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ABSTRACT: Selecting the optimal catalyst to impart high levels of enantioselectivity in a new transformation is challenging be-
cause the ideal molecular requirements of the catalyst for one reaction do not always simply translate to another. In these reaction 
scenarios practitioners typically use the most general catalyst structure as a starting point for optimization. However, for many reac-
tion systems and catalyst chemotypes the most general catalyst structure may be largely unknown presenting a significant limitation 
in catalyst application to new reaction space. Herein, we demonstrate that comprehensive statistical models can be applied to identi-
fy the most general catalyst for many chemical systems. These inclusive statistical models that encompass many reaction types can 
provide information about the relevant structural requirements necessary for high enantioselectivity across a broad reaction range. 
By validating this approach on diverse regions of organocatalyzed reaction space we discovered structurally distinct catalysts can in 
some cases provide similar levels of enantioselectivity. The second curious finding determined that the best and most popular cata-
lyst systems may not be equivalent. Validation of this approach on a multi-catalytic dearomatization reaction resulted in the discov-
ery that our general catalyst findings allowed for streamlined reaction development for highly complex transformations. 

Synthetic strategies that can be applied to assemble an assort-
ment of chiral molecules without unexpected changes to the 
experimental outcome are most frequently employed in enan-
tioselective synthesis.1 The simplicity of the reaction compo-
nents involved in substrate and reagent control have rendered 
such protocols to be impressively robust. Accordingly, these 
methods can be applied to include new and complex substrates 
with confidence. However, in these mechanistic scenarios one 
chiral molecule of starting material is consumed to produce a 
single molecule of product. In contrast, catalytic strategies can 
be applied more efficiently but often with a lower degree of 
generality.2 Hence, the ability to identify general enantioselec-
tive catalysts is both necessary and difficult.3,4  
Forecasting the suitability of an asymmetric catalyst for a par-
ticular reaction system is challenging as the optimal molecular 
features for one transformation do not always translate to an-
other.5 Furthermore, catalysts that are currently considered as 
the most “general” may be biased by the existing literature.6 In 
other words, catalysts that have provided adequate levels of 
enantioselectivity in similar reaction systems are likely to be 
the first used in new reaction spaces.7 Consequently, the best 
and most popular catalyst systems may not be equivalent. This 
issue is further exasperated by the lack of comparative data 
meaning inferences must be drawn from incomplete data sets 
generated under non-uniform conditions. Considering these 
challenges, we hypothesized that a method for predicting the 
impact of the catalyst structure on the enantioselectivity out-
come for a diverse set of transformations could help identify 
general systems.8-14 In this context, our group has been fo-
cused on developing comprehensive statistical models that 
connect reaction types by relating the molecular features of all 
of the reaction components to the experimentally obtained 
enantioselectivity, ΔΔG‡ (Figure 1).15-17  

 
Figure 1. (A) Statistical modeling workflow that describe entire 
reaction classes for the identification of general catalysts. The 
nucleophilic addition to imines catalyzed by chiral phosphoric 
acids is shown as an example. (B) Focus of this work is to vet the 
approach on diverse areas of organocatalysis. 
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ously providing a platform for predicting the impact of reac-
tion components not included in the initial training correlation. 
These tools have been used for several prediction tasks such as 
target molecule synthesis7 and reaction development18 but 
have yet to be explored for the identification of general cata-
lysts (Figure 1). As a significant step forward, we evaluated 
this data-driven workflow as a platform for generality assess-
ment. In contemplating this type of optimization problem, 
several questions were apparent: (1) considering the diverse 
catalyst structures employed for organocatalysis, can structur-
ally unique catalysts provide similar levels of generality? (2) 
Do the most general catalysts translate to the most popular 
catalyst structures? (3) And lastly, can statistical models iden-
tify general catalysts even when different catalyst chemotypes 
are being interrogated? Herein, we begin to probe these ques-
tions by challenging three different statistical models incorpo-
rating various catalyst classes with a range of reactants to re-
veal unexpected generalities in catalyst performance.   

