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Abstract: Halide perovskites are promising photovoltaic (PV) materials with the potential to lower the cost 

of electricity and greatly expand the penetration of PV if they can demonstrate long-term stability 

under illumination in the presence of moisture and oxygen. The solar cell service lifetime as 

quantified by the T80 (the time required for the power conversion efficiency to drop to 80% of its 

starting value) is a useful metric to assess stability. The T80 for utility, commercial, or residential 

PV systems needs to be several decades in order to yield low-cost electricity, and thus it is not 

practical to directly measure the T80. It would be useful if T80 could be predicted from the initial 

dynamics of a solar cell’s performance, but until now no models have been developed to forecast 

T80. In this work, we report the development of machine learning models to predict T80 of 

ITO/NiOx/CH3NH3PbI3/C60/BCP/Ag solar cells operating at maximum power point under 1-sun 

equivalent photon flux in air at varying temperatures and relative humidities. Efficiency losses are 

driven by short-circuit current and fill factor, indicating that chemical decomposition of the 

perovskite is a major contributor to degradation. Spatial patterns evident from in situ dark field 

optical microscopy suggest that the electric field gradient at device edges plays a significant role in 

perovskite decomposition, along with photochemical reactions with O2 and H2O. Models are 

trained using a menu of features from three distinct categories: (i) features based on measurements 

of the initial rates of change of device parameters, (ii) features based on the ambient conditions 

during operation (temperature, & partial pressure of H2O), and (iii) features based on underlying 

physics and chemistry. We show that a theory-based physiochemical feature derived from a model 

of the chemical reaction kinetics of the rate of degradation of the CH3NH3PbI3 is particularly 

valuable for prediction. This physiochemical feature was selected as the first or second most 

dominant feature in the best performing models. With a dataset consisting of 45 accelerated 

degradation experiments with T80 that range over a factor of 30, the model predicts T80 with an 

accuracy of about 40% (|predicted T80 - observed T80| / observed T80) on samples not used in 

training. This hybrid ML approach should be effective when applied to other compositions, device 

architectures, and advanced packaging schemes. 

 

Introduction. Halide perovskites are on the cusp of breaking out as mainstream commercial photovoltaic 

materials, but there are some concerns about their potential for long-term stability due to the susceptibility 

about:blank


of perovskite absorbers to decomposition in the presence of heat,1 light,2,3 oxygen,2 moisture,4–6 and 

electrical bias.7–10 The success of perovskite solar cells (PSCs) and other perovskite-based technologies 

may rest on how accurately manufacturers are able to estimate the service lifetimes of devices. Accurate 

predictions will allow manufacturers to identify appropriate markets and provide warranties, while at the 

same time allowing customers to assess the economics of the purchase. There have been many promising 

advances toward extending the operational life of perovskite solar cells, with several reports of perovskite 

solar cells passing the standard IEC solar cell durability tests (e.g., damp heat and thermal cycling).11–14 

However, the mechanisms of degradation are quite different in perovskites than in conventional solar cells, 

and it is currently unclear if PSCs that can survive on the time scale of decades in the wide variety of 

potential operational environments. In the early years of perovskite photovoltaics research, the large number 

of possible degradation processes, coupled with a lack of information on how to assign a hierarchy of their 

effects on material and device degradation, led to many testing protocols (accelerated or otherwise) 

generally developed independently by individual research groups. This made comparing the stability data 

from lab to lab difficult. Even in cases where standardized accelerated testing regimes (such as the IEC 

protocols) were obeyed, the IEC tests were developed for devices based on conventional inorganic 

semiconductors, and do not necessarily probe the performance-limiting processes in PSCs. Although the 

perovskite research community has started to develop testing protocols that are better designed to capture 

the most important degradation mechanisms,15 the field’s knowledge of these mechanisms remains 

incomplete, complicating these efforts. Furthermore, the large number of perovskite compositions and 

device architectures introduces massive complexity to the space of possible chemical degradation pathways. 

A recent report16 attempting to construct a comprehensive overview of perovskite photovoltaics research 

catalogs over 5,500 architectures as determined by the contact materials alone—i.e., not even accounting 

for the additional complexities posed by the compositional flexibility of the perovskite absorber itself—of 

which over 1,000 were reported to yield PSCs that have power conversion efficiency >18% and thus 

represent potentially attractive fabrication strategies for commercialization. Since the principal degradation 

mechanisms that limit device lifetimes, and the major environmental factors that dictate them, may vary 



considerably across perovskite absorbers and device architectures, the development of “one-size-fits-all” 

testing protocols is a risky strategy for lifetime validation.  

Development of mathematical models that can predict operational lifetimes can significantly reduce 

the uncertainty associated with selecting the correct testing protocols. Prediction offers several crucial 

advantages over standardized protocol-focused testing. It can assimilate information gathered under non-

ideal circumstances (e.g., negative results based on “bad” devices or those with short lifetimes, which are 

seldom reported in the literature) that can nevertheless furnish useful information for model training. 

Through the incorporation of physical variables such as temperature or humidity as predictive features, 

these models’ functional forms can also indicate which aspects of degradation are most important. Despite 

their advantages, sufficiently accurate models can be challenging to build. In the limit of perfect information 

about a device’s construction, packaging, and the conditions it is subjected to, an idealized model would be 

able to describe how the chemical interactions resulting from environmental exposure and operation lead 

to changes in its performance. Such a model may be envisioned in principle as a set of coupled partial 

differential equations that could be solved in a 3-dimensional multi-physics numerical simulation. 

However, this approach would require thousands of variables and immense computing resources. Even 

assuming resource-intensiveness is not an impediment, many of the relevant physical processes this model 

would need to describe are currently unknown, ultimately making this strategy prohibitively difficult to 

achieve in practice.  

