of differ-
ent ML models (Table S3). The MAE value representing the 
error of the prediction was as low as 0.33 in lg(TPACS) units, 
which corresponds to an accuracy within a factor of 2. The 
true-predict scatter plots (Figures 3b&3c, S4&5) further 
confirm this performance. This level of accuracy is already 
comparable to the accuracy of experimental measurement. 

Meanwhile, theoretical calculations of TPACS suffer from 
large uncertainty23-25, 45, 46. Even comparing the popular den-
sity functional theory (DFT) results to the benchmark calcu-
lation by coupled cluster (CC) high-level QC method gave 
MAE > 0.334 in logarithm (Figure S6)23. Our simple ML 
model with only four molecular features thus has compara-
ble accuracy to that of commonly used DFT methods 

Interpretation of the machine-learning model 

We used the SHAP value47 as a guide to interpret the ML 
model (SI Section 5). The SHAP value measures in the ML 
model how a specific feature contributes to the predicted 
TPACS of each sample. The SHAP values of different features 
of one sample sum up to its TPACS subtracting the mean 
TPACS. For a given feature, a plot of SHAP values against the 
feature values of different samples (SHAP plot) maps out 
the contribution of the feature in determining TPACS (Fig-
ure 4). To analyze other feature of interest that is not in-
cluded in the selected 6 features, we added the feature to 
the feature matrix and refit the model [856 × (6+1)] to cal-
culate its SHAP value. 

These SHAP plots allow us to test established concepts of 
the TPA structure-property relationship. We found that 
many of the concepts are consistent with the experimental 
statistics, but a few of them are not strongly supported. 

1. Conjugation length vs. conjugation area 

It has long been noticed that a larger molecule with a larger 
conjugated structure has a higher TPACS. Noticeably, the 
ML model selected the conjugation length rather than the 
conjugation area (Conju-Stru-VSA) as the most critical fea-
ture. Conju-Stru-VSA is poorly related to the TPACS (Figure 
S7). 

The area of a conjugated system is also closely related to its 
molecular weight. Practically, in many applications, the spe-
cific TPACS per molecular weight is of interest. It is thus 

important to know whether the TPACS linearly depends on 
the molecular weight. The plot of lg(TPACS) against the log-
arithm of either the whole molecular weight (Full-Wt) or 
the weight of the conjugated systems in the molecule 
(conju-Wt) (Figure S8) showed a weak correlation. 

2. Is there a quantitative relationship between the 
TPACS and the conjugated length of a molecule? 

From the SHAP plot of the ‘Conju-Max-Distance’ (Figure 4a), 
we observed a linear correlation between the logarithm of 
this feature and the SHAP value with a slope of 1.79 ± 0.05. 
As the SHAP value is logarithm to the TPACS, this slope cor-
responds to a power law of TPACS depending on the conju-
gation length: 

TPACS ∝ (Conju-Max-Distance)�.��±�.�� 

This slope of 1.79 is roughly consistent with the linear fit-
ting of lg(TPACS) against lg(Conju-Max-Distance) that hap-
pens to be 1.9±0.2 with a much larger error (Figure 3d). 
Three groups of structurally related compounds of different 
conjugation lengths in the dataset (Figure S9) revealed sim-
ilar trend (Figure 3d). This slope is also confirmed by an-
other data analysis method: accumulated local effects (SI 
Section 6 and Figure S10a). The SHAP method thus helps us 
to isolate the contribution of conjugation length and ex-
tracts the first quantitative relationship between the conju-
gation length and the TPACS. 

Beyond the statistical analyses, we also try to rationalize 
such a dependence based on physical models. A simple 
model of conjugated parallel p-orbitals to form a linear π-
system with alternative double and single bonds showed 
that the lg(TPACS) is linear to the lg(Conju-Max-Distance) 
with a slope close to 1.7 in a reasonable conjugation length 
range (SI Section 7 and Figures S10b, S11). More accurate 
time-dependent density functional theory (TDDFT) calcula-
tions48 on a series of molecules of different conjugation 
lengths (SI Section 8, Table S5 and Figure S10c) gave a 
lg(TPACS)-lg(Conju-Max-Distance) slope of 2.4.     

3. The degree of conjugation 

The “MR-Max” uses molar refractivity to describe polariza-
bility of a fragment. As the “MR-Max” is correlated to the 
conjugation length, we used principal component analysis 
(SI Section 9, Table S6, Figure S12) to remove interference 
from the latter and found that the “MR-Max” possibly mani-
fests the degree of conjugation.  

The conjugated C=C bonds, triphenylamine groups increase 
the SHAP value of “MR-Max”, while a single bond connection 
between two aromatic rings or other substructure caus-
ingnonplanarity of the conjugation system has a negative ef-
fect (SI Section 10 and Figures S13c, d & S14). Some  



 

    

   Figure 4. Chemical information extracted from machine 
learning models. (a) SHAP analysis of lg(Conju-Max-Distance): 
the linear fitting gives: SHAP value = lg(Conju-Max-Dis-
tance)×1.79 − 2.29, and a group of structurally related com-
pounds selected from Figure S9 is highlighted in red circle. (b)–
(d) SHAP analysis of MFF-MOE features. (f) SHAP analysis of 
Wavelength (Exp nm). (f) SHAP analysis of ET(30). The penta-
gon spider insets are showing five feature importance indexes: 
the normalized LASSO coefficients ([856 × 696] model), the 
GBRT feature importance ([856 × 696] model), the XGBoost 
feature importance ([856 × 696] model), the sum of SHAP val-
ues based on the XGBoost model ([856 × 6] model), and the 
mean value of the above four indexes (Table S4). The histogram 
of every figure shows the distribution of features. 

heteroatoms in the conjugated system like an azo linkage 
between benzene rings also seem to have a negative effect. 