Inverse catalyst design. To initiate the first part of our study, 
we selected secondary amines as the platform to assess cata-
lyst performance in diverse reaction space. More specifically, 
several simple amine structures can catalyze a wide array of 
bond constructions in high enantioselectivity and many of 
these reactions have been connected through our groups pre-
vious statistical modeling efforts.19 This published model de-
scribes the reaction between aldehydes and a broad range of 
reactants that proceed via chiral iminium/enamine intermedi-
ates (Figure 2). With this data set, we set out to uncover 
whether two structurally unique subclasses of catalysts, imid-
azolininone and  diarylprolinol silyl ethers provide equivalent 
levels of enantioinduction across a broad reaction range. Alt-
hough the reasons of stereoinduction are thought to be similar, 
these catalysts are quite disparate, and a practicing organic  

 

 

 

 

 

 

 
 

Figure 2. Published statistical model for predicting secondary 
amine catalyzed reactions.19 

chemist would not necessarily think to substitute one with the 
other. Consequently, we explored the model’s ability to pre-
dict a set of aldehyde/reagent combinations that were cata-
lyzed by both amine types and were not included in model. If 

effective out-of-sample prediction were possible, the model 
could provide the necessary data for generality assessment. 
Because the comparison data is gathered from individual pub-
lications the reaction conditions are occasionally different. In 
many cases, the reaction condition changes are subtle (i.e. one 
polar solvent for another) so they are similar enough to expect 
comparable selectivity of the catalysts under each condition. 
Intriguingly, while both catalysts have been employed to facil-
itate similar reactions and are commercially available, they are 
rarely included in the same catalyst screen. This makes it dif-
ficult to build powerful mechanistic connections between the 
two catalyst subclasses. As a first evaluation, the fluorination 
of aldehydes using NFSI was predicted with the optimal con-
ditions found for each subclass of amine (Figure 3A).20,21  

 
Figure 3A-C. Diverse secondary amines provide comparable 
levels of enantioselectivity. Because different absolute product 
stereochemistry is reported in some examples, we have not in-
cluded this information.  

This test set included three substrates common to both cata-
lysts. Prior to submitting the relevant model descriptors col-
lected from each reaction component, these specific combina-
tions of aldehyde and NFSI were removed from the training 
set. The model was then updated and deployed to predict the 
reaction outcomes (see SI for more information). Because this 
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aldehyde substrate was highly represented in the training set 
the model accurately predicts the results. Through further as-
sessment we found that the model can also accurately predict 
the outcome of Hantzsch ester hydrogenations common to 
both amines (Figure 3B).22,23 In the next set of evaluations, we 
determined the model’s ability to predict amination reac-
tions.24,25 These test cases include new reactants and conse-
quently, are predicted using the full training set shown in Fig-
ure 2. As with the other cases, only a small set of overlapping 
reactions were available for testing but were accurately pre-
dicted by the model (Figure 3C).  

In each of the examples, the model correctly antici-
pates that both catalysts generate products with similarly high 
levels of enantioselectivity. This factor combined with the 
model accuracy suggests that the statistical model can be used 
to probe the impact of the two amines more comprehensively. 
However, since the model lacks substrate-catalyst interaction 
terms the model will constantly predict similar enantioselec-
tivities for both catalyst systems. This is intriguing given that 
diarylprolinol silyl ethers compared to imidazolininones, have 
much larger steric bulk next to site of condensation, a structur-
al feature important for high enantioselectivity. On this basis, 
it is superficially surprising that imidazolininones should per-
form so well, the model reveals through examination of the 
parameters that the more positive NBOC1 largely compensate 
for the smaller B5C1up. By further analyzing the terms included 
in the statistical model, the performance of diarylprolinol silyl 
ethers can be attributed to the more negative NBOC1 which 
overrides any beneficial impact garnered from the large 
B5C1up. These features have the net result that two structurally 
diverse catalysts perform comparably across a wide range of 
enantioselective bond constructions.26 Such mechanistic in-
sight is unique to comprehensive statistical models which re-
veal the important molecular features for catalyst performance 
across a reaction range. Nonlinear dimensionality reduction 
techniques like PCA can be employed to cluster compounds 
with similar properties but because these do not take account 
the relative parameter importance these fail in this case to 
identify the interconnectivity between the amine subclasses 
(see SI).27,28  