If a fully mechanistic model represents a “bottom-up” approach proceeding from elementary 

physical knowledge, we may consider models constructed via machine learning (ML) as providing an 

opposite, “top-down” approach that leverages empirically-determined relationships between the target 

behavior (i.e., how power conversion efficiency evolves over time) and easily measured variables of interest 

with a clear relationship with the target (e.g., environmental conditions, initial performance metrics, or 

details of device architecture and fabrication). ML models have recently been gaining ground in perovskite 

research, particularly in areas such as stability where important physical processes are insufficiently known 



to enable fully mechanistic descriptions. For instance, Howard et al.17 and Srivastava et al.18 have recently 

used neural networks to predict the evolution of perovskite photoluminescence intensity in response to 

humidity fluctuations and MAPbI3 solar cell power conversion efficiency evolution under thermal stress, 

respectively. However, the evolution was not investigated for times long enough to reach the device T80 

(the time taken for the power conversion efficiency, PCE, to drop to 80% of its starting value) that serves 

as the traditional figure of merit for device longevity, making it unclear how well these models would fare 

in full lifetime prediction. An additional drawback of neural networks is that they are not interpretable. 

Machine learning has also been used to optimize perovskite stability: Hartono et al.19 used a variety of 

supervised ML techniques to optimize 2D perovskite capping layers for protecting MAPbI3 against damp 

heat environments, finding that random forest regression performed best among all modeling approaches 

tested; Sun et al.20 combined DFT calculations and Bayesian optimization to identify the most stable 

members in the ternary cesium-formamidinium-methylammonium lead iodide perovskite family (all 

synthesized under identical processing conditions). 

Physics-informed machine learning is an especially promising strategy that can address some of 

the shortcomings of fully empirical ML by incorporating mechanistic knowledge or imposing physical 

constraints on predictive models. This class of models can, in principle, make maximum use of available 

mechanistic knowledge while retaining the economy and flexibility of empirical models. With regards to 

the challenge of predicting PSC service lifetimes, conventional wisdom dictates that chemical 

decomposition of the absorber is a major factor determining the rate of device performance loss. 

Mathematical descriptions of perovskite decomposition pathways are therefore expected to be important 

ingredients of predictive models that may reduce reliance on potentially useful but uninformative empirical 

relationships between service lifetime and environmental conditions. Recently, we have shown that the 

initially observed chemical decomposition rate of CH3NH3PbI3 thin films is a good predictor of decay of 

the films’ carrier diffusion length over time.21 Furthermore, we have shown that the initial decomposition 

rate of CH3NH3PbI3 films can be predicted accurately from temperature, above-band gap illumination 



intensity, and ambient partial pressures of H2O and O2.6 In this work, we develop the first predictive 

machine learning model of perovskite solar cell operational lifetime (as quantified by the device T80). T80 is 

predicted as a function of the ambient environmental conditions as well as measurements of current-voltage 

characteristics taken over the first ~90 minutes of operation. The models are trained using 45 experiments 

carried out under 1-sun equivalent illumination in air at a variety of different temperatures and humidities. 

This work exemplifies how physics-informed ML models can be used to unite mechanistic physical 

information with sample-specific observations of performance evolution to both maximize predictive 

accuracy and model interpretability. The time scale for decay of other metrics such as Jsc, Voc, FF, diffusion 

length, etc. can be formulated as a time to decay to 80% of its initial value (T80,Jsc, T80,Voc, etc.), but unless 

otherwise noted, we will use “T80” to refer to T80 specifically for the PCE. 

Analysis of Device Degradation Data. Device degradation data are collected in a testing station where 

temperature, humidity, oxygen, and illumination are controlled (Figure 1a). Solar cells (approximate area: 

0.07 cm2) are placed underneath the objective lens of a microscope equipped with a light source and low-

magnification objective that illuminates the entire device with a 1 sun equivalent above-band gap photon 

flux of 542±17 nm light (i.e., 1.56 × 1021 photons ∙ m-2 ∙ s-1). Electrical characteristics are measured in situ 

using a Keithley 2420 source-measure unit. The device under test is placed on a thermal stage to regulate 

temperature, which is then enclosed in a controlled-humidity chamber. Device operating characteristics are 

collected periodically (for most runs, every 15 minutes), including steady state open-circuit voltage, short-

circuit current, and maximum power point voltage and current, as well as forward and reverse-scan J-V 

sweeps. In the interim period between measurements, devices are held at the bias corresponding to the most 

recently determined maximum power point. The device degradation dataset used for T80 modeling 

comprises 45 runs representing 37 distinct environmental conditions collected in air at temperatures ranging 

from 25 to 85 °C and relative humidities ranging from 0 to 70%. Solar cells are fabricated in a commonly 

used inverted ITO/NiOx/CH3NH3PbI3/C60/bathocuproine (BCP)/Ag architecture. Devices used in this study 

have mean initial PCE of 13.8 ± 1.4%, Jsc of 19.6 ± 1.2 mA/cm2, Voc of 0.984 ± 0.025 V, and fill factor of 



71.7 ± 4.8% (uncertainty represented by the standard deviation). Note that we do not use a shadow mask to 

constrain device active area, in order to facilitate microscopy across device edges as well as the interior. 

Therefore, the active area is assumed to correspond to the overlap area between the ITO and Ag electrodes 

and may lead to minor inaccuracy in the estimation of Jsc due to light-piping effects or fluctuation of 

individual device active area relative to the nominal value due to variation in substrate-mask alignment 

during Ag contact deposition. The T80 values in this dataset vary over an order of magnitude, ranging from 

under 200 min in high-thermal stress conditions to almost 5000 min at lower temperature and moderate 

humidity. Histograms of these quantities and a breakdown of the environmental conditions investigated in 

this study are plotted in Figure S1.  



