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ABSTRACT:		We	introduce	here	a	novel	two-component	annulation	strategy	that	provides	access	to	a	diverse	collection	of	
five-	and	six-membered	saturated	heterocycles	 from	aryl	alkenes	and	a	 family	of	 redox-active	radical	precursors	bearing	
tethered	nucleophiles.	This	transformation	is	mediated	by	a	combination	of	an	Ir(III)	photocatalyst	and	a	Brønsted	acid	under	
visible-light	irradiation.	A	reductive	proton-coupled	electron	transfer	generates	a	reactive	radical	which	undergoes	addition	
to	an	alkene.	Then,	an	oxidative	radical-polar	crossover	step	leading	to	carbocation	formation	is	 followed	by	ring	closure	
through	cyclization	of	the	tethered	nucleophile.	A	wide	range	of	heterocycles	are	easily	accessible,	 including	pyrrolidines,	
piperidines,	tetrahydrofurans,	morpholines,	δ-valerolactones,	and	dioxanones.	We	demonstrate	the	scope	of	this	approach	
through	broad	structural	variation	of	both	reaction	components.	This	method	is	amenable	to	gram-scale	preparation	and	to	
complex	fragment	coupling.	

Annulation	reactions	enabling	the	synthesis	of	saturated	
carbocyclic	 and	 heterocyclic	 ring	 systems	 are	 of	 central	
importance	in	organic	synthesis.	Indeed,	ring	formation	is	a	
key	consideration	in	the	retrosynthetic	analysis	of	complex	
target	 structures,1–5	 and	 general	 annulation	 methods	 are	
often	 indispensable	 synthetic	 technologies.	 In	 this	 regard,	
two-component	 annulation	 reactions	 are	 particularly	
valuable,	 as	 they	 allow	 for	 the	 rapid	 construction	 of	
molecular	 complexity	 from	 simpler,	 often	 acyclic	 starting	
materials.	 Many	 classical	 methods	 for	 two-component	
annulation	still	find	frequent	use,	including	pericyclic	Diels-
Alder	 [4+2]	 cycloadditions,6,7	 Paternò-Büchi	 [2+2]	
photocycloadditions,8,9	 and	 polar	 Robinson	 annulations	
(Figure	1A).10–12	Moreover,	annulation	chemistry	remains	
an	active	area	of	research,	and	many	novel	(photo)catalytic	
strategies	have	been	developed	in	recent	years	to	broaden	
the	scope	and	impact	of	these	approaches.13	
While	 powerful,	 annulation	 methods	 generally	 place	

limitations	on	i)	the	nature	of	the	functional	groups	present	
in	 the	 two	 reaction	 partners,	 ii)	 the	 nature	 of	 the	 atoms	
involved	in	the	bond	formation	(carbon	or	heteroatom),	and	
iii)	the	ring	size	of	the	annulation	product	(by	necessarily	
requiring	 correct	 spacing	 between	 two	 reactive	 sites).	
While	being	widely	applied,	most	are	specific	to	a	narrow	
subset	of	(hetero)cyclic	products,	and	each	transformation	
requires	 different	 reaction	 conditions	 and/or	 catalysts	 to	
proceed.	We	envisioned	a	distinct	annulation	strategy	that	
would	 enable	 access	 to	 a	 diverse	 set	 of	 saturated	
heterocycles	 in	a	predictable	and	modular	manner	from	a	
common	 set	 of	 reagents	 under	 a	 common	 set	 of	 reaction	
conditions	 (Figure	 1B).	 Key	 to	 this	 design	 was	 the	

integration	 of	 excited-state	 electron	 transfer	 processes,	
which	allow	the	two	bond-forming	events	in	the	annulation	
to	proceed	through	distinct	elementary	steps	via	oxidative	
radical-polar	 crossover	 (ORPC),	 thus	 circumventing	many	
of	the	limitations	enumerated	above.	This	report	describes	
the	 successful	 realization	 of	 these	 aims	 and	 introduces	 a	
broadly	 applicable	method	 for	 the	 synthesis	 of	 saturated	
heterocycles—including	 pyrrolidines,	 piperidines,	
tetrahydrofurans,	 morpholines,	 δ-valerolactones,	 and	
dioxanones—via	 visible	 light-driven	 (n+2)	 annulation	
between	redox-active	N-hydroxyphthalimide	(NHPI)	ester	
or	 ether	 reagents	 and	 aryl	 alkene	 or	 diene	 coupling	
partners.	
Our	 reaction	design	 consists	of	 a	bifunctional	 reagent14	

