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Abstract

Buffer solutions have tremendous importance in biological systems and in formulated

products. Whilst the pH response upon acid/base addition to a mixture containing a single

buffer can be described by the Henderson-Hasselbalch equation, modelling the pH response

for multi-buffered poly-protic systems after acid/base addition, a common task in all chemical

laboratories and many industrial plants, is a challenge. Combining predictive modelling and

experimental pH adjustment, we present an active machine learning (ML)-driven closed-loop

optimization strategy for automating small scale batch pH adjustment relevant for complex

samples (e.g., formulated products in the chemical industry). Several ML models were

compared on a generated dataset of binary-buffered poly-protic systems and it was found

that Gaussian processes (GP) served as the best performing models. Moreover, the

implementation of transfer learning into the optimization protocol proved to be a successful

strategy in making the process even more efficient. Finally, practical usability of the

developed algorithm was demonstrated experimentally with a liquid handling robot where

the pH of different buffered systems was adjusted, offering a versatile and efficient strategy

for a pH adjustment processes.
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Introduction 

Adjusting pH is an important step in the production of cosmetic formulations, liquid 

detergents, treatment of industrial wastewater or within biopharmaceutical drug 

manufacturing.1-6 The process itself is often very time intensive due to complex proton 

partitioning equilibria and represents a challenging control problem resulting from the 

intrinsic non-linearity of the pH value.7 Additionally, buffer chemicals, weak acids or bases 

that can donate or accept protons, often used in the formulations to maintaining the pH 

within a narrow margin upon acid/base addition, complicate the process of pH adjustment. 

While single buffered systems can be described using the Henderson-Hasselbalch equation, 

developing models for multiple poly-protic buffers (e.g., phosphate and citrate) remains an 

ongoing challenge.8, 9  

 

Commercial and literature-reported pH adjustment strategies are typically either based on 

proportional-integral-derivate (PID) control or model predictive control (MPC); both come 

with limitations. The PID control strategy continuously calculates deviation of the measured 

value from the target value, and applies a correction based on a proportional, integral or 

derivative correction strategy.10, 11 A typical example are bioreactors which often operate in 

fed-batch mode, relying on PID pH control to allow for the maintenance of specific conditions 

required by the biological cultures.12-15 While no chemical information except the continuous 

measured pH is needed for PID, a loss of information needs to be accepted since insights into 

the chemical system cannot be implemented into future pH adjustments, as opposed to 

model based strategies. More recent pH adjustment approaches are based on MPC arrays, 

e.g., Altinten et al. describe a generalized predictive control for continuous flow pH 

adjustment16, Helmy et al. relied on multi-linear regression17 and Alkamil et al. used a fuzzy 

artificial neural network (ANN) outperforming a PID-control.18 Others have also expanded on 

using ML based MPC strategies for this same purpose.19, 20 A major challenge associated to 

MPC-based pH adjustment is operating in a low data regime, particularly of interest for high-

throughput small-scale pH adjustment, as opposed to continuous pH adjustment. Aside from 

automated strategies, pH adjustment process is also often conducted manually in a R&D stage 

which is time consuming, requiring approximately five to seven minutes per sample (Table 1: 

entries 7, 10, 13). 
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The modern digitalization of research facilities allows the relatively fast and easy 

accumulation of experimental data, which can be used to accelerate subsequent workflows 

by employing transfer learning (TL). TL represents the method of pretraining ML models for 

one task and subsequentially using the trained model for a similar prediction task.21 Typically, 

the auxiliary model would profit from an availability of large pretraining datasets, whereas 

the target model is fine-tuned on a smaller dataset.22-25 Process chemists often modify the 

composition of formulated products (e.g., liquid laundry detergents) to fine tune product 

properties (e.g., viscosity). While small modifications do not change the overall composition 

greatly, the pH response (titration curve) does change and thus the sample requires a new 

titration strategy every time.  

 

Herein, we aim to employ a data-driven strategy for pH adjustment, benefitting from active 

learning and robotic facilities for experimental evaluation. We compare different surrogate 

models, machine-readable data representations and initialization strategies for the 

development of an active ML-based pH adjustment strategy of multi-buffered poly-protic 

mixtures. By employing TL, benefiting from previously generated data, we aim to 

demonstrate this novel strategy for pH adjustment and keep the process efficient, even under 

an extreme low data regime. 