 

Figure 1. (a) Schematic of device architecture and degradation equipment. (b) Data from a typical run collected under 

1 sun illumination at 25 °C in 50% RH air, showing that the power conversion efficiency closely tracks the evolution 

of short-circuit current, but is also affected by an early decline in fill factor and a later, more modest decline in open-

circuit voltage. (c) Histograms of short-circuit current density Jsc, fill factor FF, and open-circuit voltage Voc at T80 

relative to their initial values show that on average, Jsc and FF losses account for most of the decline in PCE, while 

Voc increases modestly. Dashed lines in (c) represent mean values of the histograms with the corresponding colors. 

Typical device parameter evolution is shown in Figure 1b, using a sample run collected at 25 °C and 50% 

RH. The overall trajectory of PCE is dominated by the evolution of Jsc, which decays monotonically with 

an initial, relatively slow plateau giving way to a more rapid drop-off as the perovskite absorber decomposes 

(as indicated by dark field microscopy; see discussion below). PCE is boosted at first by gains in both fill 

factor and Voc, but while Voc remains relatively high over the course of degradation, fill factor experiences 

a steady decline after the initial rise. The mid-term decay in fill factor also plays a significant role in PCE 



decline. Looking across the entire dataset (Figure 1c), PCE losses before T80 are determined mostly by Jsc 

(on average, at 87% of its starting value at T80), followed closely by fill factor (90% of its starting value), 

while Voc increases tend to buffer these losses slightly (102% of its starting value). Overall, this behavior is 

consistent with what we21,22 and others23 have observed when examining the degradation of perovskite 

films’ optoelectronic properties: carrier transport (i.e., mobility and diffusion length) is much more sensitive 

to perovskite decomposition than carrier lifetime is, implying that Jsc should decay much more rapidly than 

Voc. The fill factor (FF) is affected by both mobility and lifetime but also potentially by processes in the 

device not directly related to absorber decomposition and falls in the middle.  

Figure 2. The short-circuit current evolution of CH3NH3PbI3 solar cells is closely related to material decomposition. 

(a) Jsc evolution of a representative device at 25 °C and 50% RH. (b) Scatterplot of T80,Jsc, the time at which Jsc reaches 

80% of its maximum value, versus the kinetically modeled decomposition rate of CH3NH3PbI3 at the temperature and 

humidity indicated by the symbol color, showing a strong logarithmic correlation. (c-g) Dark field images of the 

device taken at representative points in (a) denoted by the labeled vertical lines: (c) Initially, the image is almost 



completely featureless, indicating absence of macroscopic defects. (d,e) In early stages of degradation, material 

decomposition is most pronounced at the edges and weak points in the device interior, which are most vulnerable to 

ingress of atmospheric species. (f) At the knee at which Jsc begins to decrease sharply, decomposition starts to occur 

homogeneously throughout the interior. (g) When less than 10% of the initial Jsc remains, most of the device has 

experienced severe material degradation, with only a small fraction of the active area remaining intact. Approximate 

edges of the device, determined by the overlap of the Ag and ITO electrodes, are denoted by dashed lines in (c). Scale 

bars in (c-g) are 1 mm. (h-k) Schematic of hypothetical degradation modes in MAPbI3 solar cells operating in air. (h) 

Photooxidation of the absorber is likely to occur at regions unprotected by the top Ag contact or at the edges of the 

device, where moisture and oxygen may diffuse laterally. (i) Fabrication defects (e.g., thin spots in the contact due to 

shadowing by dust particles on the surface) may also serve as ingress routes for oxidizing species. (j) Iodine may react 

with Ag from the contact to produce AgI. (k) Electric field gradients at device edges induce a force on dipolar species 

such as MA+ that may break down the perovskite absorber. Defects in the Ag contact as in (i) may also act as device 

edges, contributing to gradient-induced degradation as well. 

 

The significant average reduction in Jsc at T80 indicates that perovskite decomposition is a process 

of major importance in device failure. Moreover, the logarithm of the time at which Jsc reaches 80% of its 

starting value (T80,Jsc) obeys a moderately strong correlation (Pearson coefficient ρ = -0.73) with the 

chemical decomposition rate of CH3NH3PbI3 predicted by our kinetic model for a given combination of 

temperature and humidity (Figure 2b), further suggesting that the photooxidation processes that dominate 

perovskite material degradation when films are exposed to the air also represent a major factor in PCE loss 

for full devices. Bryant et al.24 have shown convincing corroborating evidence that photooxidation-like 

processes driven by injected electrons under dark O2-containing environments lead to rapid degradation 

underneath the active electrode of ITO/TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au PSCs while leaving 

adjacent perovskite regions intact, including those under unbiased contacts. Here the impact of material 

decomposition in devices is imaged using dark field (DF) microscopy in reflection geometry, which is 

sensitive to spatial changes in refractive index (which would occur during the conversion of perovskite to 

secondary phases) or film roughening that increase scattering.21 The bright regions in dark field images 

correspond to locations where significant portions of the perovskite absorber have decomposed into PbI2, 

which is the only solid degradation product of the dominant water-accelerated photooxidation pathway.6 

PbI2 is easily recognized by its bright yellow color, which the naked eye can perceive clearly in heavily 

degraded devices. Dark field images of pristine devices are initially flat and featureless (Figure 2c), 

indicating uniform device layers largely free of macroscopic defects. As degradation progresses (Figure 

