Pre-Synthetic Redox Gated Metal-to-Insulator Transition and Photothermoelectric Properties in Nickel Tetrathiafulvalene-Tetrathiolate Coordination Polymers

Jiuzie Xie,*a Jia-Ahn Pan,**a Baorui Cheng,**a Tengzhou Ma,**a Alexander S. Filatov,**a Shrayesh N. Patel,**a Jiwoong Park,**a Dmitri V. Talapin† and John S. Anderson*†

1Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
2Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States

ABSTRACT: Photothermoelectric (PTE) materials are promising candidates for solar energy harvesting and photodetection applications, especially for near-infrared (NIR) wavelengths. Although the processability and tunability of organic materials is highly advantageous, examples of organic PTE materials are comparatively rare and their PTE performance is typically limited by poor photothermal (PT) conversion. Here we report the use of redox-active Sn complexes of tetrathiafulvalene-tetrathiolate (TTFTt) as transmetallating agents for the synthesis of pre-synthetically redox tuned NiTTFt materials. Unlike the neutral material NiTTFt, which exhibits n-type glassy-metallic conductivity, the reduced materials Li₂Ni₄[TTFTt] and [Li(THF)₃]₂Ni₄[TTFTt] (THF = tetrahydrofuran) display physical characteristics more consistent with p-type semiconductors. The broad spectral absorption and electrically conducting nature of these TTFTt-based materials enable highly efficient NIR-thermoelectric conversion and good PTE performance. Furthermore, in contrast to conventional PTE composites, these NiTTFt coordination polymers are notable as single-component PTE materials. The pre-synthetically tuned metal-to-insulator transition in these NiTTFt systems directly modulates to their PT and PTE properties.

INTRODUCTION

Photoelectric energy conversion, where light is converted into electricity, underpins solar energy capture and generation.1 The most general route is the direct capture of photons and conversion into an electrical potential through photovoltaic (PV) materials,2 such as emerging perovskite cells.3 Although the efficiency of perovskite PVs has dramatically increased to more than 25% from 3.8% in the last two decades,4 there are still fundamental challenges to the efficiency ceilings of this technology. For instance, it is reported that up to 40% of the thermodynamic loss in PVs occurs due to carrier thermal relaxation.5 Furthermore, the spectral windows of many PVs have a maximum onset of photogeneration around 800 nm, which means that nearly the entire near-infrared (NIR) spectrum is reflected or lost as waste heat.5

In addition to direct PV capture of photons, an alternative route is photothermoelectric (PTE) conversion where light is converted into heat via a photothermal (PT) process, followed by a heat to voltage conversion in a thermoelectric (TE) process. The development of PTE devices or solar thermoelectric generators (STEGs) could feasibly increase the utilization of solar energy by both allowing the harvesting of waste heat as well as increasing the solar absorption window.6 However, the efficiency of STEGs is still limited by PT efficiency and performance.7 This motivates the development of new PTE materials.

Beyond energy capture, NIR-sensitive PTE materials also have utility in applications such as photodetectors8 and night cameras.9 A recent review has summarized the progress of photodetectors based on the PTE effect,9 suggesting that PTE devices can realize ultra-broadband photodetection without cooling units and external bias. Such characteristics are highly desirable in the military and civilian fields. For instance, the Mars Reconnaissance Orbiter launched by the National Aeronautics and Space Administration (NASA) in 2005 contained an uncooled PTE detector to monitor the climate of Mars.9

Although PTE effects have now been observed in a wide variety of materials, including 2D materials such as graphene10 and MoS2,11 organic PTE materials are comparatively rare, particularly for NIR applications. Conducting organic polymers are an important branch of TE materials as they are light, flexible, and exhibit intrinsically low thermal conductivity. New TE organic materials with prominent PT effects are promising candidates for wearable PTE devices, as reported for NIR-sensitive poly(3,4-ethylenedioxyxyselenophene) derivatives (PEDOS) which generates an output voltage of 900 μV in 3s under 808 nm laser irradiation (2.33 W/cm²).12 This work demonstrates the potential of organic materials in PTE applications, but this field is still under-explored. Indeed, aside from another single report of Cu-ethylenetetrathiolate (ett) polymers from 2015,13 there are no other examples of organic PTE materials.

Tetrathiafulvalene (TTF)-based charge transfer salts and metal-organic frameworks (MOFs) have recently been reported to exhibit excellent NIR PT conversions.14 One example is even able to heat up to 250 °C in 25 s under 0.4 Wcm⁻² irradiation at 808 nm.15 This rapid and efficient performance suggests that TTF-based materials exhibit exceptional PT properties, but the conductivity required for PTE applications is still a limitation in this area.