 

Our approach for active ML-driven closed loop optimization is shown in Figure 1a. A chosen 

ML model is initially trained within a low data regime (here three datapoints) and used for 

predicting the unknown (ground truth) full titration curve (Figure 1b). Subsequently, 

conditions towards the target pH are selected using a custom acquisition function. In active 

learning and Bayesian optimization the acquisition function is typically a trade-off between 

exploration to reduce model uncertainty and exploitation towards the target value. For the 

pH adjustment we choose a purely exploitative approach by selecting the minimizer of the 

difference between the model predictions and the target pH as the next experimental 

condition (Figure 1c). This is possible as the pH curve is monotonous, hence the algorithm will 

converge to the target pH. Until the target pH has been reached, the dataset is continuously 

updated and the model is retrained for the next iteration. We coupled our active ML-guided 

pH adjustment approach with a liquid handling robot and successfully adjusted a set of 

chemically different binary buffered mixtures. After a comparison of different surrogate 
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models, we identified Gaussian processes (GP) as the best performing model. Moreover, we 

managed to boost efficiency of the process by utilizing TL strategies, thus decreasing the 

required iterations of pH adjustment. 

 
 

Figure 1. An overview of the ML-driven pH adjustment strategy (a) Design of the closed-loop 

optimization toward pH adjustment (b) Illustration of ML model predictions and decision 

making using the acquisition function, see minimum at 4. (c). The numbers represent the 

order of the observations, and the red font color represents the datapoint to be acquired in 

the next iteration. Both acid and base volume addition are represented on the x axis, where 

the negative values account for acid volume and the positive values account for base volumes. 
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Materials and Methods 

Active ML-driven Closed-loop Optimization 

A chosen surrogate model is trained to map the input data (features) to the correlated output 

data (labels) - using a model-dependent data-processing architecture - by iteratively 

optimizing the model, i.e., minimizing the loss for all fitted datapoints.26-28 The predictive 

model performance is subsequentially evaluated on a held-out test dataset – the model 

predictions are compared to the true values and the deviation is typically quantified via the 

residuals metric of root mean squared error (RMSE). By applying this strategy in an iterative 

manner, it can be used to navigate through the parameter space, efficiently searching for 

desired conditions.29-31 In the case of pH adjustment this refers to the amount of acid or base 

to achieve a target pH. Algorithm 1 illustrates the control code used for automated pH 

adjustment. 

 

 
Algorithm 1. Closed-loop optimization. 

 
To assess the performance of different surrogate models, particularly within a low data 

regime, and to deliver promising predictions, we conducted a comparative study between 

several models. Four commonly used ML models were chosen to understand their respective 

benefits and limitations: linear regression, random forest (RF),32 Gaussian process (GP)33 and 

artificial neural networks (ANN).34 Hyperparameters for each model were optimized a priori, 

see SI for more detail (Section 3). 

 

Robotic Platform 

Based on the need to generate training data, as well as to demonstrate the active ML-based 

closed-loop pH adjustment process, we developed a robotic platform capable of mixing buffer 

solutions, measuring pH value and automatically conducting pH adjustment (Figure 2). Here, 

Set parameter space (min/max volumes of acid/base)
Set pHtarget
Randomly select 3 conditions
Execute the experiments and generate initial dataset

While (pHtarget – pHactual) > 0.2:
Train the model on dataset
Predict pH for undiscovered parameter space
Identify conditions for the predictions that is closest to pHtarget
Conduct the selected experiment 
Update the training data
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the X/Y/Z labels refer to buffer stock solution that can be pumped into glass vials (24 x 15 mL) 

positioned on the robotic wheel, acting as an auto sampler. On subsequent positions of the 

wheel, pH measurement and addition of acid/base can be conducted. After each pH 

adjustment process, the electrode is cleaned with deionized (DI) water to avoid cross-

contamination between the samples. Technical design of the bespoke robotic platform was 

based on previous studies.35, 36 We utilized FLab, a Python-based library, for facilitating 

communication between the motors, pumps, the pH electrode and the implementation of 

the ML based optimization algorithm.37 See SI (Figure S1) for more detailed images and 

information on the robotic platform. 