carrying	an	NHPI	ester	and	a	 tethered	nucleophile,	which	
we	 hypothesized	would	 pair	 with	 an	 aryl	 alkene	 partner	
through	 the	 following	 sequence	 of	 elementary	 steps	
(Figure	1C).	Firstly,	single-electron	reduction	of	the	NHPI	
ester	 by	 the	 excited	 state	 of	 a	 photocatalyst,	 followed	 by	
fragmentation,	 would	 initiate	 the	 reaction	 via	 radical	
generation.	Then,	anti-Markovnikov	addition	of	this	nascent	
radical	to	the	partner	aryl	alkene	would	forge	a	new	bond	
and	 yield	 a	 linear	 intermediate	 bearing	 both	 a	 benzylic	
radical	and	the	tethered	nucleophile.	Finally,	an	ORPC	event	
would	 follow,	 wherein	 single-electron	 oxidation	 of	 the	
benzylic	radical	by	 the	oxidized	state	of	 the	photocatalyst	
furnishes	a	 reactive	carbocation.15-30	 15,1617–1920–2324,252627282930Cyclization	would	
then	 occur	 through	 addition	 of	 the	 tethered	 nucleophilic	
group	 to	 the	 electrophilic	 cation	 to	 yield	 the	 desired	
annulation	 product.	 Importantly,	 this	 reaction	 design	
should	 accommodate	 the	 use	 of	 both	 a	 variety	 of	 radical	



 

types	 and	 numerous	 nucleophilic	 functional	 groups	 with	
varying	tether	lengths.	Thus,	we	anticipated	that	this	redox-
neutral,	catalytic	method	would	provide	access	to	a	diverse	
range	of	 saturated	heterocyclic	 scaffolds	 through	 a	 single	
experimental	protocol.	
Similar	 mechanistic	 scenarios	 have	 been	 successful	 in	

promoting	 a	 number	 of	 three-component	 alkene	 1,2-
difunctionalization	 reactions,	 including	 oxyalkylation,31,32	
fluoroalkylation,33	 bisalkylation,34	 hydroesterification,35,36	
oxyamination,37	 and	 diamination.38,39	 We	 specifically	
highlight	 the	 work	 of	 Chelmer	 and	 coworkers,	 who	
demonstrated	 that	 carbamate-appended	 trifluoroborate	
salts	 serve	 as	 reagents	 for	 the	 net-oxidative	 synthesis	 of	

pyrrolidines	from	styrenes,40	and	recent	work	from	Ritter	
and	 coworkers,	 who	 demonstrated	 a	 similar	 concept	 of	
nucleophile-tethered	 reductive	 N-centered	 radical	
precursors	 for	 the	 synthesis	 of	 morpholines	 and	
homomorpholines	from	styrenes.41	
With	 this	 framework	 in	 mind,	 our	 model	 system	 for	

reaction	 discovery	 consisted	 of	 an	N-protected	 β-alanine	
NHPI	ester	and	styrene,	where	the	desired	product	of	 the	
reaction	would	be	the	corresponding	N-protected	⍺-phenyl	
pyrrolidine	 (2)	 via	 a	 (3+2)	 annulation	 (Table	 1).	 In	 this	
planning	 stage,	we	 reasoned	 that	 inclusion	 of	 a	 Brønsted	
acid	 additive	 would	 facilitate	 a	 proton-coupled	 electron	
transfer	(PCET)	mechanism	for	reduction	of	the	NHPI	ester	
substrate.42-5342–444546–495051–53This	would	allow	for	a	single	photocatalyst	
to	span	a	greater	range	of	potentials	between	the	excited-
state	 Ir(III)	 photoreductant	 and	 the	 corresponding	 Ir(IV)	
ground-state	 oxidant,	 thus	 increasing	 the	 driving	 force	
available	 for	 the	 coupled	 RPC	 step.	 A	 Cbz-protected	 β-
alanine	 NHPI	 ester	 was	 readily	 synthesized	 via	 Steglich	
esterification	 on	 multi-gram	 scale	 through	 a	
chromatography-free	protocol.	With	 this	 reagent	 in	hand,	
we	set	about	optimization	of	 the	desired	process	 through	
systematic	 variation	 of	 these	 highlighted	 reaction	
parameters.	

