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Electrolyte solutions play a vital role in a vast range of important materials chemistry applications. For
example, they are a crucial component in batteries, fuel cells, supercapacitors, electrolysis and carbon
dioxide conversion/capture. Unfortunately, the determination of even their most basic properties from
first principles remains an unsolved problem. As a result, the discovery and optimisation of electrolyte
solutions for these applications largely relies on chemical intuition, experimental trial and error or
empirical models. The challenge is that the dynamic nature of liquid electrolyte solutions require long
simulation times to generate trajectories that sufficiently sample the configuration space; the long
range electrostatic interactions require large system sizes; while the short range quantum mechanical
(QM) interactions require an accurate level of theory. Fortunately, recent advances in the field of
deep learning, specifically neural network potentials (NNPs), can enable significant accelerations in
sampling the configuration space of electrolyte solutions. Here, we outline the implications of these
recent advances for the field of materials chemistry and identify outstanding challenges and potential
solutions.

1 Introduction
Electrolyte solutions are crucially important for materials chem-
istry, particularly for energy and sustainability applications. For
example, the choice of electrolyte solution impacts the efficiency
and safety of battery storage, supercapacitor and carbon cap-
ture/conversion technologies, in which they are deployed. They
are also fundamental to the water splitting/treatment processes.
In all of these applications the specific ions that are present can
have a dramatic impact on the overall behaviour of the system.1

For example, sodium ions are more weakly solvated than lithium
ions. This can result in lower desolvation energy barriers and
hence improved kinetics for battery charging.2 Additionally, re-
placing potassium with sodium has been shown to substantially
accelerate the extraction of CO2 from air using hydroxide solu-
tions.3,4 Finally, the cation can have a significant effect on the
products produced by electrocatalytic CO2 reduction5 and water
splitting.6.

To address the energy and sustainability challenges faced by
modern society, significant advances in the performance of all of
these applications are necessary. Towards these advances, scien-
tists and engineers need the ability to design electrolyte solutions
based on a quantitatively accurate molecular understanding of
their properties. This ambition is depicted in Figure 1.

Quantum density functional theory (DFT) is a crucial and well
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established tool in understanding, designing and optimising new
solid state materials. Although, there are still some limitations
and challenges associated with the accuracy and efficiency of
these methods.7 In contrast, the use of DFT for understanding,
designing and optimising electrolyte solutions has been more lim-
ited. In fact, even the most basic properties of electrolyte solu-
tions such as the solubility of sodium chloride in water still can-
not be predicted accurately from first principles.8 Additionally,
explaining specific ion effects remains a significant challenge.1,9

Knowing the properties of the electrolyte solution such as con-
ductivities and solubilities is critical for large scale models of im-
portant systems. Additionally, many key phenomena occur at the
electrode-electrolyte interface.5,10 Therefore, an accurate theo-
retical treatment of the solid state alone is often of only limited
use. For example, intercalation in batteries and electrocatalytic
reduction are both interfacial processes.

Currently, researchers rely heavily on experimental databases
of electrolyte solution properties. Unfortunately, these often con-
tain unreliable data or are missing key pieces of information.11,12

For instance, the activity coefficients of many fundamental elec-
trolytes such as lithium bicarbonate and rubidium hydroxide in
water have never been reported in the experimental literature to
the best of our knowledge.13

In recent years, researchers have focused on developing predic-
tive approaches to the design of electrolyte solutions for battery
applications using large datasets14,15 such as the the electrolyte
genome project.16 This work could be accelerated by improving
the availability and reliability of the underlying data they rely on.
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Fig. 1 Electrolyte solutions composed of ions dissolved in a solvent
play a fundamental role in a vast range of important materials sci-
ence applications, such as electrochemical energy storage and CO2 cap-
ture/conversion, which are key to combating climate change.

Our understanding of electrolyte solutions lags behind that of
solid state electrodes because electrolytes are inherently more dy-
namic. This means that any reliable treatment of electrolyte so-
lutions requires a well converged statistical description to deter-
mine the relative prevalence of various configurations, which sig-
nificantly increases the computational cost of studying electrolyte
systems. Additionally, long range electrostatic interactions play a
key role in the behaviour of electrolyte solutions requiring large
system sizes. Finally, small inaccuracies in the predicted energies
of different structures can bias the statistical sampling leading
to significant errors in predictions. This means that high levels
of quantum mechanical (QM) theory are required. In contrast,
solid materials, normally occupy a well defined minimum energy
configuration. This removes the need for statistical sampling and
reduces the sensitivity to minor errors in the predicted energies.