The “MR-Max” using polarizability as a probe is thus com-
plementary to the conjugation length to describe the degree 
of conjugation of the system.  

4. How to quantify the impact of donor and acceptor 
substitution groups to TPACS? 

Donor and acceptor substituents in the conjugated struc-
ture are critical to the TPA in a Donor–π-Acceptor design. 
The selected “LogP-Min” feature can mark the existence of 
highly polar groups on the molecules. These groups are usu-
ally also strongly electron-donating or electron-withdraw-
ing groups (Figure S13b). The SHAP plot showed that the 
more negative this parameter (the more polar the group), 
the higher the TPACS, which is consistent with the push-pull 
design principle (Figure 4c). 

However, polarity alone cannot adequately describe the 
electronic property of a functional group. “PEOE-Charge-

Max” supplements the description by identifying positively 
charged conjugated carbon backbone that is connected to 
strong electron-withdrawing group (Figure S13a), as 
shown by the SHAP plot that adds correction to the posi-
tively valued region (positively charged backbone) (Figure 
4b). 

5. Is multipolar DAn or ADn structure from branching 
of the conjugated system beneficial for TPA? 

We considered multipolar DAn or ADn branched structure 
and quadrupolar D-π-A-π-D / A-π-D-π-A linear structure by 
the features of “Conju-Branch-Ratio” and “DAratio”, respec-
tively. The Conju-Branch-Ratio is only weakly correlated to 
the conjugation length and adequately addresses the 
branching of a conjugation system in a multipolar structure 
(SI Section 11 and Figure S15a, S16). However, the absolute 
SHAP values of the Conju-Branch-Ratio are mostly smaller 
than 0.05, indicating that it only has a minor influence on 
the TPACS. No higher-order contribution of Conju-Branch-
Ratio together with the conjugation length was observed ei-
ther (Figure S15e). 

Similarly, the SHAP plot of the DAratio (distance between 
the donor and acceptor divided by the conjugation length) 
showed absolute values mostly smaller than 0.1 (Figure 
S15f), suggesting a small effect. Moreover, the positive 
SHAP value at DAratio > 0.5 is against a beneficial effect of 
the quadrupolar structure, as the DAratio closer to 1 corre-
sponds to a dipolar D-A structure rather than a quadrupolar 
D-A-D or A-D-A structure. 

These statistical analyses of the multipolar or quadrupolar 
structures thus contradict the conventional wisdom about 
the importance of them in obtaining high TPACS. The obser-
vation of high TPACS in multipolar or quadrupolar mole-
cules can be mainly attributed to their elongated conjuga-
tion length.  

We put more analyses on other features including aliphatic 
chain, testing method, and solvent polarity in the SI (SI Sec-
tion 12 and Figures S17-18). 

Screening 

25006 commercially available molecules from Innochem 
website (inno-chem.com.cn) with more than 20 non-H at-
oms and at least one aromatic ring were collected for 
screening. The target TPA wavelength was set to 800 nm. 
The trained XGBoost model was used for predicting TPACS 
values (SI Section 13). Synthetic Accessibility Score (SAS)49 
and Synthetic Bayesian Accessibility (SYBA)50 scores were 
also calculated to estimate their synthetic accessibility (Fig-
ure S19a-c).  

Experimental validation 

To test the predictive power of the ML model, we chose 
some of the commercially available molecules and meas-
ured their TPACS by the Z-scan technique to compare with 
the values predicted by the ML model. Two-photon absorp-
tion spectra of 16 molecules are shown in Figure S20. The 
ML model gives reasonable predictions of their TPACS as 



 

compared to the measured values at their peak wavelength 
(Figure S19d), which provides an independent validation of 
the accuracy of our approach. 

Conclusion 

We obtained a simple and interpretable model to predict 
two-photon absorption cross section (TPACS) of different 
chromophores based on experimental data from literature. 
Despite of containing only four molecule-based features, the 
model achieves a predictive accuracy comparable to both 
the experimental measurements and the popular density 
functional theory calculations. The model identifies the con-
jugation length as the most critical feature and gives the 
first quantitative relationship between the TPACS and the 
conjugation length. Based on this model, we also tested sev-
eral popular observations in the field of two-photon absorp-
tion research. To our surprise, we found that a widely prac-
ticed approach to design DAn or ADn multipolar structure 
does not enhance the TPACS beyond the effect of conjuga-
tion lengthening. We envision that this simple ML model can 
allow fast screening of databases to accelerate the develop-
ment of high-performance organic non-linear optical mate-
rials. 

ASSOCIATED CONTENT  

This material is available free of charge via the Internet at 
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Detailed information for features used by machine learning 
and feature selection algorithm; dependencies, perfor-
mance and parameters of 10 regressors; further validation 
of the quantitative dependence between Conju-Max-Dis-
tance and TPACS; screening and experimental validation of 
16 new molecules. (PDF)  
Raw collected data and feature matrix of machine learning; 
original codes of feature matrix generation, feature im-
portance-based feature selection, stepwise regression, SHAP 
analysis. (ZIP) 
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