2d-g), material transformation is at first most noticeable at the device edges and at intermediate times, 



isolated defects in the interior. The “knee” in Jsc is approximately concurrent with a strong increase in the 

scattering of the incident light (the appearance of large numbers of bright spots in the dark field images) 

throughout the device (Figure 2f). These more homogeneous patterns suggest that, at longer timescales, 

diffusion of O2 and H2O directly and more uniformly through the contact (for instance, along grain 

boundaries as opposed to regions of poor coverage created by fabrication defects) may cause degradation 

as well. This interpretation is supported by the observation that thicker Ag contacts (300 nm vs. the standard 

100 nm used in all other devices in this work) suppress the rates of both Jsc decay (0.0043 %/min for the 

300 nm contact vs. 0.0102 %/min for the 100 nm contact, both calculated from a linear fit to the time 

evolution of Jsc over the first 1000 min of each experiment) and dark field intensity rise (Figure S2), 

indicating that degradation is mediated to some extent by mass transport directly through the contact. 

However, performance is already severely compromised by degradation at edges and macroscopic defects 

by the time this homogeneous degradation mode becomes significant.  

The spatial patterns in the dark field images indicate that photooxidation alone may be an 

incomplete explanation for the progression of solar cell degradation. If it were the only factor, we would 

expect to see the most degradation where the perovskite is least protected (i.e., the region outside the Ag 

contact that defines the device), yet the region most vulnerable to decomposition occurs at the device 

boundary. At early stages of degradation, dark field intensity of the exposed areas degrades much faster 

than the device interior (probing a region free of macroscopic defects indicates no significant trend of 

increasing intensity), signifying that the contact still acts as an effective diffusion barrier during this period 

(Figure S3a,b). However, degradation outside the contact is quickly outstripped by the edge region (Figure 

S3c). Overall, these patterns imply that both photooxidation and a separate degradation mode (or modes) 

introduced by the contact combine to make decomposition most severe at the device boundary. Two broad 

categories by which the contact might exacerbate degradation are: (i) chemical reactions between halide 

ions released by the perovskite and the Ag metal and (ii) the influence of the electric field induced by the 

presence of the contact. 



The possibility of chemical reactions is supported by observations made by Besleaga et al.25 in 

which FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD devices under Ag contacts spontaneously degrade even 

under storage in dark, low-humidity (~10% RH) conditions, while equivalent devices with a protective Mo 

layer beneath the Ag or with Au substituted for Ag entirely degrade slower or not at all under the same 

conditions, within the limits of detection. This behavior is attributed to the ability of Ag to act as a chemical 

sink for I- ions (producing AgI), which, when combined with the rapid diffusivity of the latter in the Spiro-

OMeTAD hole transport layer, creates a chemical gradient that depletes the perovskite of iodine, causing 

it to break down. We expect that if this process were a major trigger of degradation, it would occur more 

homogeneously across the device, but we do not exclude the possibility that chemical reactions with the 

Ag electrode play some role. Contrary to the report of Besleaga et al.,25 however, when the Ag contact is 

replaced with Au, Jsc decays and dark field intensity rises more rapidly despite the latter ostensibly being 

more stable (Figure S2). Kerner et al.37 have noted that Au can also react readily with iodine compounds, 

especially the oxidized forms such as I2 and I3
-, the former of which is a likely product of photooxidation 

while the latter may be formed by subsequent reaction with fresh I- from the perovskite. It may thus be the 

case that, when regions near the edges of the contacts are weakened by photooxidation, that decomposition 

products from the perovskite may facilitate additional reactions with the metal electrodes, accelerating the 

overall process of degradation. 

Alternatively, bias-induced degradation may also be invoked to account for the influence of the 

contacts. Leijtens et al.9 observed that sustained application of bias to CH3NH3PbI3 films leads to 

methylammonium accumulation near the cathode and depletion near the anode, eventually leading to 

irreversible decomposition of the perovskite. They also observed that this process can be accelerated by the 

presence of water (or other polar solvents like dimethylformamide), suggesting that such species can 

enhance degradation by enhancing ion mobility. Barbé et al.26 observed patterns of degradation near device 

edges similar to those in Figure 2 when biasing them at 1 V in the dark under atmospheres containing 

different combinations of O2 and H2O. They reported that significant device degradation occurred only 



when H2O was present and thus concluded that humidity, not oxygen, was the predominant cause of device 

degradation due to its ability to facilitate ion drift. However, since the energy bands in a ~1.6 eV bandgap 

solar cell under 1 V bias should be nearly flat, as this condition is generally close to open-circuit, there 

shouldn’t be significant internal electric fields to drive ion migration. As a result, bias-induced degradation 

does not seem like the most likely explanation for increased decomposition near device edges. However, 

even in the reduced field state at maximum power point, the gradient of the electric field between the device 

region and the adjacent exposed regions may be considerable. Under an electric field gradient, dipoles such 

as MA+ cations will experience a force that may also lead to decomposition of the material. We emphasize 

that although the observed effect of this proposed mechanism is the same as that proposed by Leijtens et 

al.9 – i.e., local degradation through depletion of MA+ cations – we propose that the physical origin of the 

force is an electric field gradient acting on dipoles (𝐅 =  (𝐩 · 𝛁)𝓔) rather the electric field itself acting on 

charges (𝐅 =  𝑞𝓔; here, 𝐅 is the electric force acting on a species either of electric charge 𝑞 or electric 

dipole moment 𝐩 as a result of electric field 𝓔). Since the gradient is localized at the device edges, this 

additional stress may account for the rapid degradation there. 