	
Figure	 1.	 A.	 Examples	 of	 classic	 annulation	 reactions	 in	
chemical	synthesis.	B.	This	work:	a	photocatalytic,	two-com-
ponent	annulation	of	redox-active	phthalimides	and	alkenes.	
C.	Proposed	catalytic	cycle.	
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Table	1.	Reaction	sensitivity	screen.	Reactions	were	run	on	a	
0.1	 mmol	 scale.	 Yields	 were	 determined	 by	 1H	 NMR	
spectroscopy	 with	 1,3,5-trimethoxybenzene	 as	 an	 internal	
standard.	Redox	potentials	are	 reported	 in	volts	vs.	Fc+/Fc	 in	
MeCN.	See	references	54	and	55	for	photocatalyst	potentials.		
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We	found	that	with	NHPI	ester	1	(Ep/2	=	–1.52	V	vs.	Fc+/Fc	
in	MeCN)	 and	 styrene	 as	model	 substrates	 in	 a	 1:2	 ratio,	
pyrrolidine	2	was	formed	in	76%	yield	in	the	presence	of	
1	mol%	 Ir(p-CF3-ppy)3	 (E1/2	 Ir(IV)/*Ir(III)	 =	 –2.03	 V	 vs.	
Fc+/Fc	in	MeCN)54	and	25	mol	%	diphenyl	phosphoric	acid	
in	acetone	under	blue	light	 irradiation	(Table	1,	entry	1).	
The	annulation	could	be	performed	with	a	range	of	other	

photoreductants;	 for	 example,	 Ir(p-F-ppy)3	 (E1/2	
Ir(IV)/*Ir(III)	=	–2.24	V	vs.	Fc+/Fc	in	MeCN)54	and	Ir(ppy)3	
(E1/2	Ir(IV)/*Ir(III)	=	–2.26	V	vs.	Fc+/Fc	in	MeCN)55	were	also	
viable.	These	photocatalysts	 facilitated	both	the	reduction	
of	1	and	the	oxidation	of	the	resulting	secondary	benzylic	
radical	 (e.g.,	 for	 the	 benzylic	 radical	 derived	 from	
ethylbenzene,	E1/2	=	–0.01	V	vs	Fc+/Fc	in	MeCN)56	to	deliver	