 

 
Figure 2. Schematic (a) and image (b) of the robotic pH adjustment platform. X/Y/Z indicate 
the stock solutions of buffer chemicals. For simplification not all 24 vials have been drawn 
on the robotic wheel. See SI for detailed labelled explanation of all components.  
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Results and Discussion 

Closed-loop Optimization pH-Adjustment 

The performance of pH adjustment can vary significantly, depending on the complexity of the 

system response towards the addition of a titrating agent. To demonstrate the broad 

applicability of the pH adjustment strategy, we tested our approach on a variety of different 

chemical systems. 18 experimentally generated datasets of binary buffered mixtures, 

containing the acid/base volume addition as the input and the measured pH value as the 

output were used, see Table 1. Based on the existence of this experimental data, simulated 

closed-loop optimization was conducted. The majority of the datapoints were held out and 

only a randomly selected batch of datapoints for initializing the model was used. The strategy 

(Figure 1) was applied, and the target pH was set to pH 6, with an acceptable deviation of a 

pH value of ± 0.2. For mixture 6 the initial pH of the sample was already within the target pH 

margin so the objective was set to pH 8. This workflow was conducted 10 times for each 

dataset and the mean/standard deviation of the number of iterations needed to achieve the 

target pH were calculated.  

 
Table 1. A list of buffers used in this study. 

Index Buffer 1 Buffer 2 Ratio 
1 Acetate Citrate 1:1 
2 Acetate Citrate 1:2 
3 Acetate Citrate 2:1 
4 Acetate KH2PO4 1:1 
5 Acetate KH2PO4 1:2 
6 Acetate KH2PO4 2:1 
7 Ammonium Acetate 1:1 
8 Ammonium Acetate 1:2 
9 Ammonium Acetate 2:1 

10 Ammonium Citrate 1:1 
11 Ammonium Citrate 1:2 
12 Ammonium Citrate 2:1 
13 Ammonium KH2PO4 1:1 
14 Ammonium KH2PO4 1:2 
15 Ammonium KH2PO4 2:1 
16 Citrate KH2PO4 1:1 
17 Citrate KH2PO4 1:2 
18 Citrate KH2PO4 2:1 
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Featurization included the concentration of both buffer chemicals, the volume of acid/base 

as well as chemical information such as pKa values, the number of protons per buffer and the 

initial pH value. Figure 3a illustrates the varying prediction performance of four chosen 

surrogate models, using four observations for training. By comparing the single surrogate 

model predictions against the ground truth it becomes visible that linear regression delivered 

the worst fit, as expected, whereas GP delivered the best performance. Moreover, the 

characteristic piece-wise constant predictions, arising from the decision-tree based model 

architecture of the RF are visible, see Loh.38 Figure 3b illustrates the optimization trajectory 

of ANN (buffer system 2) towards the target pH 6, i.e. how the model conducts sampling of 

experimental datapoints to find the target pH 6. It is visible that the algorithm initially requires 

approximately two iterations to explore the response and then starts to exploit towards the 

objective.  

 

A broad comparison of the 18 buffer systems and the choice of the ML model was conducted 

to assess the required number of iterations to conduct pH adjustment (Figure 3c). Chemical 

systems with multiple protons tend to have more linear areas whereas a system comprised 

of two single chemicals (e.g., ammonium, acetate) tends to be less smooth, see SI Figure S2. 

In addition to the number of protons, the pKa values are also important as they indicate the 

location of the inflection point that will likely influence the system response of the binary 

mixture. Systems containing two poly-protic buffers (e.g. citrate and phosphate) tend to 

require fewer iterations compared to systems containing monoprotic buffers such as 

ammonium or acetate. Given the variety of the tested buffer chemicals, we believe that a 

wide variety of buffer systems can be represented using the dataset, i.e. the strategy should 

be applicable to samples containing other pH-sensitive chemicals which are not directly 

represented in this study. 
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Figure 3. Illustration of the active ML pH adjustment (a) Insights into prediction performance 

of four models after four observations (buffer system 1) and comparison to the ground truth. 

(b) Optimization trajectory towards the target pH 6 (buffer system 2) using a ANN surrogate 

model (c) Comparison of the required iterations to reach target pH using four different ML 

models for 18 different binary buffered systems. The features include the pKa values as well 

as the initial pH values. The error bars represent the error on mean value. See Table 1 for 

indexed buffer system positions. 

Linear regression clearly seems not to fit the datapoints well due to non-linear pH response, 

but it was conducted as a reference. It requires a high number of iterations for systems 

containing many polyprotic components, e.g., citrate, see Figure 3a,b. Overall, most of the 

systems could be adjusted within 3-4 iterations using three datapoints to initialize the 
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optimization, thus giving a total of 6-7 required steps. On average, RF required 3.4 ± 0.3 

iterations, ANN required 5.6 ± 1.0 iterations and GP required 3.1 ± 0.6. Here and in the 

following the reported values refer to the mean and the error of the mean value of 10 single 

iterations, see SI Eqn. S2. Our analysis shows that using the GP model gives the best results 

with the lowest number of iterations within the optimization loop.  