Literature popular catalysts. To further establish the work-
flow for generality assessment, we explored the possibility of 
the model to identify catalysts that lead to a better perfor-
mance than those considered most popular. Accordingly, we 
sought to vet the workflow against known catalyst systems 
that have been broadly applied. Given the recorded frequency 
of chiral phosphoric acids employed in the asymmetric syn-
thesis of various organic compounds, this catalyst class served 
as a prime example.29 As proof of concept, we have re-
examined the nucleophilic additions to E-imines catalyzed by 
chiral phosphoric acids, which was utilized during the course 
of one of the authors efforts to correlate entire reaction clas-
ses.5 In these examples, TRIP, which has large isopropyl 
groups at the 2,4,6 positions of the aromatic ring, has been 
commonly found to be the optimal catalyst. However, we 
questioned if TCYP, a more recently discovered but structural-
ly similar catalyst might provide higher enantioselectivities 
across a broader set of reactions. Because TCYP has not been 
used in the development of these reactions, implicit chemical 
data on applying this catalyst is sparse. By leveraging the pre-
viously built statistical model we can anticipate how TCYP 
would perform in various nucleophilic additions to E-imines.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Published statistical model for predicting chiral phos-
phoric acid catalyzed reactions involving E-imines and protic 
nucleophiles. 
 
The results from these predictions would in turn provide the 
comparison data necessary for this analysis. Therefore, the 
goal of the prediction analysis is to identify general catalyst 
trends across reactions rather than distinguish between subtle-
ties of substrate-dependent enantioselectivity. When the enan-
tioselectivity is high, as is typically the case for TRIP and 
TCYP, evaluation metrics like average prediction error are less 
important than the number of higher selectivity reactions a 
catalyst provides over another. 

As the initial test study we utilized the addition of thiols to 
benzoyl imines reported by Antilla.30 To test our hypothesis 
that TCYP is a more general catalyst, all experimental results 
of this reaction catalyzed by TRIP were removed from the 
original training set. The model was retrained, and deployed to 
predict 25 reaction outcomes with TRIP and TCYP. A sum-
mary of the predictions obtained from the model are shown in 
Figure 4 alongside the experimental results that were reported 
separately by Denmark.31 For each reaction example the mod-
el predicts TCYP will provide higher enantioselectivities than 
TRIP. Crucially, this predicted trend closely resembles the 
experimental results with only 5 out of the 25 recorded exam-
ples show TRIP to be more selective. Considering the loga-
rithmic function of ΔΔG‡, the differences between catalyst 
performance can appear small. In one example, the experi-
mental change is only 10% ee (predicted 4% ee) which corre-
sponded to a free energy difference of 0.77 kcal/mol (predict-
ed 0.80 kcal/mol). To put this metric into perspective, adjust-
ing the catalyst from TRIP to TCYP could have a dramatic and 
positive impact on less selective reactions. Combining these 
successful results with an analysis of the included parameters 
(i.e. no catalyst-substrate interaction terms present) 
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Figure 4. Predicting the performance of TCYP and TRIP in an 
acid catalyzed thiol addition to imines.   
 