Macroscopic defects in the device interior where Ag coverage is low may effectively act as device 

edges as well, explaining why degradation fronts from the outer device boundary and interior defects 

propagate in similar ways. Degradation caused by the field gradient may further disrupt the integrity of the 

device, making it easier for O2 and H2O to penetrate the absorber; thus, these multiple modes of degradation 

may have a mutual accelerating effect. In a similar experiment to that shown in Figure 2 conducted at the 

same conditions  (25 °C/50% RH), when the edges of the device are covered with Kapton tape but the 

center remains exposed, the dark field images show that degradation is partially but not entirely suppressed 

in the protected region, but occurs at similar rates in the center (Figure S4). Comparing this experiment 

against the one shown in Figure 2, the initial decline in Jsc is significantly slowed by the partial protection. 

The fact that degradation can still be observed at the Kapton-protected edges points to the existence of a 

mode that does not require environmental stimuli (e.g., electric gradient-induced degradation), but the 



suppression in its rate again indicates that photooxidation also plays a significant role. The overall picture 

of hypothetical degradation mechanisms is summarized in Figure 2h-k: photooxidation is the major cause 

degradation outside the Ag contact but also contributes to degradation at the device edges and macroscopic 

defects in the device interior, where H2O and O2 can most easily diffuse from areas unprotected by the 

contact; chemical reactions between decomposition products from the perovskite and Ag from the contact 

may occur within the device; and electric field gradients at the device edges can exert forces on dipolar 

species such as MA+ cations in the perovskite, leading to field-induced decomposition even in the absence 

of other external stresses. 

While the effects of material decomposition on Jsc are a major factor in how the PCE evolves over 

time, fill factor also plays an important role in the critical period leading up to T80. Fill factor is generally 

interpreted as being impacted by three major processes: series resistance, shunting, and recombination. To 

determine which are dominant in our experiments (and how these might vary with environmental 

conditions), we examine the change in series resistance Rs and shunt resistance Rsh at T80 relative to their 

starting values (both values are estimated from fits of the reverse-scan J-V sweeps to a diode equation based 

on the Lambert W-function).27–29 Starting values of Rs range from 4 to 100 Ω with an average of 36 Ω; the 

changes in Rs at T80 range from -46 to +131 Ω, with an average increase of 17 Ω, and the relative change 

ΔRs/Rs(t=0) ranges from -87% to +565%, with an average relative increase of +65%. In general, although 

series resistance may increase or decrease by nearly an order of magnitude at T80 (Figure 3), there does not 

appear to be a consistent tendency towards either. By contrast, Rsh almost always decreases (starting values 

range from 6.42 × 103 to 1.30 × 106 Ω with an average of 9.56 × 104 Ω; absolute changes from -1.30 × 106 

to +3.30 × 103 Ω with an average of -8.86 × 104 Ω; relative changes from -99.6% to +40.7% with an average 

of -64.9%), and in the few cases in which it does not decrease, the increase is marginal (less than 50%). 

Thus, shunting can be a significant contributor to fill factor loss. We note, however, that only a minority of 

devices we tested shunted catastrophically (as evidenced by linear, or nearly linear J-V curves), and they 

are excluded from this analysis on the likelihood that this failure mode indicates significant fabrication 



defects unrepresentative of well-made devices. In addition to shunting, recombination also likely plays a 

role in the decline of fill factor, particularly at higher temperatures. We can estimate the influence of 

recombination by examining the behavior of Voc. There is a clear trend of reduced Voc(T80)/Voc(t = 0) with 

increasing temperature (Figure 3), signifying that physical mechanisms that increase carrier recombination 

over time are activated by heat. A similar trend in FF(T80)/FF(t = 0) indicates that thermally-activated 

recombination processes constraining Voc may constrain FF as well (Figure 3). Similar analysis shows that 

the tendency to shunt is not strongly affected by temperature, while the increase in series resistance at T80 

is in general much lower at higher temperatures (Figure 3). Plots of normalized Jsc, Voc, and FF at T80 

against relative humidity (Figure S5) display no obvious correlations, indicating that the same H2O-

mediated degradation mode or modes are active under all conditions probed in this study. In summary, fill 

factor is predominantly affected by shunting (regardless of temperature) and recombination (at higher 

temperatures), and the influence of the latter is also evident in the behavior of Voc. The physical origin of 

temperature-activated recombination is unclear, but it may relate to interdiffusion of device components 

that lead to defects at interfaces or in the bulk of the perovskite. 



 

Figure 3. Relative changes in device performance parameters (parameter at t = T80 compared to its initial value). (a-

e) Scatterplots of relative changes in device parameters as a function of temperature: (a) Voc, (b) Jsc, (c) fill factor, (d) 

series resistance, and (e) shunt resistance. (f) series and shunt resistance, relative to their initial values, plotted against 

one another. The Pearson correlation ρ between each variable pair and number n of samples plotted are given in the 

headings. In general, Jsc losses have a more pronounced effect on PCE at lower temperatures, while fill factor and to 

a lesser extent Voc losses become more important as temperature rises. Series resistance effects on fill factor tend to 

be higher with increased temperature, while shunting effects appear to be insensitive to it. Overall, while series 

resistance may have increased or decreased at T80, it does not do so in a consistent manner; by contrast, the shunt 

resistance almost always decreases. Environmental conditions are indicated according to the symbol legend in Figure 

2. 

 

Development of Machine Learning Models to Predict T80. Having developed a basic understanding of 

how CH3NH3PbI3 solar cell degradation proceeds in different environments, we now turn to the task of 

developing machine learning models to forecast the evolution of their power conversion efficiency (PCE). 