 

Featurization Effects 

Representing chemical compounds in a machine-readable format is considered a challenge in 

chemoinformatics due to its effect on different surrogate models and, thus, their predictive 

performance.39 Previous literature has led to ambiguous outcomes on whether the addition 

of chemical information within low data regimes, such as the initialization of active-ML search 

strategies, is beneficial.31, 40 To learn more about featurization effects on this specific 

application, we compared two input feature sets. The large feature set contains information 

on the components’ concentrations, component pKa values, number of protons a buffer can 

accept/donate and the initial pH value of the buffer mixture (prior to any acid/base addition). 

The small feature set contains only information on the components’ concentrations but no 

chemical insights.  

 

As one can see in Figure 4, the performance of different informative features only minimally 

varies across the set of 18 systems. On average, using the large feature set resulted in 3.1 ± 

0.6 iterations and the small feature set in 3.2 ± 0.6. While the results of the GP performance 

without chemical information might seem surprising, it must be noted that additional 

features increase the number of model parameters that need to be learned, as shown in other 

previously reported active ML studies by Pomberger et al.40 The model initialization for each 

single system was conducted with 5% of the training data instead of a consistent number of 

datapoints. While the number of initialization datapoints varies, the focus is on the relative 

comparison of the different feature sets. 
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Figure 4. Illustration of the required active learning iterations using GP to reach target pH for 

a set of buffer systems using two feature sets. Error bars represent the error on the mean 

value. See Table 1 for information on the indexed buffer system positions. 

As a result of the very similar outcome of the experiments (addition or exclusion of chemical 

information) it can be assumed that the strategy can be applied to chemical systems in a 

generic manner, specifically without exact knowledge of the chemical composition or 

chemical structure – a challenge faced when e.g., working with confidential industrial data. 

Due to the slightly better performance, all further experiments were conducted using the 

large feature set within this study. 

 

Variation of the Number of Datapoints for Model Initialization 

The choice of the number of datapoints (obtained via random selection) for initializing the 

closed-loop cycle impacts the preliminary surrogate model’s prediction performance. While 

more initial datapoints could be considered as advantageous to train more accurate surrogate 

models, using fewer datapoints accelerates the overall adjustment process and might allow 

to selectively choose the subsequent datapoints based on the model’s prediction instead of 

initial random allocation. Within this case study we aim to identify this effect by comparing a 

GP, initialized with two, three and four random datapoints. 

 

We investigated different sized initialization datasets for all 18 binary buffer systems, see 

Figure 5. When analyzing the results, we want to directly compare the total number of 

datapoints (i.e. pH measurements) required to obtain the target pH, hence the sum of the 

number of datapoints within the initialization dataset and the number of datapoints obtained 
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during the experimental iterations. Overall, using only two initial datapoints resulted in the 

fastest method, requiring on average 5.8 ± 0.6 total pH measurements, followed by 6.3 ± 0.6 

and 6.8 ± 0.5 pH measurements for three and four initial datapoints, respectively. When 

initializing a model with two datapoints, the subsequent two datapoints are chosen 

selectively as opposed to using four random datapoints for initialization. The results indicate 

that the selective choice of the active ML strategy seems to be beneficial over random 

datapoint allocation, irrespective of the fact that the preliminary model is solely trained on 

two datapoints. 

 
Figure 5. Illustration of the effect of variation in the number of initialization datapoints on the 

total number of pH measurements necessary, using the large feature set and GP model. The 

deviation represents the calculated error on the mean value. See Table 1 for information on 

the indexed buffer system positions. 
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Transfer Learning-Accelerated Closed-Loop Optimization 

Harvesting existing data to facilitate knowledge transfer was explored, to measure if 

preliminary models have a better understanding of the system response to acid/base 

additions, thereby accelerating the process of pH adjustment. In detail, we investigated 

whether prior knowledge of the pH response of single components may accelerate closed-

loop pH adjustment of binary buffered mixtures. For example, information on pH response of 

ammonium and acetate was provided when conducting the pH adjustment of an ammonium-

acetate sample. The titration information of the pure single-component buffer chemicals was 

combined with the initialization data and used for training the initial model. As shown in 

Figure 6, the observable trend is that the addition of prior information improves the 

optimization performance. 