 
implies that this model will always predict TCYP to outper-
form TRIP.  Where additional comparison data is available, 
several other studies involving imine-type electrophiles (C=N-
R) have shown the importance of including TCYP in a catalyst 
evaluation despite the structural similarities with TRIP.32-41 By 
performing this type of analysis with similarly related electro-
philes, azo compounds,42-46 precedent shows TCYP to be a top 
performer. Continued expansion of this comparative analysis 
demonstrates TCYP to be effective in condensation,47,48 halo-
genation49-52 and organometallic reactions.53-57 This list can be 
even further extended to include more mechanistically dispar-
ate reactions.58-65 However, like the thiol addition reaction 
described in Figure 4 in some cases TRIP provides better66-73 
or the same levels of enantioselectivity.74,75 The translation of 
this trend beyond reactions involving imines strongly implies 
that including TCYP in the first round of catalyst screening for 
any given system would increase the probability of achieving 
a successful result. To further explore this idea in new reaction 
space we decided to compare the performance of TCYP and 
TRIP in a gold-catalyzed dearomatization reaction involving 
indole as the nucleophile (Table 1). This protocol has been 
reported to work well with 2-naphthols and 9-anthryl derived 
chiral phosphoric acid catalysts but there is little information 
on how other catalysts and nucleophiles would react.76 There-
fore, this platform provides the ideal opportunity to test our 
hypothesis beyond what is included in the model while allow-
ing the reaction scope to be meaningfully extended in the pro-
cess. It should be noted that this reaction can be performed 
solely with a Brønsted acid but the reaction requires very high 
molecular weight catalysts to achieve excellent levels of enan-
tioselectivity and some substrates perform less well.77 Beyond 
the noted limitations in the reported methodology part of our 
motivation to focus on complex multi-catalysis protocols is 
embedded in the difficultly in applying these reaction types to 
enantioselective synthesis. Because these systems require the 
optimization of two catalyst structures (as well as other pa-
rameters) we postulated that knowing the most general cata-
lyst of the chiral component to be applied would significantly 
reduce the barrier to reaction optimization.  

Table 1. Testing the effect of chiral phosphoric acid and gold 
phosphine catalystsa  

 
aUnless otherwise noted, reactions were run with the following 
conditions: Allene substrate (0.1 mmol), indole (0.2 mmol), 
gold phosphine (5 mol%), chiral silver phosphate (5 mol%), 
toluene (1 mL), rt, 48 h. bIsolated yields given. cEnantioselec-
tivities (ee) were measured by SFC. Absolute configurations 
assigned based on comparison of optical rotations to published 
data. See the Supporting Information for further details. 

As the first step in testing our ideas, we explored how TRIP 
and TCYP would perform in the reaction between 2,3-
dimethylindole and N-phenyl-N-sulfonylallenamide. Intri-
guingly, the catalyst trends translated to this complex multi-
catalyst protocol with TRIP proceeding in 57% ee and TCYP 
60% ee (Table 1 entries 1 and 2). Based on our analysis, 
TCYP was likely to be the best chiral phosphoric acid per-
former; thus, to increase the enantioselectivity of the reaction 
we focused on modifying the phosphine ligand. Johnphos was 
identified as the optimal ligand in the reaction involving 2-
napthol derivatives and in our system, this also performed well 
providing the product in 81% ee (Table 1 entry 3). Increasing 
the steric profile of the ligand increased the enantioselectivity 
even further with XPhos providing the product in 87% ee (Ta-
ble 1 entry 4). This is slightly more selective than the single 
catalyst system employing TCYP only (84% ee), although this 
previously reported result was performed in slightly different 
conditions (benzene as the solvent).77 To accurately gauge the 
effectiveness of this multi-catalysis protocol we performed the 
reaction involving TCYP as the sole catalyst and used toluene 
as the solvent. Intriguingly the product was obtained in only 
72% ee (Table 1 entry 6), meaning that under otherwise iden-
tical conditions, adding a gold phosphine boosts the ee by 
15%. The scope of the reaction was tested to include a set of 
six diverse indoles (Scheme 2). These performed with similar 
levels of enantioselectivity and reactivity. Importantly, we 
were able to increase the enantioselectivity of a substrate that 
previously performed poorly under the acid only conditions to 
77% ee as compared to the formerly reported value of 72% 
ee.77 Ultimately, this example showcases that having 
knowledge about the most general catalysts can streamline 
reaction development even in complex multi-catalysis proto-
cols. Further, based on these results it is our recommendation 
that TRIP cannot act as a replacement for TCYP and that both 
catalysts should be included in reaction optimizations.      
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Table 2. Various indoles tested with the optimized multicata-
lytic protocol.a    