Given the challenging nature of this problem, significant ap-
proximations are almost universally used. One is to abandon
the expensive quantum mechanical description, and instead em-
ploy classical molecular dynamics simulations (CMD). Alterna-
tively, the complicated statistical description is abandoned and
calculations of fixed ion-solvent clusters (ISC) of molecules are
performed. Both of these methods can be useful in certain cir-
cumstances. However, despite their wide use, these methods
have never been demonstrated to predict various basic bench-
mark properties of electrolyte solutions and cannot therefore be
expected to provide quantitatively accurate predictions of realis-
tic systems. This is a fundamental limitation of these approaches
as they neglect key aspects of the system.

Research into systems involving electrolyte solutions has been
held back by this fundamental challenge for decades. We believe
a fundamentally new and different approach is long overdue. In
this perspective, we outline how exciting recent developments in
the field of deep learning, specifically neural network potentials
(NNPs), have the potential to finally provide such an approach.
These methods enable long time and large spatial scale simula-
tions of electrolyte solutions while maintaining a high level of
quantum chemical accuracy. Before the utility of this method can
be demonstrated with application to real systems of direct practi-
cal relevance, it is important to demonstrate its validity by repro-
ducing key fundamental benchmark properties of electrolyte so-
lutions. In this article, we provide such a demonstration, showing
that the hydration structure of a sodium ion in water can be ade-
quately reproduced. We also outline the additional fundamental
properties of electrolyte solutions, which should also serve as key
benchmarks. Specifically, we focus on predicting the radial dis-
tribution functions, chemical potentials, diffusivities and reaction
rates. In addition to providing key benchmarks, these properties
are also necessary inputs into large scale modelling of practically
important systems. Their determination is therefore highly im-
portant in cases where these values are not experimentally avail-
able.

We believe this technique is approaching a level where it will
soon have real predictive value for designing the next generation
of materials for critical energy and sustainability applications.
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2 Key Properties
Firstly, we discuss in greater detail some of the key benchmark
properties of electrolyte solutions that any approach should aim
to predict quantitatively. Once these fundamental properties are
reproduced using these methods, we can move on to more com-
plex and practically relevant systems such as electrode-electrolyte
interfaces.

2.1 Chemical Potential

The chemical potential is one of the most fundamental proper-
ties of any electrolyte solution. The chemical potential of a given
species is defined as the rate of free energy change with addition
of that species to the system. In simplified form, it is given by:

µi = µ
0
i + kBT lnciγi (1)

µ0
i is the chemical potential of a single ion in water at infinite

dilution, or equivalently the solvation free energy, ci is the con-
centration of the species i, and γi is the activity coefficient of the
species i at the concentration ci.17 In essence, this quantity repre-
sents the stability of a particular species. It is the key thermody-
namic property for determining chemical and phase equilibria, as
it describes the tendency of a chemical species to change phase or
undergo chemical reactions. For example, the chemical potential
is required to predict salt solubilities and ion speciation.18 Chem-
ical potentials can be related to many other important properties
of electrolyte solution systems such as redox potentials, standard
electrode potentials, pKa’s etc.19

2.2 Activity and Osmotic Coefficients

Activity coefficients describe the deviation of a given species from
ideal (Raoultian) solution behaviour. They are closely related
to the osmotic coefficients, which capture the deviation from
ideal behaviour of the osmotic pressure, another key thermo-
dynamic property of electrolyte solutions. Osmotic coefficients
can be converted from activity coefficients based on the Gibbs-
Duhem equation.18 Researchers have focused on developing the-
oretical methods to calculate thermodynamic properties such as
activity/osmotic coefficients for over a century.18 However, this
problem remains largely unsolved. Essentially, all processes of
practical interest occur at concentrations where the non-ideal be-
haviour captured by these coefficients can neither be neglected
nor accurately estimated with classical theories. The only op-
tion currently to describe these effects is to use equations with
parameters extensively fitted to experiment, such as the Pitzer
equations.20 However, this approach fails for any case that isn’t
well characterised, and in practice often these non-ideal effects
are ignored entirely.