 

 
Figure 6. Comparison of active ML-driven pH adjustment using GP and the full feature set 

with and without the implementation of prior information. The error bars represent the error 

on the mean value. Model initialization was conducted with 5% of the training data. See Table 

1 for information on the indexed buffer system positions. 

Overall, using the GP alone without any prior information (just the initialization data) required 

3.1 ± 0.6 iteration cycles, whereas, when implementing prior information of the single 

components, the number of iterations could be decreased down to 2.2 ± 0.4. Particularly 

challenging chemical systems, such as ammonium-acetate could be adjusted in significantly 

fewer number of iterations.   
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Real-Time Automated pH Adjustment 

After developing a strategy for automating the experimental workflow via a robotic platform 

along with an algorithmic strategy for controlling the addition of acid/base separately, we 

then aimed to merge both efforts. Using Flab, the control code of the liquid handling robot 

allows direct interaction with the algorithmic pH adjustment strategy – the measured data is 

directly used for ML surrogate model training. The results of the subsequent decision making 

(next conditions to evaluate experimentally) is passed to the liquid handling robot. The 

adjustment process and decision making can be monitored in real-time, as shown in Figure 

1b. 

 

While previous experiments were initiated with two - four randomly selected datapoints, we 

now initiated the pH adjustment process with a single datapoint aiming to decrease the 

overall number of required experimental observations. After initial pH measurement (volume 

of added acid/base = 0) the selected volume of titrant is added, and data acquisition 

commences. Figure 7 illustrates the results of the automated pH adjustment, representing 

the average of three single experimental evaluations. The plot indicates the clear differences 

between various buffered systems, ranging from two iterations (citrate-phosphate) to eight 

iterations (acetate-citrate). To demonstrate the performance of our approach for a chemically 

extremely complex equilibrium system and the feasibility of the GP to model the data we 

conducted successful pH adjustment of a sample containing up to four buffer chemicals. For 

a mixture of citrate, phosphate, ammonium and acetate the target pH 6 was achieved within 

3.7 ± 0.4 iterations, thus demonstrating the versatility of the presented data-driven strategy. 

Overall, 4.7 ± 0.4 iterations were required to adjust the sample mixtures to the target pH 6. 
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Figure 7. Results of the experimental case study using the robotic platform and the developed 

active ML closed-loop algorithm to conduct automated pH adjustment of unknown buffered 

systems. For phos-am-ac 1:1:1 the target pH was set to 8 since the initial sample already 

yielded approximately a pH of 6. The error bars represent the error on the mean value, see SI 

Eqn. S2. Abbreviations: am: ammonium, phos: KH2PO4, ac: acetate, ci: citrate. 
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Conclusions 

Within this study, we present a method to adjust the pH of several multi-buffered polyprotic 

solutions to aid chemical laboratories dealing for formulation chemistry. A set target pH can 

be achieved via an iterative workflow in a fully automated manner, using a robotic platform 

informed by an active machine learning-based optimization strategy. 

 

Specifically, a Gaussian process was used to predict the titration curves of several mixtures 

and guide the pH adjustment towards a set target pH. Chemical inputs were featurized 

containing increasing levels of chemical information, delivering only marginally better 

efficiency. This can be regarded as advantageous since it allows to implement this approach 

for systems without the requirement of molecular information, particularly beneficial when 

dealing with confidential industrial formulation samples or when the composition of the 

sample has not yet been characterized in detail. Applying transfer learning to the optimization 

cycle significantly boosted the performance, thus highlighting the main advantage of ML-

driven pH adjustment over PID controlled or manual pH adjustment. Since it is common for 

samples in high-throughput formulation preparation to differ in only one or a few parameters 

in their compositions, learning from previous pH adjustments and transferring the obtained 

system knowledge into a new pH adjustment process has been quantitatively shown to 

benefit the overall workflow. 

 

In an attempt to balance the number of initially randomly chosen datapoints to selectively 

chosen datapoints it was observed that the overall sample efficiency improved when using 

less initial data points. Finally, the strategy was demonstrated within a real experimental 

study with chemical systems containing up to four buffers – connecting the optimization 

algorithm and a robotic platform for conducting sample preparation and fully autonomous 

pH adjustment.  