 
aReaction conditions: Allene substrate (0.1 mmol), indole (0.2 
mmol), XPhosAuCl (5 mol%), Ag-TCYP (5 mol%), toluene 
(1 mL), rt, 48 h. Isolated yields given. Enantioselectivities (ee) 
were measured by HPLC or SFC. Absolute configurations as-
signed based on comparison of optical rotations to published data. 
See the Supporting Information for further details.  

Multiple catalyst chemotypes. Finally, we aimed to demon-
strate that our statistical workflow can identify general cata-
lysts from a diverse pool of potential structures. To accom-
plish this, we inverted the subject of the analysis to multiple 
catalyst chemotypes incorporating different elements of mo-
lecular recognition. Considering the model was to be devel-
oped to encompass many catalyst types, we determined the 
fluorination of branched aldehydes provided the requisite 
structural diversity and data spread required for statistical 
analysis. Specifically, primary and secondary amines can fa-
cilitate this reaction with varying levels of enantioselectivity 
spanning a selectivity window of 99% ee. A total of 68 reac-
tions from four publications were curated for statistical model-
ing which included eight catalyst types ranging from simple 
chiral amines with single stereocenters to more complex sys-
tems that can enable a diverse set of substrate-catalyst con-
tacts.78-81 The complexity of the catalyst structures limited our 
ability to encode product configurations, meaning absolute 
enantioselectivities were employed as the experimental output. 
This requirement was necessary for eliminating bias and use-
ful for producing a well-distributed data set. Following data 
gathering, a diverse array of molecular descriptor values was 
collected from DFT optimized geometries to describe the 
structural features of each aldehyde, fluorinating reagent, cata-
lyst and solvent.82 This parameter set consisting of Sterimol 
size descriptors, NBO charges, IR vibrations, polarizability, 
HOMO and LUMO energies was assimilated from the ground 
state conformation of each calculated reaction component. 
Solvent effects were described by topological, two-
dimensional descriptors typically employed for QSAR model-
ing of structurally disparate molecules (e.g., molecular shape, 
size and the number of heteroatoms). Other reaction variables 
like concentration of reagents/catalyst were included as nu-
merical parameters. Because the goal is to imitate the work-
flow traditionally employed in catalyst generality assessment, 

a set of overlapping aldehyde/reagent combinations between 
the publications were removed prior to correlating build-
ing.78,81 Using forward stepwise linear regression in 
MATLAB, a pool of prospective models were generated. 
Since the model was to be applied to predict the impact of 
diverse catalyst structures only models containing catalyst 
terms were selected for evaluation. Using this as the basis for 
model selection, the pool was further refined by R2 and pa-
rameter number. By considering these criteria, we determined 
a seven-parameter model exhibiting a high R2 value and vali-
dation scores to be ideal for our predictive purposes (see SI for 
further details). The general relationship included four alde-
hyde, one reagent, catalyst and solvent parameters. Specifical-
ly, large aldehyde substituents were typically important for 
high enantioselectivities. This is congruent with the hypothesis 
that energetically repulsive steric interactions likely between 
catalyst and substrate has the result of disfavoring the transi-
tion state leading to the minor enantiomer. The inclusion of 
reagent concentration with a negative coefficient implies that 
excess reagent may facilitate erosion of enantioselectivity 
(Figure 5).  