Predicting a variable such as T80 falls under the category of supervised learning: each degradation 

experiment is “labeled” by the value of T80, and the objective of the machine learning algorithm is to 

discover a mathematical relationship between the labels and other data characteristic of each experiment, 

termed “features.” To maximize the models’ predictive utility, the features should be calculated from data 

measured during the early stages of degradation. The data that are available depends on how the experiment 



is set up and conducted, and might in principle include J-V measurements, environmental conditions, device 

architecture and processing, photoluminescence or dark field measurements, capacitance spectroscopy, or 

any other data available from device or film characterization. Which of these data to include in the feature 

set is a critical decision. On one hand, more extensive feature sets improve the chances of obtaining high 

predictive accuracy by incorporating as many potentially relevant effects into the model as possible. On the 

other hand, incorporating too many variables may needlessly increase the experimental burden of data 

acquisition, and reduce the model’s general applicability if it relies on data from techniques that are not 

readily available to the PV research community. Moreover, models that attempt to incorporate too many 

features are vulnerable to overfitting—that is, learning noise, rather than the true patterns in the dataset—

and generalize poorly when applied to new data beyond the training set. Therefore, we focus on two major 

classes of features available from instruments that are relatively inexpensive and ubiquitous in photovoltaics 

research laboratories: a priori data that are known from the environmental conditions the solar cells are 

subjected to, and sample-specific measurements based on J-V measurements made during the first few 

cycles of data acquisition. Explicitly, the a priori variables are temperature, partial pressure of H2O, and 

the natural logarithm of the kinetically modeled CH3NH3PbI3 decomposition rate determined from the 

ambient environmental conditions, as we have recently reported elsewhere.6 Features constructed from J-V 

measurements include the initial values of Jsc, Voc, and fill factor, as well as the first and second time 

derivatives of each parameter at the start of each degradation experiment normalized to its starting values. 

Between the a priori and sample-specific variables, this construction yields a total of 12 features, 

summarized explicitly in Table 1. 

Table 1. Features provided to machine learning models that predict perovskite solar cell T80, and how they are 

calculated. 

feature symbol units physical interpretation/calculation method 

𝑟MAPI mol⋅m-2⋅s-1 Decomposition rate of CH3NH3PbI3 film under the specified environmental conditions; calculated 
from kinetic model described in Siegler et al.6 

𝑇 °C Solar cell temperature, controlled during the experiment 

𝑃H2O kPa Partial pressure of ambient H2O, calculated from relative humidity measurement 

𝐽sc(𝑡 = 0) mA⋅cm-2 Short-circuit current at the start of the experiment, taken from steady state measurements at short 

circuit 

𝑉oc(𝑡 = 0) V Open-circuit current at the start of the experiment, taken from steady state measurements at open 
circuit 



FF(𝑡 = 0) % Fill factor at the start of the experiment, taken from steady state measurements at open circuit, short 

circuit, and maximum power point 

d𝐽sc/d𝑡 min-1 1st time derivative of the normalized short-circuit current (by its initial value), estimated from the 

first 90 minutes of each experiment 

d𝑉oc/d𝑡 min-1 1st time derivative of the normalized open-circuit voltage (by its initial value), estimated from the 

first 90 minutes of each experiment 

dFF/d𝑡 min-1 1st time derivative of the normalized fill factor (by its initial value), estimated from the first 90 
minutes of each experiment 

d2𝐽sc/d𝑡2 min-2 2nd time derivative of the normalized short-circuit current (by its initial value), estimated from the 

first 90 minutes of each experiment 

d2𝑉oc/d𝑡2 min-2 2nd time derivative of the normalized open-circuit voltage (by its initial value), estimated from the 

first 90 minutes of each experiment 

d2FF/d𝑡2 min-2 2nd time derivative of the normalized fill factor (by its initial value), estimated from the first 90 
minutes of each experiment 

 

 Relative to the size of the dataset (45 runs), the feature set is still large enough to pose a risk of 

overfitting. To avoid this, we employ modeling techniques that enforce sparsity of the dataset, including 

linear regression with greedy feature selection (GFS) by orthogonal matching pursuit,30 LASSO,31 and ridge 

regression.32,33 In all of these models, the natural logarithm of T80 is expressed as a linear combination of 

the features, but the methods for determining the coefficients of each feature are different. In greedy feature 

selection, features are selected sequentially based on which one most reduces the error of the prior model 

(starting from a model that includes no features at all); the search is terminated before the number of selected 

features exceeds 10% of the number of features in the training set (note that it is also possible to terminate 

the search using error-based criteria, although doing so may not enforce sparsity as stringently as constraints 

based on the size of the feature set). LASSO and ridge regression assign coefficients by attempting to 

simultaneously minimize the least squares error of the regression in addition to a penalty term that is 

proportional to the ℓ1- (LASSO) or ℓ2-norm (ridge) of the vector of feature weights. With LASSO, 

insignificant features are often assigned a weight of precisely zero, strictly enforcing sparsity; with ridge, 

the weights of insignificant features are suppressed but do not vanish entirely. The models are tested through 

leave-one-out cross-validation – that is, each experiment in the dataset is sequentially removed as a test 

sample, and the remaining data are used to train the model. Statistics from the distribution of testing error 

furnish an unbiased estimate of the model’s predictive accuracy on unseen data, representing its ultimate 

figure of merit. Stability of the models relative to the training set may be assessed by comparing the feature 

weights across iterations of the test/train split: stable models will repeatably select the same features and 



assign weights with consistent magnitudes, while feature weights in unstable models may fluctuate 

considerably. 