 

The developed workflow can be particularly beneficial for small scale high-throughput pH 

adjustment experiments as required by R&D facilities in formulation chemistry and may 

incentivize data accumulation and management for pH adjustment processes. Moreover, we 

see a great potential of this technique in the age of personalized cosmetics and medicine as 

well as all other small batch formulation processes. 
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Materials  
Unless mentioned otherwise, all solvents and chemicals were purchased from commercial 

suppliers and were used as received. Compound names are based following the IUPAC 

nomenclature. 

For initial manual experiments a Metrohm 716 DMS Titrino was used and was calibrated via 

three-point calibration using buffers of pH 4, 7 and 10. For the automated pH measurement 

studies the pH meter (VWR Model 662-1767) was also calibrated with the latter buffers. 
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Development of the Robotic Platform 

The requirement to generate experimental training data as well as to have an automated 

experimental pH adjustment device led us develop a robotic platform, based on previously 

reported literature.1, 2 As shown in Figure S1a, the setup consists of a robotic wheel, 

containing up to 24 sample vials (each up to 15 mL), 10 syringe pumps (TriContinent Model 

7026-01), a robotic arm and consisting of two stepper motors to facilitate horizontal and 

vertical movement (Servo Tecnico 1005SNSN-001). The robotic arm was used to move the pH 

electrode (VWR Model 662-1767) into the sample vial as well as to the cleaning positions to 

avoid cross contamination across the samples, see Figure S1b. Moreover, the pH electrode 

has the dosing tubes for acid and base attached, to allow for direct dosing into the sample 

and immediate pH measurement. The cleaning position consists of a continuously flushed vial 

which is connected to a peristaltic pump, providing deionized water, see Figure S1c. The 

pumps were connected to the stock solutions (using PFA tubing) and to the dosing position 

on the wheel, see Figure S2d. Stepper motors and pH electrode were controlled using Arduino 

(Board model: Mega 2560) whereas the pumps were controlled directly via their serial port, 

relying on FLab for communication over all components. Since part of the experiments as well 

as troubleshooting were conducted remotely, we relied on a webcam to monitor the robot’s 

status. Magnetic stirrers (fans modified with magnets) were placed below the cleaning 

position and the position where the pH measurement was conducted to facilitate sufficient 

mixing of the sample, particularly upon acid/base addition. For more information on the 

technical specifications see Cao et al. 1 
 

The platform can be operated without coding experience in screening mode where a 

spreadsheet sheet or a csv file with information about the components (pump volume of the 

stock solution) well as the information about the titration strategy (acid/base, steps, volumes 

per step) is submitted to the robotic platform and all experiments are executed without 

human intervention. Finally, a csv file containing the data of the experiments is received as 

an output and can be directly used for ML modelling purposes.  

 

In order to use the platform for automated pH adjustment, we relied on FLab to facilitate the 

communication between the single components and the ML based optimization strategy, 

allowing for walk-away conditions once the target pH was set. 
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Figure S1. Robotic platform used for conducting automatic pH adjustment. (a) Overall view of the system (B) Detailed view 
of the pH electrode (d) Detailed view of the washing position (d) Detailed view of the dosing position and pH electrode. 
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Machine Learning Models 
 
This section details the identification of suitable hyperparameters of the surrogate models. 

As opposed to traditional hyperparameter tuning – where the objective is to find the 

parameters that deliver a low prediction error – we aimed to decrease the average number 

of iterations to reach the target pH within the active ML-driven closed-loop optimization. The 

presented values are the mean (Eqn. 1) and standard deviation of 10 single experiments, to 

allow for generalizability. Error bars are reported in error on the mean value, see Eqn. 2. 

 

𝜎 = #
1
𝑁
&(𝑥! − 𝜇)"
#

!$%

 Eqn. S1 

𝜎&' =
𝜎

√𝑁 − 1
 Eqn. S2 

where 

𝜎: standard deviation 

𝑥!: single observation  

𝜇: mean value 

𝑁: number	of	observations 
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Preliminary Studies - Extrapolative predictions 

We started with an externally generated pH dataset, containing acid and base titration 

information of 18 binary mixtures, giving a dataset of 1956 single datapoints (single pH 

measurements). Due to the density of datapoints, a simple random split of the data – where 

the data is split up randomly in training and test data – would not allow to understand 

whether the ML model is able to perform useful predictions for realistic applications, such as 

extremely low amount of data. Thus, we selectively chose the data which is present in the 

test and training partition and designed the preliminary experiments as extrapolative 

prediction tasks. 