Despite this issue, there have been enormous strides in realizing conductive coordination polymers (CPs) over the past decade. Conducting CPs or MOFs15-17 have shown promising applications in superconductors,16 energy storage,17 thermoelectrics,18 and other applications.19 Among many conductive motifs, dithiolene-based frameworks in particular exhibit significant delocalization and high conductivity due to better energy match between sulfur atoms and metal centers.20 The poor thermal conduction of organic components also makes dithiolene-based CPs potential candidates for thermoelectrics. For example, in 2016, a ZT value of 0.30(3) was reported for Ni-ett chains.16 In addition to thermal and electrical conductivity, square-planar bis(dithiolen) complexes are also commonly characterized with strong NIR absorptions as well as PT conversion properties. Some materials have been developed for photothermal therapy and photo-controlled drug delivery.21

Our laboratory has been interested in TTF-based materials, particularly those composed of tetrathiafulvalene-tetrathiolate units (TTFTt). We recently reported that neutral NiTTFt has remarkably high conductivity and glassy-metallic character while being stable to heat, air, and acid/base (pH 0-14).22 Given the exemplary PT properties of TTF units and metal-dithiolenes in other reports, we hypothesized that these materials could be good candidates for PTE applications. Furthermore, we rationalized that modulating the redox-state of these materials via pre-synthetic redox changes on the TTFTt linker precursors might enable tuning of their PT or TE properties, and hence would reveal a new strategy for designing PTE properties in new materials. Here we demonstrate that this strategy of pre-synthetic redox manipulation,23 using either neutral TTFTt(SnBu₃)₂ or dicatonic [TTFTt(SnBu₃)₂][BAR₄]₂ ([BAR₄] = tetraakis(3,5-bis(trifluoromethyl)phenyl)borate, Bu = n-Butyl) as transmetallating precursors, enables control over the redox state of NiTTFt CPs. In addition to the previously reported neutral NiTTFt material ([NiTTFt]₃), using TTFTt(SnBu₃)₂ leads to reduced NiTTFt⁻ chains, with Li⁺ and Li⁺(THF)₃⁻ (THF = tetrahydrofuran) as counter ions, in the materials Li₂₂Ni₆₄[NiTTFt] ([Li-NiTTFt]) and [Li(THF)₃]₂Ni₆₄[NiTTFt] ([LiTHF-NiTTFt]), respectively.
Interestingly, unlike n-type metallic NiTTF, physical characterization suggests these reduced polymers are typical p-type semiconductors. The broad spectral absorption and electrically conducting nature of these TTF-based materials enable highly efficient NIR-thermal conversion and good PTE performance. Furthermore, tuning of the PTE performance can be achieved by changing the redox states of the TTF ligands in these materials. Unlike conventional STEGs made of several different materials combined in a composite, the materials presented here are single-component PTE candidates. Such single-component materials are desirable for ease of device fabrication and durability of performance. The NiTTF systems reported here represent the best single-component organic PTE materials for both p-type and n-type applications. The tunable PT, TE, conductivity, and carrier properties of this system demonstrate that using synthetic strategies to rationally change the redox states of coordination polymers is a powerful route for generating new PTE candidates and other functional materials.

RESULTS AND DISCUSSION

Synthesis and Redox Control
NiTTF is synthesized by transmetallation of [TTF(SnBu2)2][BAR4] with excess [TEA]+[NiCl4] (TEA = tetraethylammonium). To investigate the formation of alternative redox isomers of this material, the neutral linker precursor TTF(SnBu2) was reacted with in situ formed Li[NiCl4] in THF resulting in new coordination polymers with anionic NiTTF chains (Scheme 1). The counterions for these chains depend on the workup of the material and are either Li(THF)+ in the as-synthesized material LiTHF-NiTTF or Li+ in the more-thoroughly dried material Li-NiTTF. The different redox states of the TTF linkers in these materials is immediately apparent in their air-stability. Unlike NiTTF, Li-NiTTF and LiTHF-NiTTF are extremely sensitive to air or chemical oxidants. As such, the characterization of these materials was carried out under anaerobic conditions.
Near Edge Structure (XANES) spectra of Li-NiTTF and LiTHF-NiTTF (Figure 1) are different in shape/structure from that of NiTTF, albeit with identical K-edge positions. Fits of the extended X-ray absorption fine structure (EXAFS) of Li-NiTTF with a simple Ni bisdisulfide model suggest Ni–S bond lengths of 2.161(6) Å, which are very similar to the Ni–S bonds in NiTTF of 2.177(9) Å (Table S3). The similarity of these distances supports similar structures and Ni(II) oxidation states for both materials indicating that the redox differences between these two materials are TTF-based. However, we note that the presence of the additional Ni(II) counterions, whose positions are unclear and have not been modeled, is a convoluting factor in interpreting structural parameters from XAS. Nevertheless, accounting for Ni(II) counterions verifies the presence of reduced chains with an overall 2− charge, indicating that a formally neutral TTF core is maintained in the final products. Combustion analysis (Table S2) further confirms the formula assignments of [Li1.2Ni0.4]NiTTF for Li-NiTTF and [(LiTHF)1.5]Ni0.4NiTTF for LiTHF-NiTTF.

In addition to the composition analysis, we also attempted to interrogate redox differences spectroscopically. While XPS characterization of the S 2p peaks to assign redox states is ambiguous due to multiple sulfur chemical sites (Figure S2), we did observe a Raman band for NiTTF at around 1100 cm−1, corresponding to υCS modes (Figure 2, red). This feature shifts to 950 cm−1 in the case of the reduced congener Li-NiTTF (Figure 2, green). Similar shifts to lower energy have been observed in TTF[Ni(dmit)2]2 (dmit = 1,3-dithiole-2-thione-4,5-dithiolate) systems with the general interpretation that higher frequencies indicate more positive charge character on the organic fragment.24 This supports the conclusion from XAS of ligand based redox-changes. While the Raman spectrum of LiTHF-NiTTF is convoluted by overlapping THF vibrational modes, an absorption at 950 cm−1 is apparent in infrared spectra of both Li-NiTTF and LiTHF-NiTTF (Figure 5) but absent in that of NiTTF, which supports similar oxidation states in the two reduced materials.