2.3 Radial distribution function

The radial distribution function (RDF) is another critical property
that describes the structure of electrolyte solution. It corresponds
to the normalised average density of atoms around a given ref-
erence atom. In general, it can be defined as the ratio of the
averaged local density of particles at the distance r, to the bulk

density of the particles, as follows:

g(r) = ρ(r)/ρ(∞) (2)

where ρ is the density. The radial distribution function can be cal-
culated directly from molecular dynamic simulations, or through
integral equation approaches, such as the Ornstein-Zernike equa-
tion with a closure approximation. It can be used to connect
microscopic information to macroscopic properties such as activ-
ity/osmotic coefficients and many other thermodynamic proper-
ties via Kirkwood-Buff theory.21,22

2.4 Potential of mean force

Changes in the free energy are critical for understanding the ther-
modynamics and kinetics of electrolyte solutions. The potential
of mean force (PMF) describes the free energy of two species as
a function of separation averaging over all other molecular con-
figurations. For electrolyte solutions, the PMF can be calculated
directly from the radial distribution function as:

w(r) =−kBT ln [g(r)] (3)

It can therefore be indirectly computed by Monte Carlo or molec-
ular dynamic simulations. While in principle the PMF depends on
concentration, its infinite dilution limit is a particularly important
quantity that is useful for determining thermodynamic proper-
ties.21,23

2.5 Kinetic properties

While most equilibrium properties can be related to the chemi-
cal potential, kinetic properties can be more challenging to de-
termine, particularly for cases involving rare events. However,
some important kinetic properties can be related to thermody-
namic properties such as the chemical potential. For instance,
activities can also be related to chemical reaction rates via the
Brönstead-Bjerreum equation24 and free energy barrier heights
or even binding energies can often be a good predictor of ki-
netic processes.2 Some kinetic properties, such as diffusion co-
efficients, can be determined directly from MD simulations when
they are run sufficiently long. For rare-event problems, enhanced
sampling techniques such as metadynamics or umbrella sampling
can be employed.

3 Theoretical methods
Currently there is no well established method for quantitatively
predicting any of the properties outlined above. It is important to
understand the reason for this inadequacy of existing approaches
in order to contextualise the usefulness for the latest deep learn-
ing advances.

A summary of the key points of this section is provided in Ta-
ble 1.

3.1 Continuum solvent models (CSM)

Continuum solvent models (CSM) or implicit solvent models are
widely applied in modelling aqueous electrolyte solutions, espe-
cially for thermodynamic property prediction. While there are a
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Approach Accuracy Efficiency Simplicity Interpretability
Continuum solvent models (CSM) Low High High High

Classical Molecular dynamics (CMD) Moderate Moderate Moderate Moderate
Ion-Solvent Clusters (ISC) Moderate Low Moderate Moderate

Ab Initio Molecular Dynamics (AIMD) High Low Moderate Low
ISC/CSM Moderate Low Moderate Moderate

AIMD/CMD (a.k.a. QM/MM) Moderate Low Low Low
Neural Network Potential Molecular dynamics (NNP-MD) High Moderate Moderate Low

Table 1 A summary of the different approaches to theoretical study of electrolyte solutions and a subjective assessment of their properties in the
criteria of accuracy efficiency, simplicity and interpretability.

diverse range of these models, they are defined by the fact that
they treat the solvent as a continuous medium rather than be-
ing composed of explicit molecules. Compared with explicit sol-
vent models, continuum solvent models have far fewer degrees
of freedom, and hence much lower computational requirements.
Continuum solvent models originated over a century ago with the
work of several Nobel prize winning scientists.18,25 Subsequently,
computational methods were developed that enabled continuum
solvent models to be combined with quantum mechanical calcu-
lations.26 In continuum solvent models, a cavity is constructed
with an appropriate shape and size that contains the solute. The
key parameters needed for these models are the ionic cavity size
and solvent dielectric constant. Born developed a model calculat-
ing the solvation free energy of ions with this approach,25 which
shows good qualitative agreement although it requires some im-
provements.27 Debye and Hückel also developed a continuum
solvent model for activity coefficients computation which works
quantitatively at low concentrations.18