 

We trained ML models on the experimental titration data of the pure chemicals (e.g., 

ammonium and KH2PO4) and evaluated ML predictions for the binary mixture (experimental 

data was existent), thus performing an extrapolative prediction. The large feature set, using 

chemical information was used. Figure S2 illustrates true vs predicted titration curves – as 

visible the predictions are capable of predicting the trend, however, often clearly miss the 

ground truth.  

 

 
Figure S2. Comparison of predicted vs true pH curves of given systems using base titration data. Each datapoint represents 
a single measurement/prediction, the difference in datapoint density is due to the experimental workflow. 

While we initially attempted to develop a purely predictive model for extrapolation across 

different systems, we understood the underlying challenges and limitations of accurately 
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modelling the pH of multi-buffered mixtures within extrapolative predictions. Eventually, we 

changed our strategy from a purely predictive approach to an iterative strategy, involving 

repeated sampling and model training.  
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Surrogate Models and Hyperparameter Optimization 

In traditional ML hyperparameter optimization the data is split up into train and test partitions 

via random split or cross-validation methods to further conduct hyperparameter tuning. In 

this study we aim to optimize the hyperparameters of the models specifically for the target 

task – active ML driven closed-loop optimization. This approach was applied since the 

hyperparameters need to be tuned according to the same low-data regime which will be 

required for subsequent applications within pH adjustment – using larger datasets and 

conducting train/test splits would not be relevant as this strategy differs from the target task. 

Objective of the hyperparameter tuning was to find configurations that allow the target task 

– pH adjustment – find the objective in the minimum number of iterations. This section details 

the process for the used surrogate models and provides additional information on the 

implementation. 

 
 
Artificial Neural Net 
The artificial neural network model was implemented using Tensorflow Keras 2.3.0. The 

finally used fully connected feed-forward network consists of three hidden layers of 40 nodes 

each and ELU activation function. The final layer consisted of one single node. The weights 

were initialized with the default schemes (Glorot uniform and zeros, respectively). Training 

was done with RMSProp using default parameters over 1000 epochs with a minibatch size of 

32 and a learning rate of 0.015. 

The results of the hyperparameter optimization can be found below. 
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Learning Rate 

 
Figure S3. Comparison of different learning rates for the ANN. 10 single iterations, error bars are reported according to Eqn. 
2. 

Table S1. Summary of the Result of learning rate experiments for ANN. 

Learning rate ac-ci (1:1) ac-KH2PO4 (1:1) am-ac (1:2) ci-KH2PO4 (2:1) average 
0.035 8.7 5.9 6.7 3.1 6.10 
0.025 3.8 4.3 9.5 5.9 5.87 
0.015 10.2 3.7 5.8 4.6 6.07 
0.005 12.4 3.5 6.0 5.4 6.83 

 
The average value of each learning rate was calculated and compared to find the rate with 

the least iterations. Although a learning rate of 0.025 had the least iterations, we decided to 

continue with a learning rate of 0.015 due to the smaller standard deviation, see Figure S3.   
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Epochs 

 
Figure S4. Comparison of different epoch values for the ANN. 10 single iterations, error bars are reported according to Eqn. 
2. 

Table S2. Summary of result of epoch experiments for ANN. 

Epochs ac-ci (1:1) ac-KH2PO4 (1:1) am-ac (1:2) ci-KH2PO4 (2:1) mean 
500 23.0 5.4 7.0 5.7 10.28 
750 19.7 4.3 4.8 8.3 9.28 
1000 12.4 3.5 6.0 5.4 6.83 
1250 16.2 3.9 4.9 4.3 7.33 
1500 14.8 4.0 5.0 5.1 7.23 

 
The average for each learning rate was calculated and compared to find the one with the least 

iterations. A value of 1000 epochs gave the best result across the three chosen datasets. 
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Activation Function 
 

 
Figure S5. Comparison of different activation functions for the ANN. 10 single iterations, error bars are reported according 
to Eqn. 2. 

 

Table S3. Summary of the results of activation function experiment for the ANN. 

AF ac-ci (1:1) ac-KH2PO4 (1:1) am-ac (1:2) ci-KH2PO4 (2:1) mean 
Tanh 5.7 3.2 6.9 3.4 4.80 
ELU 10.9 4.9 5.0 4.9 6.43 
ReLU 14.1 3.8 6.1 5.6 7.40 
Sigmoid 12.4 3.5 6.0 5.4 6.83 

 
The activation function Tanh gave the best results. However, it performed very low during the 

benchmark in combination with all optimized parameters. Therefore, we decided to use the 

second-best activation function, ELU which delivered a better outcome. 
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Number of Neurons 

 
Figure S6. Comparison of different neuron numbers per layer for ANN. 10 single iterations, error bars are reported 
according to Eqn. 2. 