We then performed solid-state cyclic voltammetry (CV) measurements on LiTHF-NiTTF to explore its redox-properties (Figure 3, blue). Similar to the CV plot of [(Nidppe)2TTF][BA]4 (Figure 3, black), two quasi-reversible oxidation processes for LiTHF-NiTTF at −0.89 V and −0.78 V vs. Fc+/Fc are assigned as TTF-based redox events. The irreversible wave at 0.70 V vs Fc+/Fc is tentatively attributed to a NiII/NiIII oxidation although we cannot exclude the possibility that these features arise from the dithiolene moieties.23 Regardless, all observed redox potentials are shifted cathodically compared to the molecular analogue (TTF/TTF•+/TTF2+, −0.58 and −0.11 V; NiII/NiIII, 0.79 V). The exact reason for this shift is not immediately apparent but may be due to differences in packing and negative charge delocalization. Regardless, these negative potentials provide a possible rationale for the empirical formulas of early reports of NiTTF materials which indicate partial oxidation.

Indeed, we noticed that in our hands the use of typically redox-neutral solvents such as methanol (as widely used in the literature) in Li-NiTTF syntheses resulted in oxidized materials. This observation underscores the importance of using rigorously anaerobic and anhydrous conditions to access different redox congeners of dithiolene based materials in a reliable manner.

Redox Induced Crossing of the Metal-to-Insulator Transition
Once we had established the overall composition of these materials, we then turned to examine their electrical properties. Compared to NiTTF, which is highly conductive (4.7(3) ×105 S/cm, four-probe, room temperature pressed pellets), the room temperature conductivities of Li-NiTTF (10.1 S/cm, four-probe; 1.7(8) S/cm, two-probe) and LiTHF-NiTTF (1.2(9) ×104 S/cm, two-probe) are much lower. Additionally, the Seebeck coefficients of Li-NiTTF and LiTHF-NiTTF are...
NiTTF are positive at +10.0(6) and +31.5(4) μV/K, respectively, which is notably different than the value of −3.6(1) μV/K found in NiTTF (Figure 5A). The sign of the Seebeck coefficients and the measured conductivity suggest that the reduced NiTTF materials are p-type semiconductors. The differing metal/semiconductor character of these redox congeners is also supported by Ultraviolet Photoelectron Spectroscopy (UPS) analysis where the work function cut off at about 0.5 eV in Li-NiTTF and LiTHF-NiTTF is notably distinct from NiTTF (Figure 5B).

To further study the charge transport mechanism of these materials we carried out variable-temperature (VT) resistance measurements on Li-NiTTF and LiTHF-NiTTF. As shown in Figure 5C, the resistance of both Li-NiTTF and LiTHF-NiTTF materials increase exponentially as the temperature decreases, in contrast to the resistance curve of NiTTF which is almost flat. Arrhenius fits above 200 K provide activation energies of Li-NiTTF and LiTHF-NiTTF of ~0.18 eV and ~0.23 eV, respectively. Due to their amorphous nature, the temperature-dependent conductivity behaviors deviate from the Arrhenius law at low temperature, especially for Li-NiTTF (Figure S12). Therefore, 3D Mott Variable-Range Hopping (3D VRH) models were applied as shown in Figure 5D. We recently reported a characteristic temperature, T_0, value extracted from this 3D VRH analysis on a NiTTF pellet which is extremely small, 13 K. Such a value is consistent with a metallic glass ($T_0 \sim 10^4$ K) but not with a semiconductor. In contrast, the obtained T_0 values for Li-NiTTF and LiTHF-NiTTF are 5.1×10^8 K and 1.1×10^9 K, respectively, which are typical for amorphous semiconductors. The larger T_0 value of LiTHF-NiTTF implies a lower density of states at the Fermi level as compared to Li-NiTTF. Taken together with the larger Seebeck coefficient of LiTHF-NiTTF, these results may suggest that larger counterions between chains increase hopping barriers and lower carrier concentrations in these materials.
Semiconducting molecular materials commonly exhibit long-wavelength absorptions in their IR spectra due to the small HOMO-LUMO gaps of delocalized π-systems. In the case of these NiTTF₂ chains, we also found a strong and broad absorption around 3200 cm⁻¹ in the IR spectra of both Li-NiTTF₂ and LiTHF-NiTTF₂ (Figure S5E). The energy of this feature indicates a π-π* bandgap of about 0.4 eV. Notably, this absorption band is absent in NiTTF₂ which also supports a metallic transition upon oxidation. Similar trends have been observed in TTF-based organic metals.^{27, 28} Hence, this phenomenon is further support of a metal-to-insulator transition upon reduction of the NiTTF₂ chains.

In summary, all physical characterization supports that these reduced polymers are p-type semiconductors with bandgaps of ~0.2-0.4 eV, in contrast to the oxidized material NiTTF₂ which is metallic. Furthermore, we observe that the large counterion seemingly plays an important role in hopping transport between neighboring chains, as LiTHF-NiTTF₂ exhibits significantly lower conductivity.