 

Figure 4. Modeling results for greedy feature selection (a,d), LASSO (b,e), and ridge regression (c,f) with leave-one-

out testing. (a-c) Parity plots show that predictions on samples withheld in leave-one-out prediction are in fairly good 

agreement with the observed values, with average error generally in the range of 40-50%, and that error metrics are 

relatively close to one another across modeling approaches. (d-f) Bar plots of feature coefficients show that the models 

also tend to agree on which features are most important. That is, those selected by sparsity-enforcing models (greedy 

feature selection, LASSO) comprise the top 5 features in the model trained using ridge regression. For clarity, only 

features for which the mean value is larger (in absolute value) than the standard deviation across all test/train splits 

are shown; a more complete breakdown of the coefficients is given in Figures S6-S8. The standard deviation of 

coefficient values across all test/train splits is represented by the black bars in (d-f). Environmental conditions are 

indicated according to the symbol legend in Figure 2. 

 Models trained using GFS, LASSO, and ridge are relatively consistent with one another. Parity 

plots of test set predictions (Figure 4a-c) show that average prediction accuracy for all models lies in the 

range of 35-45% while the models themselves are structured similarly. The mean test error is almost the 

same for each model, while the median is slightly lower for LASSO and ridge than for GFS. The R2 values 

for the test set predictions are also similar at 0.69, showing that the models can explain about 2/3 of the 



variance in unseen samples. Bar plots of the feature weights (Figure 4d-f) show that similar features are 

typically assigned high weights across all three modeling algorithms despite the differences in how they 

are selected. The models trained by GFS and LASSO are considerably sparser than those trained by ridge 

regression yet retain comparable predictive accuracy, indicating that most of the features selected by the 

latter are superfluous and do not meaningfully contribute to prediction. We therefore focus our discussion 

of model interpretation below on the features selected by GFS. The features selected with mean value 

greater than their standard deviation across all test-train splits are almost identical for GFS and LASSO 

(which is a good sign). A full breakdown of the coefficients for each test-train split is given in Figures S6-

S8. 

Interpretation of the Model Predictions. Explicitly, the model trained by GFS (using the values obtained 

for the test/train split with median error) may be written as: 
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Here, the terms 𝛽𝑖 are the feature coefficients learned by the model; the constant 𝑐 is the intercept, also 

learned by the model; and the terms under the bars and 𝜎𝑖 are the means and standard deviations resulting 

from feature standardization. The standardization parameters are not learned by the model, but are 

introduced before training to put all features on statistically equivalent (mean of zero and standard deviation 

of 1) and unitless footing. Coefficient values are provided in Table 2. 

Table 2. Parameters of the model trained by greedy feature selection corresponding to the test/train split with median 

testing error. 

ln(𝑇80) = 𝑐 + ∑ 𝛽𝑖

𝑝

𝑖=1

𝑥𝑖 − 𝜇𝑖

𝜎𝑖

  

Feature 𝒙𝒊 Units Coefficient 𝜷𝒊  Mean 𝝁𝒊 Std. Dev. 𝝈𝒊 

Intercept 𝑐 ln(min) 6.967 -- -- 

𝑟MAPI mol⋅m-2⋅s-1 -0.3473 1.218×10-7 3.731×10-8 

𝑇 °C -0.3662 52.05 21.69 

dFF/d𝑡 min-1 0.2969 1.848×10-4 7.515×10-4 



d𝑉oc/d𝑡 min-1 -0.08609 8.245×10-5 1.708×10-4 

 

The most consistently important features in all models described above are the kinetically modeled 

CH3NH3PbI3 decomposition rate, temperature, and the first derivative of fill factor with respect to time. The 

former two are negatively related to T80, while the latter is positively related. The major role of the 

kinetically modeled CH3NH3PbI3 decomposition rate rMAPI reinforces the observation that photooxidative 

absorber degradation is an important constraint on solar cell lifetime. As noted above, however, there are 

likely other processes besides photooxidation that contribute to the observed spatial patterns of degradation 

that may be specific to the device architecture. The similarly large influence of temperature is in accord 

with the observed increases in fill factor and Voc losses under heating noted previously, embodying the 

effects of physical processes that increase recombination (or otherwise compromise performance). There 

are many possible thermally activated processes that might do so. NiOx has also been shown to undergo a 

thermally-induced reaction with MAI, compromising performance of CH3NH3PbI3 PSCs processed under 

short high temperature anneals;34 it is possible that this reaction may occur at lower temperatures, albeit at 

a slower rate that nevertheless can compromise device performance over longer periods of operation at 

more moderate temperatures. Numerous studies have reported that diffusion of other structural components 

can occur rapidly in perovskite solar cells: In3+ from ITO;34,35 contact metals such as Au;36,37 and even Na+, 

Ca2+, and other components of soda-lime glass substrates.38,39 Although halide perovskites are generally 

tolerant of metal ion impurities, sufficient levels may still lead to deterioration of their optoelectronic 

properties. In view of the many possible avenues by which temperature-activated processes could occur, 

we take no position on its precise origins here, but note that future generations of predictive models stand 

to benefit from detailed studies of the relevant physical processes. 