	
Figure	2.	Substrate	scope	of	(3+2)	and	(4+2)	annulation	reactions.	Reactions	run	on	0.5	mmol	scale	unless	otherwise	noted.	Yields	
are	for	isolated	material	and	are	the	average	of	two	runs.	All	products	generated	from	achiral	starting	materials	are	racemic.	aGram-
scale	reaction	performed	using	0.2	mol%	photocatalyst	with	24	h.	reaction	time.	bReaction	performed	on	0.1	mmol	scale.	cGram-scale	
reaction	performed	using	0.5	mol%	photocatalyst.	See	SI	for	details	on	relative	stoichiometries	of	reagents.		
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2	in	75%	and	52%	yield,	respectively	(Table	1,	entries	2–3).	
Either	decreasing	 the	 styrene	 loading	 to	1	equiv.	or	using	
NHPI	ester	1	in	excess	led	to	formation	of	pyrrolidine	2	in	
moderate	 to	 good	 yields	 (entries	 4–5);	 this	 flexibility	 in	
stoichiometry	can	be	useful	for	planning	complex	fragment	
couplings	 (vide	 infra).	 The	 annulation	 reaction	 proceeds	
with	poor	efficiency	in	the	absence	of	diphenyl	phosphoric	
acid;	 the	 reaction	 yield	 is	 highest	with	 25	mol	%	 acid	 as	
opposed	to	1	or	2	equiv.	(entries	6–8).	The	dependence	of	
the	 reaction	 yield	 on	 exogenous	 acid	 concentration	 is	
consistent	 with	 a	 reductive	 PCET	 event	 initiating	 radical	
generation.	 This	 hypothesis	 is	 further	 supported	 by	 an	
observed	increase	in	the	luminescence	quenching	of	*Ir(p-
CF3-ppy)3	by	1	in	the	presence	of	diphenyl	phosphoric	acid	
(Ksv	=	1146	M-1	with	acid	vs.	Ksv	=	603	M-1	without	acid)	(See	
SI	for	details).	While	reactions	run	in	either	acetonitrile	or	
dichloromethane	afforded	pyrrolidine	2	in	moderate	yields	
(entries	11–12),	acetone	proved	to	be	the	optimal	solvent	
for	 the	 transformation.	 Finally,	 control	 experiments	
demonstrated	 that	 both	 light	 and	 photocatalyst	 are	
required	for	product	formation	(entries	13–14).	We	provide	
additional	details	 of	 further	optimization	experiments	 for	
other	substrate	classes	in	the	Supporting	Information.	
With	 optimal	 conditions	 established,	 we	 first	 explored	

pyrrolidine	 synthesis	with	 respect	 to	 the	 alkene	 coupling	
partner	(Figure	2).	An	investigation	of	electronically-varied	
4-substituted	 styrenes	 showed	 that	 electron-neutral	 and	
electron-rich	olefins	undergo	annulation	in	good	yields	(2–
5).	 Additionally,	 1,1-disubstituted	 and	 trisubstituted	
styrenes	 are	 effective	 annulation	 partners,	 providing	
pyrrolidines	6	and	9	bearing	fully	substituted	⍺-centers,	a	
challenging	structural	motif	to	access	in	a	general	fashion.57–
59	
Although	 simple,	 unactivated	 alkyl	 olefins	 were	

ineffective	 substrates	 under	 the	 standard	 conditions,	 we	
found	that	aryl-substituted	⍺,β-unsaturated	carbonyls	and	
dienes	 proved	 amenable	 to	 annulation.	 Specifically,	
pyrrolidines	7	and	8	were	generated	in	42%	and	60%	yield	
from	 an	 ⍺-phenyl	 acrylate	 ester	 and	 an	 ⍺-phenyl	
acrylamide,	 respectively.	 The	 success	 of	 these	 alkenes	 is	
notable	 given	 the	 difficulty	 of	 accessing	 ⍺-carbonyl	
carbocations.60	 Additionally,	 simple	 dienes	 such	 as	
cyclopentadiene	 and	 cyclohexadiene	 afforded	 fused	
bicycles	 10	 and	 11	 in	 60%	 and	 33%	 yield,	 respectively,		
with	 excellent	 diastereoselectivity.	 Alternative	 routes	 to	
related	fused	bicyclic	pyrrolidines	generally	require	multi-
step	 sequences	 via	 linear	 cyclization	 precursors.61–63	
Furthermore,	an	exocyclic	diene,	which	is	an	intermediate	
in	 the	 synthesis	 of	 the	 insect	 antifeedant	 sesquiterpene	
polygodial,64	 underwent	 annulation	 to	 furnish	12	 in	 62%	
yield.	 3-Vinyl	 indole	 also	 undergoes	 (3+2)	 annulation	 to	
provide	13	in	good	yield.	
Next,	we	 found	 that	a	variety	of	 commonly	used	amine	

protecting	 groups	 could	 be	 introduced	 onto	 the	 amine-
tethered	NHPI	ester	partner,	providing	N-Ts,	N-Bz,	and	N-
Boc	pyrrolidines	14,	15,	and	16	in	good	yield.	No	evidence	
of	 competing	 O-cyclization	 of	 the	 protecting	 group	 was	
observed,	 in	 contrast	 to	 some	 examples	 of	 carbocation	
cyclization	reactions	of	carbamates	and	amides.37,65,66	Due	
to	the	synthetic	accessibility	of	β-amino	acid	derivatives,67	a	
number	 of	 ⍺-	 and	 β-functionalized	 NHPI	 esters	 could	 be	
readily	 prepared.	 These	 reagents	 then	 gave	 the	