NIR Photo-Thermal Conversion

Despite different charge transport mechanisms, diffuse reflectance spectra demonstrate that all three materials have broad absorptions over the visible and NIR regions (Figure 4). These broad absorptions suggest that these materials may effectively capture light, and particularly low-energy light, to convert it into thermal energy.

Since LiTHF-NiTTF₂ becomes desolvated with sufficient heating, only Li-NiTTF₂ and NiTTF₂ were tested for NIR photothermal behavior. Before testing PT conversion, the thermal stabilities of Li-NiTTF₂ and NiTTF₂ were examined by thermogravimetric analysis (TGA, Figure S13) and differential scanning calorimetry (DSC, Figure S14). Both materials are stable up to at least 150 °C under appropriate testing conditions (Li-NiTTF₂ under N₂ gas and NiTTF₂ in air). Encouraged by this stability, we recorded the temperature of pressed pellets under 808 nm laser irradiation using an IR thermal camera. As shown in Figure 6A, NiTTF₂ shows a linear temperature increase to values as high as 120 °C in 20 s when scanning the light power density from 0.50 to 2.0 W/cm². Similar behavior is observed with Li-NiTTF₂ pellets with a maximum of 118 °C in 30 s at a much lower power density of 0.40 W/cm² (Figure 6D). Linear fits reveal a temperature rise per 0.1 W/cm² radiation of 4.4 K and 23 K for NiTTF₂ and Li-NiTTF₂ respectively (Figure 6C). The performance of these materials, particularly with regard to the magnitude and speed of their PT response, are excellent: the performance of Li-NiTTF₂ is among the best reported for TTF-based materials.^{14a} Samples maintained their performance even after exposure to 10 laser on/off cycles (1.5 W/cm² for NiTTF₂ and 0.30 W/cm² for Li-NiTTF₂, Figure 6B and E).

To assess the efficiency of the light-to-heat conversion, the PT efficiency, η_{P,T}, was determined with a modified Roper’s model (via a cooling process),²⁹ from the following equation:

\[
\eta_{\text{P,T}} = \frac{\hbar s \Delta T_{\text{max}}}{I (1 - 10^{-A_{\text{abs}}})} = \frac{\sum_i m_i C_{p,i} \Delta T_{\text{max}}}{I (1 - 10^{-A_{\text{abs}}})} = m C_{p} \Delta T_{\text{max}}
\]

Where I is the laser power; A_{abs} is the absorbance of the materials at the wavelength of 808 nm; h is the heat transfer coefficient; S is the surface area of the system; m_i and C_{p,i} are the mass and heat capacity of the system components, respectively; τ is the cooling time coefficient; ΔT_{max} is the temperature difference between the maximum and the ambient temperature.

Since the samples were laid on a white thermally-insulated foam, which displayed no detectable temperature change during the experiments, we assume the heat was only maintained in the pellet at thermal equilibrium. We determined the materials’ specific heats by DSC (Figure S15 and S16), revealing values of 0.87(1) Jg⁻¹K⁻¹ for NiTTF₂ and 0.86(4) Jg⁻¹K⁻¹ for Li-NiTTF₂. The value of τ was determined by fitting the decay behavior of the temperature after the laser was turned off (Figure S18) which provided values of 7.2(1) s and 8.2(2) s for NiTTF₂ and Li-
The absorbance of NiTTFtt at 808 nm was determined from its specular reflectance spectrum (6 % reflectance vs Al). Due to air-sensitivity, we were unable to collect the specular reflectance spectrum of Li-NiTTFtt. However, as both NiTTFtt and Li-NiTTFtt have strong absorptions in the NIR region, the A808 of Li-NiTTFtt here was assumed to be the same as that of NiTTFtt. With all these parameters, the PT efficiencies of NiTTFtt and Li-NiTTFtt are estimated as 71 % and 94 %, which are higher than the best reported organic PT materials (71 %) and even higher than many inorganic materials such as Au nanoparticles and quantum dots.

These results demonstrate that both NiTTFtt and Li-NiTTFtt possess 1) broad absorption spectra stretching into the NIR; 2) a high temperature rise per unit power; 3) excellent stability and reproducibility; 4) remarkable PT conversion efficiency. These features, combined with the electrical conductivity of these materials, are promising for PTE conversion, and thus we then investigated these materials in that context.

NIR-Seebeck Voltage

The PTE performance was studied by measuring the Seebeck voltage of pressed pellets under different NIR irradiation powers using a homemade setup (Figure S19 and S20). Two diametrical ends of a circular pellet were contacted with gold or silver paste while one (hot) end was irradiated with a laser (Figure 7A). The temperatures of the cold and hot ends were monitored with an IR thermal camera. As shown in Figure 7D, the temperature rise and the generated voltage were linearly dependent on the NIR laser power for both Li-NiTTFtt and NiTTFtt while the sign of the voltage was reversed as expected due to the different charge carriers present in the two materials. It is noteworthy that the PTE responses for both materials, which are about 12s for Li-NiTTFtt and 1.5 s for NiTTFtt (Figure 7B and E), reach equilibrium much faster than their PT effects. The substrate represents a significant cooling pathway which plays an important role in the PTE responsivity and response time. The response time can be dramatically improved with a moderate sacrifice in responsivity by replacing the substrate with other materials with low thermal conductivity, a strategy which has been widely adopted in thin film-based PTE detectors. Therefore, the response time of both Li-NiTTFtt and NiTTFtt can be further improved as needed via simple modifications of the sample holder. Finally, we note that the calculated values of the Seebeck coefficients from PTE experiments (Figure S21), ~−2.9 μVK⁻¹ for NiTTFtt and 9.1 μVK⁻¹ for Li-NiTTFtt, are consistent with the values measured within a Peltier setup at room temperature (~−3.6(1) μVK⁻¹ and 10.0(6)μVK⁻¹, respectively).