Table S4. Summary of the results of the neuron number experiment for ANN. 

Neurons ac-ci (1:1) ac-KH2PO4 (1:1) am-ac (1:2) ci-KH2PO4 (2:1) mean 
5 17.9 3.4 6.4 7.1 8.70 
10 12.4 3.5 6.0 5.4 6.83 
20 11.6 3.6 3.7 5.9 6.20 
40 7.5 5.0 4.7 3.1 5.08 

 
Due to computational expenses, we stopped at 40 neurons per layer – this value also 

delivered a suitable performance.  
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Number of Layers 
 

 
Figure S7. Comparison of different number of hidden layers for ANN. 10 single iterations, error bars are reported according 
to Eqn. 2. 

Table S5. Summary of the results of hidden layer experiments for ANN. 

Hidden layers ac-ci (1:1) ac-KH2PO4 (1:1) am-ac (1:2) ci-KH2PO4 (2:1) mean 
2 10.5 3.5 4.8 5.9 6.18 
3 8.7 2.8 6.3 7.3 6.28 
4 12.4 3.5 6.0 5.4 6.83 

 
According to the table above, it seems that 2 hidden layers gave the best result. However, in 

combination with the optimized value for the number of neurons per layer (40 neurons) the 

accuracy decreased significantly. For this reason, we decided to increase to 3 hidden layer, 

which better results.  
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Gaussian Process 

We implemented the Gaussian process surrogate model using the package scikitlearn, version 

0.23.0. In terms of the kernel, the empirically tested kernels can be found below, see Table 

S7. For the main analysis we used RBF kernel with a lengthscale limited to the range 0.1 – 

1000. No white kernel was added to account for measurement noise as we did not observe a 

performance boost. 

 
Kernel Function 

 

Figure S8. Comparison of different kernels of the GP using seven training datasets. 10 single iterations, error bars are 
reported according to Eqn. 2. 

Table S6. Results of kernel experiments. 

 ac-ci 
(1:1) 

ac-ci 
(1:2) 

ac-ci 
(2:1) 

ac- 
KH2PO4 
(1:1) 

ac- 
KH2PO4 
(1:2) 

am-ac  
(1:1) 

am-ac  
(1:2) mean 

K1 9.0 7.3 10.1 7.0 6.6 10.0 11.2 8.74 
K2 5.7 2.9 4.2 2.2 3.0 4.0 5.9 3.99 
K3 4.2 2.8 3.7 3.3 3.8 4.9 6.1 4.11 
K4 3.7 1.8 3.9 3.0 2.7 5.3 6.0 3.77 
K5 2.9 1.7 3.2 2.4 2.3 4.9 5.2 3.23 

 
 

Table S7. Details of the used kernel functions.  

K1 C(1.0) * (RBF(1,1e-10) + DotProduct()) 
K2 C(0.1, (1e-5, 1e2)) * RBF(100, (1e-3, 1e5))+ RBF(12, (1e-3, 1e5)) +RBF(1, (1e-3, 1e3)) 
K3 C(0.1, (1e-5, 1e2)) * RBF(1, (1e-3, 1e3)) 
K4 C(1) * RBF(1, (1e-3, 1e3)) 
K5 C(1) * RBF(1, (1e-1, 1e3)) 

 
 
 



 

 15 

Random Forest 

We implemented the random forest surrogate model using the package scikit learn, version 

0.23.0 – this version was used for all subsequent modelling. Based on preliminary insights the 

suitable number of estimators was found to be 400. All other parameters were kept as 

default. 

Number of Estimators 
 

 
Figure S9. Comparison of different numbers of estimators for random forest model. 10 single iterations, error bars are 
reported according to Eqn. 2. 

 
Estimators ac-ci  

(1:1) 
ac-KH2PO4  
(1:1) 

am-ac  
(1:1) 

Ci-KH2PO4 
(1:2) mean 

200 4.8 3.4 5.5 2.3 4 
300 4.8 3.9 4.9 2.1 3.9 
400 3.6 2.6 5.4 1.8 3.4 
500 4.7 4.2 5.7 1.7 4.1 
600 4.5 2.9 4.4 1.8 3.4 
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