The use of these techniques is extremely common in materi-
als science applications where particular implementations such
as the Poisson-Boltzmann equation, PCM, SMD or COSMO.26 are
most often used. Sophisticated implementations of these methods
have enabled the study of electrolyte solutions at electrode inter-
faces.28,29 The essential problem with these models is that they
do not include realistic short range interactions of ions with other
ions and solvent molecules. This limits their rigorous range of
validity to very low concentrations. Some success has been made
with building modified continuum solvent models with more re-
alistic short range interactions to extend the theory to higher con-
centrations but some reliance on adjustable parameters invariably
remains.28,30,31

3.2 Classical molecular dynamics (CMD)

Classical molecular dynamics (CMD) simulates molecules as ex-
plicit particles with charges to account for the electrostatic in-
teractions; Lennard-Jones potential to characterise short range
Pauli repulsion and medium range dispersion interactions; and
harmonic potentials to capture chemical bonds. More sophisti-
cated models have been developed to describe effects such as po-
larisation and charge transfer. The potential energy/forces are
calculated and then Newton’s second law is used to compute a
trajectory of all the atoms as a function of time. These methods
are now highly developed and applied in many scientific fields,
such as material design and drug discovery. CMD simulations can

be run for very large systems with relatively moderate computa-
tional cost without significant technical difficulty. However, their
key limitation is that they require many parameters which can be
very difficult to determine. These parameters have to be adjusted
to reproduce properties such as solvation free energies and activ-
ity coefficients.22,32 This limits the generalisability and usefulness
of these models as they are only applicable to electrolyte solutions
that are already well characterised experimentally. Furthermore,
significant effort needs to be invested to optimise and adjust their
parameters and generalising these parameters to new systems can
lead to new issues. For example, parameters optimised for bulk
may fail when used to simulate an interface.33

CMD can reproduce experimental properties such as activity
and osmotic coefficients in some cases, if the parameters are care-
fully adjusted. However, almost invariably significant deviations
and breakdowns occur compared with experiments due to diffi-
culties associated with the accurate determination of the param-
eters.21–23

Sophisticated many-body inter atomic potentials extensively fit-
ted to high level quantum chemistry calculations on small clusters
is a promising pathway currently being explored to overcome the
challenge of parameter determination of classical methods.34–36

3.3 Ion-solvent Clusters (ISCs)

In cases where reliable parameters do not exist, and where CSM
fail to provide sufficient accuracy, researchers often use quantum
chemistry calculations on small ion-solvent clusters (ISCs).37,38

These clusters are often embedded in a continuum solvent model.
However, it is difficult to make definitive conclusions from this
approach because the range of configurations the clusters can oc-
cupy is extremely large. This makes it very difficult to obtain
a representative sample. As a result it is often unclear whether
the conclusions drawn are reliable or an artefact of the particu-
lar cluster structures used. The additional effort associated with
identifying the correct representative minimum energy structures
and limited improvements in accuracy also limit the usefulness of
this approach.

3.4 Ab Initio Molecular Dynamics (AIMD)

Ab Initio Molecular Dynamics (AIMD) calculates the energies and
forces on the nuclei using quantum chemistry rather than with a
classical force field. This means it bypasses the parameter deter-
mination problem of CMD. The key challenge for AIMD is finding
approximations capable of solving the Schrödinger equation with
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Fig. 2 A depiction of the fundamental accuracy/efficiency tradeoff be-
tween the different methods currently used to model electrolyte solutions
and the potential for neural network potential molecular dynamics (NNP-
MD) to breakthrough the accuracy/efficiency tradeoff.

sufficient accuracy and efficiency. DFT is the most common level
of theory used. It usually relies on the Born-Oppenheimer ap-
proximation, which assumes that electronic motions and nuclear
motions are separable. Although AIMD is much more expensive
computationally than CMD, there is still a significant and grow-
ing amount of research into using AIMD to research structural
properties of electrolyte solutions39 and even a few cases where
it has been used to study thermodynamic properties.31,40,41 For
example, AIMD has been used to demonstrate the iodide anion
is not strongly adsorbed to the air-water interface, contradicting
the predictions of CMD simulations.33 AIMD has also been used
to compute ion solvation energies accurately41 and even activities
in a moderate concentration range where like ion interactions can
be neglected.31 However, the high computational demands of this
approach limits its practical use. Specifically, it is only available
to researchers with access to large computational resources and
can only be applied to small scale, simple properties. Addition-
ally, even at a quite high level of theory some inaccuracies can
remain which need to be corrected.42 We are therefore stuck in a
trade off between efficiency and accuracy reminiscent of the well
known trade off between energy and power density observed for
electrochemical energy storage systems as shown in Figure 2.