Optimized polyselenophene films exhibited a temperature rise of ~15 Kcm⁻²/W under 808 nm laser irradiation with ηPT = 42.5 %. Correspondingly, the previously reported Seebeck voltage is about 420 μVcm⁻²/W. Under the same conditions, the produced voltage of Li-NiTTFtt is 1700 μVcm⁻²/W. Previously reported Cu-ett materials have PTE voltages that are also significantly smaller at ~360 μVcm⁻²/W.

Importantly, both NiTTFtt and Li-NiTTFtt pellets show reproducible PTE effects; the light driven voltage was stable over multiple cycles of NIR switching (Figure 7C and F). Considering that the temperature change here is over 60 °C, in contrast to a much smaller 9 °C change in PEDOS films, this stability is notable, particularly for NiTTFtt which exhibited this stability in air.
We note that the source of the PTE efficiency in these NiTTFtt materials is different from conventional PTE materials that typically possess high Seebeck coefficients but low PT conversion. The TE properties of both NiTTFtt and Li-NiTTFtt are comparatively poor, and the PTE properties primarily arise from excellent PT conversion. Such effective PT conversion leads to a significant temperature difference which is needed to optimize TE efficiency in STEGs. As such, preserving this excellent PT conversion while improving the Seebeck coefficients of these materials is a promising strategy for improved PTE conversion. Indeed, we note that the NiTTFtt system itself provides the opportunity to chemically tune PTE properties. We have thus far explored the behaviors of NiTTFtt and Li-NiTTFtt, which are the two extreme oxidation states of the NiTTFtt system. However, pre-synthetic redox control of the TTFtt-tin transmetalation precursors also allows for programming intermediate oxidation states. This strategy should enable tuning of the Seebeck coefficients of these materials.

The TE properties of these NiTTFtt polymers exhibit efficient and high-performance PT conversion. The electronic and thermal properties of this metal-organic material offer a great deal of promise for tunable properties in PT, TE, and PTE applications.

CONCLUSION

In this work, we demonstrate that pre-synthetic redox control enables us to isolate both reduced and oxidized NiTTFtt chains. Reduction of the TTFtt linkers results in the n-type metallic NiTTFtt polymer becoming p-type semiconductors. Comprehensive physical characterization of optical, thermal, and electrical properties demonstrates that these conducting NiTTFtt polymers exhibit efficient and high-performance PT conversion for NIR light. Furthermore, the heat generated from this conversion also shows promise in PTE applications, particularly for single-component organic materials. Considering the broad UV to NIR optical absorption, as well as fast and intense PTE responses, these materials also show potential in broadband PTE optical detector applications.

EXPERIMENTAL SECTION

General Methods

Unless otherwise noted, all synthetic manipulations were performed in N2-filled MBraun UNILab glovebox. Dichloromethane (DCM) was initially dried and sparged with Ar on a solvent purification system from Pure Process Technologies and stored over 4 Å molecular sieves. Methanol (MeOH) was dried with NaOH and distilled before being transferred into the glovebox. The dried MeOH was then passed through activated alumina and stored over 4 Å molecular sieves. Methanol (MeOH) was dried with NaOH and distilled before being transferred into the glovebox. The dried MeOH was then passed through activated alumina and stored over 4 Å molecular sieves. Tetrahydrofuran (THF) was added into a 12 mL THF solution of Ni(DME)Cl2 (0.500 mmol, 110 mg) and LiCl (2.50 mmol, 105 mg) with vigorous stirring for 40 mins. The immediate precipitate was isolated via centrifugation and washed with THF (5 × 12 mL). After being dried under vacuum for 30 mins until visibly dry and the dark purple powders were collected as LiTTF-NiTTFtt. To keep batch-to-batch consistency, the evacuation time was kept to exactly 30 mins and the product LiTTF-NiTTFtt was stored in a ~35 °C freezer to avoid solvent loss over time. 131 mg LiTTF-NiTTFtt was isolated as a black powder (85%) after further evacuation of LiTTF-NiTTFtt at 100 °C. Detailed characterization and composition data are provided in the main text as well as below.

Pressed pellets were prepared at 800 MPa in the glovebox by using a hydraulic pellet press (TMAX-15T) and dies with different sizes (7 mm and 8 mm round dies and 6 mm square dies). Prior to pressing, powders were ground to particle sizes below 20 μm. During pressing the pressure was maintained for 20 mins after stabilizing at 800 MPa. The thickness of the pressed pellets is around 100-300 μm.