corresponding	 pyrrolidines	 bearing	 C-4	 and	 C-5	
substituents	 in	 good	 yields	 and	modest	 d.r.	 (17–23).	 The	
synthesis	of	an	⍺-arylated	proline	derivative	22	from	an	L-
aspartic	 acid	 derived	 annulation	 reagent	 and	 a	 densely	
functionalized	spirocyclic	pyrrolidine	23	proceeded	in	70%	
and	54%	yield,	respectively.	Prior	access	to	structures	such	
as	 22	 required	 multi-step	 synthetic	 routes,68	 typically	
deriving	from	pyroglutamic	acid	or	N-protected	prolines	via	
Shono	oxidation.69–72	
We	 next	 sought	 to	 investigate	 the	 adaptability	 of	 the	

annulation	 strategy	 to	 access	 other	 heterocycle	 classes.	
Specifically,	 by	 changing	 the	 pendent	 nucleophile	 on	 the	
NHPI	ester	reagent	to	an	alcohol,	we	anticipated	access	to	
tetrahydrofuran	products.	Using	styrene	as	the	annulation	
partner	together	with	NHPI	esters	derived	from	β-hydroxy	
acids,	 the	 desired	 ⍺-aryl-	 and	 ⍺-carboxylate	 ester-
substituted	 tetrahydrofurans	 24	 and	 26	 were	 formed	 in	
good	 yield	 under	 conditions	 similar	 to	 those	 used	 in	 the	
pyrrolidine-forming	reactions.	Using	this	method,	a	rare	2-
trifluoromethyl-substituted	 tetrahydrofuran	 25	 was	
prepared.	The	introduction	of	spirocyclic	scaffolds	into	lead	
structures	is	also	of	broad	interest	in	medicinal	chemistry;	
however,	 it	 is	 often	 accompanied	 by	 increased	 synthetic	
effort.73,74	We	found	that	the	annulation	protocol	also	offers	
a	 straightforward	 route	 to	 ⍺-substituted	 spirocyclic	
tetrahydrofurans	 in	 serviceable	 yields	 (27–29).	 Here,	 we	
highlight	 pyrrolidine	 23	 and	 tetrahydrofuran	 29	 as	
examples	of	nitrogen-	and	oxygen-containing	analogues	of	
otherwise-identical	spirocyclic	scaffolds.	
The	annulation	 reaction	also	enables	 the	 synthesis	of	 a	

variety	 of	 six-membered	 saturated	 heterocycles	 through	
the	use	of	NHPI	ester	partners	with	an	extended	tether	to	
the	 nucleophile.	 To	 achieve	 efficient	 reactivity	with	 these	
precursors,	use	of	1–3	equiv.	of	diphenyl	phosphoric	acid	
was	necessary.	With	this	modification,	piperidines	35	and	
36	 were	 prepared	 in	 good	 yield,	 with	 36	 arising	 from	
annulation	 of	 a	 readily	 available	 derivative	 of	 L-glutamic	
acid.	 A	 tethered	 t-Bu	 ester	 can	 also	 serve	 as	 a	 pendent	
nucleophile	 in	 the	 synthesis	 of	 six-membered	 δ-
valerolactone	 37.	 Further	 highlighting	 the	 modularity	 of	
this	protocol,	we	 found	that	use	of	N-hydroxyphthalimide	
ether	reagents75–79	in	place	of	the	esters,	without	otherwise	
altering	 reaction	 conditions,	 enabled	 the	preparation	of	 a	
distinct	set	of	heterocycle	classes	bearing	two	heteroatoms.	
Here,	 the	 reaction	 proceeds	 via	 generation	 of	 an	 oxygen-
centered	radical	that	undergoes	alkene	addition,	ORPC,	and	
nucleophilic	 cyclization.	 For	 example,	morpholine	38	 and	
dioxanone	 39	 were	 formed	 in	 70%	 and	 75%	 yield,	
respectively.	Notably,	this	protocol	provides	the	alternative	
regiochemical	outcome	in	the	cyclization	compared	to	the	
recent	 report	 of	 morpholine	 synthesis	 from	 Ritter	 and	
coworkers.41	
All	 of	 the	NHPI	ester	 and	ether	 reagents	 studied	above	