These approaches can be combined in various ways such as
QM/MM simulation where AIMD and CMD are combined43 or
QM/CM where AIMD and ISC models are combined.44 While
these methods are promising, exploring the challenges associated
with interfacing these different methods introduces significant ad-
ditional complexity, requiring significant careful and detailed as-
sessment.

3.5 Neural Network Potential Molecular Dynamics (NNP-
MD)

The use of Neural Network Potential Molecular Dynamics (NNP-
MD) has the potential to allow large spatial and long temporal
scale molecular simulations while maintaining a DFT level of ac-
curacy. The underlying theoretical details of these methods are
beyond the scope of this review and we refer the reader to several
excellent reviews of these methods that have recently been pub-
lished for more detail.45–51 At a high level these methods work by
defining a mapping between atomic coordinates to energies and
forces (occasionally virial tensors also). This mapping contains
a large number of parameters (weights and biases) that can be
systematically adjusted to minimise the error on a set of training
data, combined with an algorithm to systematically optimise the
parameters (Backpropagation). The training data consists of a set
of coordinates and their respective energies/forces. This training
data can be obtained from short AIMD runs or from resampling
of classical MD runs with DFT calculations. A standard approxi-
mation is to treat the total energy as the sum of individual atomic
energies.

Once these parameters have been optimised the network can be
used to predict the energies and forces, for any set of coordinates
at a much lower computational cost than the original method.
This enables much longer temporal and larger spatial scale sim-
ulations of systems. Additionally, because the energy is a sum
of individual atomic energies, these methods can be applied to
simulate much larger scale systems than the training data. These
methods have already been scaled up to simulate simple systems
containing billions of atoms.52 They have also very recently been
incorporated into an automated workflow to enable calculation of
redox potentials, acidity constants, and solvation free energies.53

An additional key advantage of these approaches is that ther-
modynamic integration can be rigorously implemented rely-
ing only on a neural network trained on the initial and final
states.53,54 This is because the intermediate states can be created
by a linear combination of the two force fields. Thermodynamic
integration is a key tool for the calculation of the chemical poten-
tial and related properties so this is an important advantage.

3.5.1 Architectures

A standard (NNP) architecture converts the atomic coordinate in-
formation of some local cluster of atoms into a descriptor vec-
tor, these descriptors are then fed into a standard neural net-
work that predicts a single energy value for each atom. These
can be summed to compute the energy of the whole system, and
differentiated to compute the force. DeePMD-kit55 is an exam-
ple of a software package, which implements this architecture.
While this type of approach has shown promise in various appli-
cations52,56–59,59–63 it can have large training data requirements,
which limits its usefulness as the generation of sufficiently large
training data is still computationally very demanding.

Therefore, a significant amount of research effort is currently
focused on developing improved, more sophisticated architec-
tures to describe the potential energy surface, which in princi-
ple should be able to reduce the amount of required training
data.64–74 Many of these approaches incorporate new and ex-

Journal Name, [year], [vol.],1–11 | 5



citing architectures known as graph neural networks (GNNs) or
message passing neural networks (MPNNs). These approaches
normally represent each atom as a multidimensional feature vec-
tor, which is a function of the atomic number and is iteratively up-
dated using information about the distances and feature vectors
of surrounding atoms. These features are combined with more
standard neural networks to determine atomic energies.

A crucial feature of these architectures is that they are carefully
designed to maintain invariance to molecular rotation, transla-
tion and permutation. Recently, there has been an increased fo-
cus on building models that are additionally equivariant to rota-
tions.48,75,76 In essence, this assures that rotating the molecular
configuration input into the neural network, results in equiva-
lent rotations of the tensors associated with the atoms. An ex-
ample of this is the recently developed Neural Equivariant Inter-
atomic Potentials (NequIP) approach.69 NequIP has been shown
to perform with high accuracy based on a much smaller data set
compared with DeepMD, i.e.,using three orders of magnitude less
AIMD training data. Equivariance was demonstrated to be key to
this improvement.