Inductively Coupled Plasma- Mass Spectrometry/Optical Emission Spectroscopy (ICP-MS/OES)

ICP-MS data was obtained with an Agilent 7700x ICP-MS and analyzed using ICP-MS Mass Hunter version B01.03. The samples were diluted in 2% HNO3 matrix and analyzed with a 100°mT internal standard against a 12-point standard curve over the range from 0.1 to 500 ppb. The correlation was >0.9997 for all analyses of interest. Data collection was performed in Spectrum Mode with five replicates per sample and 100 sweeps per replicate. Solutions for ICP-MS were prepared by digesting 2 mg of material in 1 mL HNO3, (trace metal grade) solution in a fume hood overnight at room temperature. The solution was diluted with ultrafiltered deionized water for ICP-MS analysis. Reported errors are the standard deviation of measurements on three batches of each material.

An Agilent 700 series spectrometer was used for ICP-OES. The sample preparation was undertaken according to reported procedures to improve the accuracy of Sulfur determination. Solutions for ICP-OES were prepared by digesting 2 mg of materials in 0.5 mL HNO3 and 0.5 mL H2O2 (trace metal grade) solutions in tight-sealed high-density polyethylene (HDPE) centrifuge tubes overnight and then diluted with ultrafiltered deionized water. Reported errors are the standard deviation of measurements on three batches of each material.

X-ray fluorescence (XRF) measurements were performed on pressed pellets with a Rigaku NEX DE V5 spectrometer under a He atmosphere.

X-ray photoelectron spectroscopy (XPS) data were collected with the AXIS Nova spectrometer (Kratos Analytical) equipped with a monochromatic Al Kα X-ray source. The Al anode was powered at 10 mA and 15 kV. The instrument work function was calibrated to give a Au 4f7/2 metallic gold binding energy of 83.95 eV. The instrument base pressure was ca. 5 × 10^-9 Torr. The analysis area size was 0.3 × 0.7 mm2. For calibration purposes, the binding energies were referenced to the C 1s peak at 284.8 eV. Survey spectra were collected with a step size of 1 and 160 eV pass energy. Ultraviolet photoelectron spectra (UPS) were collected with the AXIS Nova spectrometer using UV-radiation source. The high-resolution spectra were collected with a pass energy of 20 and a 0.1 eV step size. Pressed pellets were affixed to conductive carbon tape under N2 before loading into the spectrometer.
X-ray Absorption Spectroscopy (XAS) Powder samples of LiNiTT-Ftt and LiTHF-NiTTFtt were prepared by grinding finely with polypropylene as a binder. A Teflon rod (5.3 mm internal diameter) was sealed on one side with Kapton tape and the ground powder was then transferred to the inside of this ring before compacting with a Teflon rod and sealing the remaining face with Kapton tape. X-ray absorption near-edge spectra (XANES) were employed to probe the local environment around Ni. Data were acquired at the Advanced Photon Source at Argonne National Laboratory with a bending magnet source with ring energy at 7.00 GeV. Ni K-edge (8333 eV) data were acquired at the MRCA T-10-BM beam line in transmission. The incident, transmitted, and reference X-ray intensities were monitored using gas ionization chambers. A metallic nickel foil standard was used as a reference for energy calibration and was measured simultaneously with experimental samples. X-ray absorption spectra were collected at room temperature. Data collected was processed using the Demeter software suite by extracting the EXAFS oscillations $\chi(k)$ as a function of photoelectron wavenumber k. The theoretical paths were generated using FEEFF6 and the models were done in the conventional way using the fitting program Artemis.

Infrared (IR) spectroscopy data were recorded on a Bruker Tensor II FTIR spectrometer with MCT detector operated at 77 K. Data were processed and background corrected with the OPUS software (version 7.5). An additional manual correction for scattering was also applied. Samples were prepared under N$_2$ by grinding solid samples with Nujol, placed between two KBr crystal plates, and measured in air under ambient conditions.

Raman spectroscopy data were obtained with a Horiba LabRam HR Evolution confocal microscope. A Si (111) wafer was used for calibration. The samples of 7 mm round pressed pellets were excited using a 532 nm light source operating at 5 % of its power and using 100x long path objective and a 600 mm$^{-1}$ grating. For the air-sensitive samples of Li-NiTTFtt and LiTHF-NiTTFtt, the pellets were sealed with additional glass slides and double-layer imaging spacers (Grace Secure Seal, 20 mm DIA × 0.12 mm Depth).

Solid-State Cyclic Voltammetry (CV) Electrochemical experiments were performed using CV on a BASI Epsilon potentiostat/galvanostat. 4 mg fine powder of LiTHF-NiTTFtt was added into 0.05 mL N-methylnaphthol (NMP) solution of 10 mg/mL polyvinylidene fluoride (PVDF). After the resulting mixture was violently shaken, a few drops were pipetted onto the bottom of a glassy carbon electrode. After the solvent was mostly dried under ambient conditions, the glassy carbon electrode was further dried in a vial under vacuum overnight. The mass of materials deposited on the electrode, 1.4 mg, was calculated by subtraction of the mass of the glassy carbon electrode before and after deposition. In addition to the glassy carbon working electrode, a Pt plate and a Ag wire were used as the counter and reference electrodes, respectively. The reference electrode potential was measured vs. the FeCp2/FeCp2 couple in a separate solution of the relevant electrolyte (with blank glass carbon working electrode instead) to correct for the liquid junction potential. The CV experiments were taken in 0.1 M LiPF6/MeCN at 10 mV/s scan rate. All operations were done in the N$_2$-filled glovebox.