The next step in assessing our model was to test the ability of 
extrapolating to aldehyde/fluorination combinations not in-
cluded in the model development process. This was accom-
plished by predicting the enantioselectivity of 10 unique pair-
ings catalyzed by two different primary amines.78,81 Each re-
sult was predicted using the model, with an average  

 
Figure 5. Statistical model correlating the enantioselectivity of 
amine catalyzed fluorination of branched aldehydes. 

absolute ΔΔG‡ error of 0.14 and 0.25 kcal/mol for the two 
catalyst subclasses, demonstrating the ability of the model to 
extrapolate effectively to new substrates. The low prediction 
error obtained for both systems translated to the correct identi-
fication of both catalysts 4 and 5 to be equivalently selective 
across a broad range of substrates (see Figure 6 for examples). 
Of particular note was the model’s ability to predict the best 
(86% ee) and poorest (48% ee) result with catalyst 5 to within 
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3% ee. This successful result prompted us to continue to chal-
lenge the models predictive capabilities to include more com-
plex catalyst types which may exhibit greater substrate gener-
alities than those included in the training set. Accordingly, the 
next prediction platform featured a new catalyst type with 
molecular properties that were quite dissimilar to the training 
set. This final test study assessed a BINOL-derived primary 
amine as the catalyst with large aromatic groups at the 3,3’ 
positions of the binaphthyl backbone.83 In contrast to the pre-
vious catalysts discussed, this system is C2 symmetric and 
displays axial chirality. Considering the general catalyst fea-
tures required for high enantioselectivity were conserved 
(negative HOMO), we reasoned that extrapolation to new chi-
ral scaffolds should not lead to large errors in predicting ee. 
Indeed, accurate predictions were construed with the statistical 
model with an average absolute ΔΔG‡ error of 0.25 kcal/mol 
across 5 substrates that were not included in the training set 
and overlapped with both catalyst 4 and 5. This example 
serves to highlight that the model can extrapolate to catalysts 
encompassing different chiral elements. When assessing this 
system the model predicted some of the highest enantioselec-
tivities reported, a result of decreasing the catalyst HOMO 
energy. For the substrates shown in Figure 6, the model pre-
dicts the catalyst to increase in selectivity by about 0.20 
kcal/mol (around 8% ee) as compared to the other two primary 
amines.  

 

Figure 6. The model correctly identifies catalyst 6 to be most 
selective across the overlapping substrate range. Examples that 
had errors larger than 6% ee are highlighted by a dashed box.  

Therefore, with no experimental data on this catalyst, the 
model accurately captured this primary amine, catalyst 6, as 
the most selective across the overlapping reactant space. 

CONCLUSION 

General or “privileged catalysts” are immensely valuable for 
both enantioselective method development and application to 
complex, chiral molecule synthesis. Yet, predicting how gen-
eral an asymmetric catalyst could be is still an extremely diffi-
cult task. Here, we show that comprehensive statistical models 
that encompass many different reaction types can be success-
fully applied to predict catalysts that work well across diverse 
reaction space. Specifically, we demonstrated that these statis-
tical modeling tools were able to identify general chiral phos-
phoric acid, primary and secondary amine organocatalysts. 
Further, we reveal how our findings can inform catalyst selec-
tion and facilitate the optimization of a complex multicatalytic 
reaction to obtain chiral indolines. Overall, we believe that our 
approach should be relevant and valuable for the prediction 
and identification of other general catalytic systems.   
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predicted 44% ee

Me

O
Me F

measured 79% ee 
predicted 85% ee

Me

O
Me F

measured 93% ee 
predicted 91% ee

O
Me F

Br

measured 80% ee 
predicted 84% ee

O
Me F

Br

measured 93% ee 
predicted 90% ee

O
Me F

measured 82% ee 
predicted 83% ee

O
Me F

measured 92% ee 
predicted 89% ee

O2N

O
Me F

measured 74% ee 
predicted 84% ee

O2N

O
Me F

measured 88% ee 
predicted 90% ee
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