The initial rate of fill factor rise is the only sample-specific feature consistently assigned high 

weight in the models. At lower temperatures, below 55 °C, the fill factor initially increases before settling 

into its longer-term decline (as seen in Figure 1b). At higher temperatures (≥65 °C), an initial rise in FF is 



rarely observed, and there is an overall negative linear correlation between dFF/dt and temperature (Figure 

5a). However, the initial value of the fill factor also increases with temperature (Figure 5b), indicating that 

the initial rise observed at lower temperature may also occur at higher ones, but much faster, within the first 

data acquisition cycle. This initial rise correlates very weakly with initial changes in shunt resistance and 

modestly with series resistance (Figure 5c,d). These results suggest that multiple thermally activated 

processes influence fill factor: a beneficial process acting on short-moderate timescales that increases it, 

and a longer-timescale process that deteriorates it along with Voc, as discussed above. In the model, the fill 

factor time derivative captures the shorter-timescale beneficial processes (or more accurately, the net effect 

of the beneficial processes and the detrimental ones), while temperature captures the longer-term effects of 

the adverse ones. We consider two hypotheses for the origin of processes that initially benefit the fill factor: 

either they are related to ion redistribution as a result of the device transitioning from equilibrium in the 

dark (its storage state) to maximum power point under illumination (its main operating condition); or they 

may reflect irreversible improvements associated with elimination of trap states in the bulk or at interfaces. 

In the former case, when the device is in the dark, mobile ions (e.g., iodine or methylammonium vacancies) 

will drift under the built-in electric field and accumulate at the contacts until the electrochemical potential 

associated with their buildup is strong enough to resist further drift. Domanski et al.40 investigated transient 

changes in perovskite solar cell power output and concluded that different ionic species drift on different 

timescales, with halide vacancies moving relatively quickly, on the order of 0.1-100 s, and cation vacancies 

moving much more slowly, on the order of >1000 s. This difference in ionic mobility implies that halide 

vacancies are responsible for J-V hysteresis, while cation vacancies are more likely to account for longer-

term evolution in device performance. When the device is measured, it spends most of its time operating 

near the maximum power point—i.e., at relatively high forward bias. When placed under these conditions, 

the applied bias acts in opposition to the built-in electric field, and thus the ions will no longer be pushed 

as strongly toward the contacts as they were in the dark. As they reestablish a new equilibrium, the 

perovskite energy bands will also shift in response to the changing charge distribution. Reconfiguration of 

the bands in this manner may also change the relative positions of the Fermi level and midgap trap states, 



with the possibility of these states shifting from mostly unfilled (active) to mostly filled (inactive) and thus 

resulting in reduced recombination. Band bending due to ion accumulation at the interfaces driven by the 

built-in field may also create charge extraction barriers there. When the device shifts from its dark 

equilibrium state to maximum power point, these barriers may be alleviated as mobile ions diffuse back 

into the bulk. To test whether ion migration plays a role in fill factor improvement, we assess whether these 

effects are reversible when the device is transitioned between periods of operation under illumination at 

maximum power point (when the electric field is low) and in the dark at short circuit (when it is high). The 

results of this experiment indicate that the initial FF improvement is partially reversible and strongly 

correlated with series resistance. (Figure S9). We note also that the rise in fill factor over the first light 

cycle is anti-correlated with the change in Voc, suggesting that its initial enhancement occurs in spite of 

increased carrier recombination rather than due to a reduction in defect activity and implying that interface 

barrier alleviation may be the best explanation. However, during successive cycles FF and Voc display a 

similar upward trend, indicating that increases following the initial rise may have a different physical origin 

such as passivation of trap states by O2 or H2O. After several light/dark cycles, the FF improvement is 

maintained across the dark periods (i.e., appears to become less reversible). This may indicate that drift of 

ions in the dark is slower than their diffusion in the light, allowing performance gains to build up over time 

with a 50% light/dark duty cycle. Hysteresis in the device begins low and remains so over the course of the 

experiment, indicating that there are no major changes in the mobile ion population. In view of the partially 

reversible nature of the initial fill factor improvement and its clear connection with series resistance, we 

therefore believe it can be plausibly explained by interfacial band reconfiguration due to ion migration. 



 

Figure 5. (a) Scatterplot of initial 1st time derivative of fill factor against temperature. (b) Scatterplot of 

initial fill factor against temperature. (c) Scatterplot of initial 1st time derivative of fill factor against initial 

1st time derivative of shunt resistance. (d) Scatterplot of initial 1st time derivative of fill factor against initial 

1st time derivative of series resistance. The Pearson correlation ρ between each variable pair and number n 

of samples plotted are given in the headings. 

 

Conclusions. In this work, we have experimentally examined the degradation of 45 

ITO/NiOx/CH3NH3PbI3/C60/BCP/Ag solar cells under a wide range of environmental conditions. We find 

that power conversion efficiency tends to decline mostly because of losses in short-circuit current and fill 

factor, while open-circuit voltage typically remains high over the useful lifetime of the devices. Short-



circuit current losses are strongly associated with water-accelerated photooxidation and electric field-

related decomposition of the perovskite absorber (via electric field gradients). Fill factor losses are almost 

universally attributable at least in part to reduction in shunt resistance, but increases in recombination play 

a larger role at higher temperatures, at which open-circuit voltage also starts to become affected. Machine 

learning models trained to predict T80 have accuracy of 35-45% on average, and can attain this level of 

performance using sparse feature sets relying on the kinetically modeled CH3NH3PbI3 decomposition rate, 

the temperature, and the initial time derivative of the device’s fill factor. Both our analysis of the data and 

the model’s choice of features suggests that decomposition of the perovskite plays a large role in the gradual 

loss of power conversion efficiency by way of short-circuit current reduction, but additional thermally-

activated processes likely contribute to increased recombination over time, contributing fill factor and Voc 

losses (particularly under higher temperatures). This work demonstrates how incorporating physical 

knowledge of the processes constraining device performance can contribute to ML model accuracy when 

the size of the dataset is restricted by allowing the development of highly informative features. The success 

of our models should motivate future efforts to develop quantitative understanding of decomposition 

processes of other perovskites of interest (particularly compositions rich in formamidinium), as well as 

interlayer device interactions that may lead to increased carrier recombination rates.  
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