Room-Temperature Electrical Conductivity and Seebeck Measurements Electrical conductivity measurements of LiTHF-NiTTFtt and Li-NiTTFtt were primarily performed in a two-contact geometry at room temperature under N$_2$. Samples were prepared as pressed pellets clamped between two brass electrodes (4.8 mm diam.) in a plastic sleeve, allowing measurement of the sample thickness with calipers. Linear sweep voltammetry was conducted using a BASI Epsilon potentiostat/galvanostat, with the reference and counter electrode terminals connected to one electrode and the working electrode terminal to the other. The resulting data were fit to a straight line to obtain the sample resistance. Reported errors are the standard deviation of measurements on four batches of each material.

As LiTHF-NiTTFtt is poorly conductive (about 10$^{-6}$–10^{-5} S/cm), two-probe conductivity measurements are roughly as accurate as four-probe methods since the instrument resistance (~1 Ω) is significantly smaller than the sample pellet. Therefore, the electrical conductivity of LiTHF-NiTTFtt is reported based on two-probe measurements. However, Li-NiTTFtt is fairly conductive, the conductivity of which would therefore be underestimated with two-probe measurements. Thus, in addition to the two-probe method, the conductivity of Li-NiTTFtt was also determined with a four-probe approach as discussed below.

The four-probe measurements of Li-NiTTFtt are based on a previously reported setup for NiTTFtt. Gold electrical contacts (75 nm thick) for electronic conductivity (σ) and Seebeck coefficient (α) measurements were deposited onto 8 mm pressed pellets via thermal evaporation through homemade shadow masks. The electronic conductivity was measured in the in-plane direction by using a four-probe geometry with a 0.2 mm spacing between electrodes and electrodes length of 1 mm. The Seebeck coefficient was measured with two 1 mm2 gold pads, which are either 3 or 1 mm apart. A detailed schematic is shown in the previous report. Four probe conductivity measurements were performed using a custom-designed probe station in an argon glovebox. Voltage and current measurements were performed using a Keithley 2400 source meter and a Keithley 6221 precision current source. A constant current was applied to the outer contacts, and the resulting steady state voltage response was recorded from the two inner contacts. The resistance (R, ohm) of the sample was extracted from the slope of the IV sweep by using Ohm’s law (R = V/I). The conductivity σ was then calculated via the following equation:

$$\rho = \frac{V}{I}\frac{nt}{(mn)^{1/2}}$$

Where t is the thickness of the sample and s is the separation distance between neighboring probes.

This formula has been previously applied for a thick Si wafer, which is similar to the round pressed pellet. The Seebeck coefficient measurements were performed on the same probe station. Two Peltier elements were placed 5 mm apart to provide the temperature difference ($\Delta T = T_h - T_c$). Two thermocouples were used to collect the hot and cold side temperatures, and two probes were used to measure the corresponding voltage value. A minimal amount of thermally conductive silicone paste was applied to the tips of the thermocouple to ensure good thermal contact between the thermocouple and the gold pads. A delay of 200 s was used for voltage measurements to ensure that a steady-state temperature gradient and voltage were reached. The measurements were taken within an approximate ΔT of ±3 K around 300 K so that the Seebeck coefficient did not change significantly over $T \pm \Delta T$. A series of measurements on Ni foil (0.03 mm, >99.9%) were performed at 25 °C to determine the systematic error. The measured Seebeck coefficient of Ni is $−20.3 \pm 1.3 \mu V/K$, which matched well with reported values in the literature ($−19 \mu V/K$ at 25°C). While the Seebeck measurements were identical, the electrical conductivity of LiTHF-NiTTFtt was measured by using a two-probe method due to high resistivity.

Variable-Temperature Electrical Resistance The as-synthesized powders of Li-NiTTFtt and LiTHF-NiTTFtt were pressed into 6 mm
× 6 mm squared pellets and cut into 2 mm × 6 mm slides. The pellet slides were then mounted into the ceramic double inline package (KYOCERA C-dip 16 pins) and two ends of pellets were connected with gold nodes by conductive silver paste. The variable temperature I–V measurements (two-probe) were carried out in a CRYOSTATION® S50 system (Montana Instruments). For Li-NiTTFtt, the system was first cooled to 40 K and then slowly warmed up to target temperatures at 10 K step to 200 K and then at 20 K step until the sample thermally equilibrated at room temperature (295 K). At each temperature, the system was under vacuum and allowed to stabilize for 10 minutes before I–V profiles were collected from -100 mV to 100 mV. Ohmic I–V profiles were observed for all temperatures from 40 K to 295 K, and a linear fit of the I–V curve was used to get the conductance (G) of the sample. Since the resistance of the LiTHF-NiTTFtt sample became large and out of the instrument’s measurement range, the conductance was recorded starting from 180 K to 295 K with a 15 K step.

UV-Vis-NIR diffuse reflectance spectroscopy data were collected on a Varian Cary 5000 spectrophotometer with powder samples loaded in a Praying Mantis air-free diffuse reflectance cell with KCl powder as the non-adsorbing matrix. The Kubelka-Munk conversion of the raw diffuse reflectance spectrum was obtained by applying the formula $F(R) = (1−R)^2/2R$.