were	 prepared	 on	 >1.0	 g	 scale	 and	 the	 majority	 are	
accessible	 through	 chromatography-free	 protocols.	 All	
pyrrolidine,	piperidine,	morpholine,	lactone,	and	dioxanone	
reagents	above	are	bench-stable,	and	comparable	yields	of	
pyrrolidine	16	were	realized	when	using	a	ca.	12	month	old	
batch	of	NHPI	ester	reagent	compared	to	a	batch	that	was	
freshly	 prepared.	 We	 opted	 to	 store	 the	 tetrahydrofuran	
precursors	at	–20	°C,	where	they	demonstrate	stability	and	
reaction	viability	without	deterioration	over	ca.	6	months.	



 

This	annulation	methodology	suffers	from	some	limitations	
with	respect	to	the	electronic	character	of	 the	alkene.	For	
example,	 in	 reactions	of	more	electron-deficient	 styrenes,	
products	 resulting	 from	 either	 carbocation	 hydration	
and/or	 elimination	 predominate.	 For	 cases	 where	 ORPC	
does	 not	 occur,	 linear	 radical	 reduction	 products	 are	
observed.	Cyclization	of	piperidine	substrates	also	appears	
limited	 to	 electron-rich	 styrenes.	 A	 list	 of	 modestly	
performing	and	unsuccessful	substrates	 is	 included	 in	the	
Supporting	Information.	
The	modular	nature	of	this	annulation	protocol	enables	

the	generation	of	a	 library	of	diverse	heterocycles	 from	a	
single	alkene	substrate	(Figure	3).	To	highlight	this	ability,	
we	selected	two	pharmaceutically-relevant	alkenes	–	vinyl	
estrone	 and	 fenofibrate	 –	 bearing	 styrenyl	 and	 1,1-
diarylethylene	motifs,	respectively,	and	exposed	them	to	an	
array	 of	 coupling	 partners.	 Pyrrolidine	 (42),	 δ-
valerolactone	 (43),	 and	morpholine	 (44)	 fragments	could	
all	be	appended	to	vinyl	estrone	in	good	to	excellent	yields.	
Fenofibrate	 was	 also	 readily	 derivatized	 to	 the	
corresponding	 pyrrolidine	 45	 and	 tetrahydrofuran	 46	
analogues.	
Numerous	 complex	 alkenes	 were	 amenable	 to	

annulation,	 highlighting	 the	 functional	 group	 tolerance	 of	
the	method	towards	β-lactams	(47),	unprotected	benzylic	
alcohols,	nitriles,	amides,	 tertiary	amidines,	and	esters.	 In	
the	 case	 of	 loratidine	 as	 an	 alkene	 partner,	 complete	
selectivity	 is	 observed	 for	 radical	 addition	 to	 the	 less	
substituted	 styrenyl	 fragment	 as	 opposed	 to	 an	 internal,	

tetrasubstituted	alkene	(50).	Finally,	this	suite	of	complex	
alkenes	contains	an	array	of	heterocyclic	functionality	that	
is	 tolerated	 under	 the	 annulation	 conditions,	 including	
thiazoles	(48),	piperazines	and	oxazepines	(49),	pyridines	
(50),	and	indoles	(51).	
We	 next	 examined	 the	 reactivity	 of	 pharmaceutical-de-