The specific speed up possible with these methods depends sig-
nificantly on the particular methods and implementation used. In
the application we demonstrate below, NequIP enables a speed
up of approximately three orders of magnitude compared to the
original AIMD method. While this is still slower than standard
CMD, it still enables qualitatively new phenomena to be studied
using only a single GPU. This is a rapidly developing field with
many new approaches from the field of deep learning being in-
corporated and tested with promising results,77 indicating that
further improvement is likely possible.

These methods are now mature enough to be applied to com-
pute structural and kinetic properties of many systems, particu-
larly electrolyte solutions, at an ab initio level of accuracy. Below,
we provide a simple demonstration of these methods by apply-
ing them to simulate the structure and diffusivity of a sodium ion
in water. These properties can then be fed into well-established
theories such as Kirkwood-Buff theory,78 the modified Poisson-
Boltzmann equation28,79 and kinetic models to predict important
practical properties. We demonstrated an example of such an ap-
proach for computing the activities/osmotic coefficients of aque-
ous sodium and chloride ions in a recent preprint.80

Once the reliability of this approach is firmly established it
should be scaled up to many cases to contribute to a database of
key properties of electrolyte solutions such as IonSolvR81 to even-
tually improve and supplement the experimental databases relied
on today. This crucial information can then be used to design
and optimise electrolyte solutions for the many important mate-
rials science applications where they play a role. Additionally, it
should be possible to use these techniques to directly simulate
more complex phenomena such those that occur at the electrode-
electrolyte interfaces.82 For example, a sodium ion undergoing
charge transfer interactions with a battery electrode material. Ad-
ditionally, the linear scaling characteristic of these methods allows
very large scale systems to be studied.74,83 Although, additional
effort will be needed to incorporate long range electrostatic and
Casimir–Lifshitz forces into these large scale simulations. These

DFT-MD (CP2K)

Cluster calcs (ORCA)

 NNP-MD (LAMMPS) 

NNP training (NequIP)

Thermodynamic properties
- Chemical equilbira

- Solubilities

Kinetic properties
- Reaction rates

- Di�usivities

Electrolyte solution models 

Structural details (VMD)

Fig. 3 A depiction of the proposed workflow to compute electrolyte solu-
tion properties. Starting with a short AIMD simulation a neural network
potential is trained using NequIP to accurately and efficiently predict the
energies and forces. Correction terms are determined using higher level
quantum mechanical calculations on small clusters if necessary. These are
combined with the neural network potential to perform large scale/long
time scale molecular dynamics simulations. Structural and kinetic in-
formation can then be extracted from these simulations and be used in
statistical mechanical theories to predict important practical properties
such as chemical potentials.

methods hold particular promise for electrolyte solutions with
slower dynamics where the long equilibration time makes direct
AIMD particularly challenging, such as the organic electrolytes
used in batteries, as well as water in salt electrolytes and ionic
liquids.

The scaling of deep learning methods using much larger mod-
els and training data sets has been demonstrated to be surpris-
ingly impressive and effective in the fields of natural language
processing and image recognition in recent years. The potential
for similar gains in this field are also exciting and should be fur-
ther explored.84

4 Example application
To demonstrate the promise of this approach here we outline the
use of NequIP to compute the hydration structure and diffusivity
of a sodium ion. As outlined above reproducing these basic fea-
tures is the key first step toward predicting many more practically
important properties of electrolyte solutions.

4.1 Workflow
Figure 3 outlines a workflow for computing important properties
of electrolyte solutions. First, high quality short AIMD simulations
are performed using software such as CP2K and the highest level
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Fig. 4 Sodium oxygen radial distribution function predicted using a neural
network potential showing excellent agreement with scaled X-ray diffrac-
tion data (black dashed), direct AIMD simulations using SCAN (brown)
and with a corrected version of the revPBE-D3 functional (red).87–89

of DFT functional possible. In this case we use the strongly con-
strained and appropriate normalised functional (SCAN).85 Sec-
ondly, calculations are performed on small clusters extracted from
the AIMD simulation at more reliable level of theory, in this case
MP2, in order to confirm the reliability and accuracy of the DFT
level of theory. Correction terms can potentially be derived if nec-
essary. We have previously shown that SCAN can very reliably de-
scribe the sodium ion-water interaction so no correction for this
term is required.42 Next NequIP is used to train a NNP. This is
then used to run much longer time scale NNP-MD simulations by
using the NequIP interface with LAMMPS. Computational details
are provided below. We train on a 2.4 M simulation of sodium
chloride using the SCAN functional.