Thermogravimetric analysis (TGA) was performed using a TA Instruments Discovery analyzer. Approximately 2 mg of sample was loaded into a pre-tared Pt pan and measured under N2 or air. Samples were measured from 35 °C to 700 °C using a linear temperature ramp of 10 °C min⁻¹. During loading samples into the pan, samples had to be exposed to the air for about one min.

Differential Scanning Calorimetry (DSC) for Li-NiTTFtt and NiTTFtt was performed using a TA Instruments Discovery analyzer. Approximately 7 mg of sample was sealed into a Tzero pan with a hermetic lid. The air-sensitive Li-NiTTFtt sample was sealed in the glovebox (the TA press was pumped into the glovebox). Under N2, the samples were measured in the temperature range of 20-150 °C using a linear temperature ramp of 10 °C min⁻¹ over two cycles.

Photo-Thermal Conversion Measurements An 8 mm round pellet of NiTTFtt (thickness 272 μm) was placed in a white thermally-insulated foam holder. The laser source is composed of a laser diode emitting at 808 nm (Thorlabs, L808P500MM) placed in a laser diode mount (Thorlabs, TCLDM9), which is controlled by a driver (TED 200C) and temperature controller (LDC 205C). The IR camera (FLIR, E30bx) was used as a temperature monitor. For Li-NiTTFtt, the setup is similar with minor adjustments: 1) a 7 mm round pellet was used; 2) the measurements were done in a N2-filled glovebox instead of in-air; 3) while the IR camera was pumped into the glovebox, the laser source was still placed outside with the light coming through a quartz window and focused on the pellet by an adjusting mirror. The laser power for both cases was calibrated with a power sensor (Thorlabs, S310C).

NIR-Seebeck Voltage Measurements For PTE experiments on Li-NiTTFtt, we used a similar setup in the glovebox but measured the Seebeck voltage with two probes connected to a multimeter (Agilent 34410A, associated with software, Keysight Benchvue). While one end was contacted with gold pads (on a homemade gold-deposited glass slide), the other end of the In wires was connected with the pellet edges along a diametrical dimension with Ag paste. To avoid light shielding from the Ag paste, the face of the pellet that did not contain Ag paste was exposed to the light.

For NiTTFtt, since we found the Ag paste was degraded in air after heating, some gold pads were deposited on the pellet’s edge and used for direct connection with the probes. In order to create good electrical contacts between the gold pads and the probes, the soft foam substrate was replaced with thermally/electrically-insulating Kapton tape.

ACKNOWLEDGEMENT
This work was supported by the Army Research Office under Grant W911NF-20-0-0091. We thanks support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC001921S and the funding from the National Science Foundation under grant DMR-2002367. We thank Daniel Lawnenha and Prof. Danna Freedman for assistance with diffuse reflectance spectroscopy, Xiaomin Jiang, Yingjie Fan, Taokun Luo and Prof. Wenbin Lin for assistance with ICP-MS measurements. We thank Maia Czakowski for assistance with Raman spectroscopy and Garrett Grocke for the help of gold deposition and four-probe conductivity and Seebeck measurements. This research used resources of the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank McKenna Goetz and beamline staffs for assistance with XAS measurements at beamline APS 10-BM-A. B. Parts of this work were carried out at the Soft Matter Characterization Facility of the University of Chicago. This work made use of the shared facilities at the University of Chicago Materials Research Science and Engineering Center, supported by National Science Foundation under award number DMR-2011854.

REFERENCES

(22) DOI: https://doi.org/10.21203/rs.3.rs-1281292/v1

(32) Bubnova, O.; Khan, Z. U.; Mali, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the Thermoelectric Figure of Merit in the Conducting Polymer Poly(3,4-ethylendioxythiophene). *Nat. Mater.* 2011, 10 (6), 429–433.

Photo/Thermal-Electric Conversion

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Power Density (W/cm²)</th>
<th>ΔT (°C)</th>
<th>ΔV (μV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTF[FeCl₂]</td>
<td>20</td>
<td>100</td>
<td>-270</td>
</tr>
<tr>
<td>Li-NiTTTF</td>
<td>0.4</td>
<td>95</td>
<td>+600</td>
</tr>
</tbody>
</table>

808 nm Laser

Pre-synthetic Redox Control of the Metal-to-Insulator Transition in Coordination Polymers

40 Schmidt, V.; Mensch, P. F. J.; Karg, S. F.; Gotsmann, B.; Das Kanungo, P.; Schmid, H.; Riel, H. Using the Seebeck Coefficient to Determine Charge Carrier Concentration, Mobility, and Relaxation Time in InAs Nanowires.

D. Schroder,

32 Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the Thermoelectric Figure of Merit in the Conducting Polymer Poly(3,4-Ethylenedioxythiophene).

15 (a) Sun, L.; Campbell, M. G.; Dincă, M. Electrically Conductive Porous Metal-Organic Frameworks.

DOI: https://doi.org/10.21203/rs.3.rs-1281292/v1

29 Paściak, A.; Pilch-Wróbel, A.; Marciniak, Ł.; Schuck, P. J.; Bednarkiewicz, A. Standardization of Methodology of Light-to-Heat Conversion Efficiency Determination for Colloidal Nanoheaters.