rived	NHPI	esters	for	olefin	annulation	(Figure	4).	These	re-
agents	are	practical	and	convenient	to	prepare	in	2–4	steps	
from	 the	 commercial	drug	 substances,	 in	68–90%	overall	
yields	(see	Supporting	Information	for	details).	A	complex	
sulfonamide-tethered	 NHPI	 ester	 derived	 from	 COX-2	 in-
hibitor	celecoxib	(52)	was	a	competent	partner	in	the	annu-
lation,	delivering	pyrrolidine	55	in	77%	yield.	Baclofen,	an	
unnatural	amino	acid	used	as	a	muscle	relaxant,	 could	be	
easily	derivatized	to	 its	corresponding	NHPI	ester	53	and	
subjected	to	annulation	conditions	with	vinyl	anisole	to	de-
liver	piperidine	56	in	77%	yield.	
Additionally,	an	acetonide-protected	NHPI	ester	derived	

from	 atorvastatin	 (54)	—	 a	 drug	 used	 for	 prevention	 of	
cardiovascular	disease	—	was	synthesized	and	subjected	to	
the	 annulation	 conditions.	 Here,	 we	 observed	 that	 the	
acetonide	was	a	competent	nucleophile	in	pairing	with	the	
carbocation	intermediate,	delivering	tetrahydrofuran	57	in	
68%	 yield	 and	 1:1	 d.r..	 Whereas	 these	 examples	 were	
conducted	 using	 excess	 styrene	 relative	 to	 the	 more	
valuable	 phthalimide	 ester,	 we	 found	 that	 complex	
fragment	 couplings	 can	 be	 accomplished	 efficiently	 using	
matched	 stoichiometries	 of	 both	 redox-active	 ester	 and	
alkene	 partners;	 for	 example,	 an	 annulation	 reaction	

	
Figure	3.	Substrate	scope	of	(3+2)	and	(4+2)	annulation	reactions	with	complex	alkenes.	Reactions	run	on	0.1	mmol	scale	
unless	otherwise	noted.	Yields	are	for	isolated	material	and	are	the	average	of	two	runs.	aReaction	performed	in	acetonitrile.	See	SI	
for	details	on	relative	stoichiometries	of	reagents.	
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between	 a	 febuxostat-derived	 alkene	 58	 and	 celecoxib-
derived	 NHPI	 ester	52	 proceeded	 in	 61%	 yield	 with	 1:1	
relative	stoichiometry.	A	slight	increase	in	yield	was	noted	
with	1.2	equiv.	of	52	 (68%	yield).	Finally,	 to	highlight	the	
utility	of	 this	protocol	 for	preparative-scale	 synthesis,	we	
carried	 out	 annulation	 reactions	 on	 a	 6	mmol	 scale,	
delivering	gram-quantities	of	pyrrolidines	2	and	23	(Figure	
2),	 with	 reduced	 photocatalyst	 loadings	 of	 0.2	 and	
0.5	mol%,	 respectively.	 Gratifyingly,	 these	 products	 were	
delivered	 in	 nearly	 identical	 yield	 compared	 to	 those	
performed	on	0.5	mmol	scale.	
In	 summary,	 we	 introduce	 here	 a	 photocatalytic,	 two-

component	annulation	strategy	for	the	general	synthesis	of	
valuable	 five-	 and	 six-membered	 saturated	 heterocycles	
from	alkenes	 and	 redox-active	 radical	precursors	bearing	
tethered	 nucleophiles.	 A	 number	 of	 distinct	 heterocycle	
classes	 were	 accessed	 using	 this	 approach,	 including	
pyrrolidines,	 piperidines,	 tetrahydrofurans,	 morpholines,	
δ-valerolactones,	 and	 dioxanones.	 We	 demonstrate	 the	
utility	 of	 this	 methodology	 for	 late-stage	 derivatization,	
heterocycle	library	synthesis,	and	gram-scale	preparation.	
Furthermore,	 this	 annulation	 protocol	 readily	
accommodates	complexity	in	both	the	redox-active	radical	
precursor	 and	 alkene	 components,	 a	 feature	 particularly	
demonstrated	 through	 an	 example	 of	 complex	 fragment	
coupling	 between	 a	 celecoxib-derived	 NHPI	 ester	 and	 a	

febuxostat-derived	alkene.	We	anticipate	that	other	classes	
of	heterocycles,	other	ring	sizes,	and	more	diverse	bicyclic	
structures	 should	 all	 be	 accessible	 using	 the	 approach	
presented	here.	Efforts	toward	these	ends	are	ongoing.		
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