4.2 Sodium-Oxygen RDF prediction
Figure 4 shows the sodium oxygen RDF computed with the
NequIP NNP, showing excellent agreement with pure AIMD re-
sults and rescaled XRD data previously reported.42,86 Most im-
pressively only 2000 frames from a short AIMD simulation were
used in the training of the NNP demonstrating the remarkably
low training data requirements of this approach. There is some
disagreement in the second solvation layer compared with the
original AIMD SCAN simulation. This is attributable to the fact
that the SCAN RDF is not fully converged due to the signifi-
cant computational expense associated with using this functional.
This is demonstrated by the fact that the second peak agrees
well with the better converged previously published simulation
of Na-O RDF using the corrected revised Perdew-Becke-Ernzerhof
with Grimme dispersion correction DFT functional (revPBE-D3-
corr.)87–89 shown in red.39

The longer time scales accessible with this method enables the
calculation of properties that would otherwise be too difficult
to converge with direct AIMD simulation such as diffusivities as
shown in Figure 5.
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Fig. 5 Sodium ion diffusivity predicted using a neural network potential
showing good experimental agreement.

5 Challenges
There are several challenging problems which remain to be solved
with this approach.

5.1 Ab initio accuracy
The first and perhaps most significant problem is that the DFT
functionals used to generate the training data can have signif-
icant inaccuracies associated with them.90–93 One potential so-
lution to this problem is to add correction potentials adjusted
to minimise this error using either higher level calculations on
small clusters39,42,94 or experimental information. Using ma-
chine learning to determine the corrections is also a possibility.95

Alternatively, training a full NNP purely on data from small clus-
ter calculations, which can be performed at higher levels, may
also be feasible.96 Another potential solution is employing a sub-
stantially higher level of theory such as the random phase ap-
proximation (RPA), second order Møller–Plesset (MP2) or double
hybrids DFT functionals, which are now becoming feasible for pe-
riodic systems.97–99. However, these levels of theory also require
significantly larger basis sets, which can be a challenge.

5.2 Long range interactions
An additional problem is that most NNPs currently only use lo-
cal structural information to determine energies. However, of-
ten long range interactions can be important.100,101 In particular,
the electrostatic interactions are long ranged.102 Such long range
interactions are likely to be particularly important for asymmet-
ric systems or low concentrations. A lot of sophisticated work is
focused on addressing this problem for complex systems.103–107

But for electrolyte solutions these interactions are already known
analytically, i.e., a dielectric screened Coulomb interaction. It is
therefore not clear that it is essential to capture them with a NNP.
Delta learning could potentially be applied instead, where every-
thing except the long range interaction is learnt with the NNP,
which is then added to the explicit long range interactions for full
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MD simulations.80,108

5.3 Stability

Finally, these methods can have stability issues which do not nec-
essarily correlate with the error observed on a validation data
set.109 This can result in simulations crashing or making non-
physical predictions. Using better architectures with smaller
training data requirements is one way to address this problem.
Alternatively, a larger and more diverse training data set can be
built by using high temperature MD simulations to make sure it
covers a larger range of configuration space. It is common to use
randomly sampled data from an AIMD simulation to generate the
training data. A better approach could be to bias this sampling
towards low probability/high energy structures to counteract the
thermodynamic bias to lower energy regions. Another option is
the use of active learning which involves identifying structures
where the NNP cannot provide reliable predictions and adding
these to the training data set.53,82,110–112 This approach can be
used to significantly lower training data requirements. A down-
side of this approach is that it requires repeating the NNP training
process several times. It is also important to identify any under-
lying noise/errors in the training data itself which can lead the
NNP to learn nonphysical behaviours.

5.4 Interpretability

Molecular dynamics simulation is already generally less inter-
pretable than more traditional methods such as continuum sol-
vent models, as the key explanatory information must be ex-
tracted from the large trajectories. NNP-MD and AIMD are gen-
erally even less interpretable than CMD as they cannot provide a
partitioning into different intermolecular interactions. However,
in our view it is more important to obtain accurate simulations
from which interpretable information can be extracted from addi-
tional calculations such as energy decomposition analysis, rather
than relying on directly interpretable but less accurate methods.

6 Other uses of Deep learning

There are various other exciting potential uses of deep learning
in this area. While these are less developed at this stage, they
are also extremely promising. This could result in the near fu-
ture with the entire simulation process outlined above being re-
placed with neural networks. For example, one promising ap-
proach is to replace the full QM calculations with a deep learn-
ing architecture to predict the energies. DM21113 and Orbnet114

are two examples of this. DM21 has recently been used for this
purpose to enable the simulation of water, although some issues
remain.115 The other method is to use deep learning to directly
predict the molecular trajectories themselves rather than relying
on direct solution of Newton’s second law to predict the motion
of the atoms.116–118 Other exciting developments are more gen-
eralisable neural networks able to predict forces and energies for
general classes of molecules such as ANI.119

7 Conclusion
The use of neural network potentials offers a pathway to break
through the fundamental efficiency/accuracy trade off that has
plagued the field of electrolyte solution modelling for decades.
This approach, in the near term, should enable the prediction of
many important properties of electrolyte solutions from first prin-
ciples. The inability to do this has been a major factor preventing
the use of first principles methods in the design and optimisa-
tion of electrolyte solutions for many important materials science
applications where they play a fundamental role. Here, we have
demonstrated a pathway to use these techniques to determine im-
portant fundamental properties of electrolyte solutions. We have
also addressed some challenges this approach faces and outlined
promising pathways to overcome these. This is a rapidly develop-
ing and exciting area of research that holds the promise to lead
to significant advances in the field of materials science. The use
of deep learning more generally has the potential to even more
profoundly transform the field of materials science.

8 Computational Details
The computational details for the SCAN and corrected revPBE-
D3 functional AIMD simulations of sodium in water are pro-
vided in a previous publication.39 We used Born-Oppenheimer
ab initio molecular dynamics simulations within the constant vol-
ume NVT (at 300 K) ensemble using periodic boundary con-
ditions, which are performed within the CP2K simulation suite
(http:www.cp2k.org) containing the QuickStep module for the
DFT calculations120. The D3 dispersion correction due to
Grimme89 was used for revPBE. A 0.5 fs time step was used. We
used a double ζ basis set that has been optimized for the con-
densed phase121 in conjunction with GTH pseudopotentials122

using a 400 Ry cutoff for the auxiliary plane wave basis for the
revPBE-D3 simulations and a 1200 Ry cutoff for the SCAN85 sim-
ulations123,124. A Nosé-Hoover thermostat was attached to every
degree of freedom to ensure equilibration125. The energies were
accumulated for ≈ 12 ps after 3 ps of equilibration. The sodium
and potassium simulations for revPBE-D3 consisted of one sodium
ion in a box of 96 water molecules of fixed dimensions of 14.33

Å3 giving a density of 1 g cm−3. The same settings were used for
the corrected revPBE-D3 simulations with the exception that the
multiple force evaluation option was used to combine the DFT
forces with the pairwise forces computed using the FIST method.

8.1 NequIP

To train the NNP, we ran 2.4 M NaCl SCAN simulations at 300K
and 400K in CP2K using the above details for 12 and 8 ps respec-
tively. Forces and energies from 2000 frames extracted from these
simulations were used to train the NNP with NequIP. 500 frames
were held out as a validation set. An equal weighting on forces
and energies was used in the default loss function.69 We decrease
the initial learning rate of 0.01 by a decay factor of 0.5 whenever
the validation RMSE in the forces has not seen an improvement
for three epochs. A radial cutoff distance of 5 Å was used. Two
interaction blocks were used with the maximum l set to two each
with 8 even scalars, vectors and tensors. Only even parity was
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used. All the other parameters were set to the defaults. The
NequIP plugin for LAMMPS126 was used to perform NVT simula-
tions at 300 K for 600 ps. A Nosé-Hoover thermostat was attached
to every degree of freedom to ensure equilibration125.

8.2 Diffusion coefficients calculation

Diffusion coefficients were computed from the mean squared dis-
placements (MSD) of sodium ions in our NNP MD trajectories.
This conversion was carried out using the following diffusion
coefficient-MSD relationship:

D =
MSD

6t
(4)

The results were finally adjusted by finite size corrections127. We
have used the experimental value for the viscosity of pure water
when determining the finite size correction. The experimental
values compared with are for the sodium ion diffusivity in a 2.4
M NaCl solution.128
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