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Abstract

The Quantum Drude Oscillator (QDO) model is a promising candidate for accurately calculating the

van der Waals (vdW) energies. Anisotropic QDO models have recently been used to represent molecular

fragments rather than single atoms. While this model promises accurate calculation of vdW energies, there

is significant room for improvements such as incorporating a proper fragmentation method, higher-order

dispersion corrections, etc. The present work attempts to gauge dipole-dipole interactions’ ability without

fragmentation. A suitable anisotropic damping function is also introduced to work with anisotropic QDO.

This revised model accurately predicts the vdW complex for the majority of the systems considered. This

work indicates the limit of dipole approximation for an anisotropic QDO-based model.
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I. INTRODUCTION

Capturing vdW interaction energy accurately between molecular fragments is essential for un-

derstanding phenomena governed by weak intermolecular interactions. These include interactions

between biological macromolecules, soft interactions between polymer molecules among other

[1–7]. Building on our previous work, we show how the interactions between anisotropic Drude

oscillators can capture vdW interaction effectively and the effect of higher multipoles in such

interactions.

The instantaneous quantum fluctuations of electron density, coupled with Coulomb interaction,

give rise to vdW interaction between electronic fragments. In the parlance of electronic structure

theory, the vdW interaction is the long-range part of dynamical correlation. Computing dynam-

ical correlation, however, is a complex problem for even moderately large electronic systems.

However, due to its omnipresence, the ability to calculate vdW interaction energy with adequate

accuracy is a constant challenge to chemists. Systematic treatment of dynamical correlations,

and therefore of vdW interactions, can be obtained from the post-Hartree-Fock methods such

as coupled-cluster (CC), configuration interaction (CI), and random-phase approximation (RPA),

perturbation theory (PT) etc. However, these methods have steep computational costs rendering

them limited to small systems. On the other hand, density functional theory-based methods are

relatively inexpensive to calculate the energies for larger systems, albeit suffering from the inade-

quate description of electron correlation. This happens due to the unavailability of any universally

accurate exchange-correlation (XC) functionals.

To overcome this limitation, vdW corrections are added on top of the XC functionals resulting

improved description of vdW interaction. Over the years, several popular methods have been

devised for this purpose [8–13]. Theoretically, vdW correction can be obtained by the perturbation

theory on top of the mean-field description of ground-state electron density[14]. Conventionally,

the dispersion interaction can be expanded into many-body interactions as

Edisp = E(2)
disp +E(3)

disp +E(4)
disp + . . . (1)

where E(n)
disp describes the simultaneous interaction between n fragments. In all conventional theo-

ries, the fragments are individual atoms for which the electron density, as well as the polarizabil-

ities, are isotropic. The leading term in Eq.(1) is two-body interaction E(2)
disp which dominates the
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vdW interactions. Furthermore, to avoid the nonlinearity introduced by Coulomb interaction po-

tential, it is customary to expand it into multipoles[14]. Altogether E(2)
disp is the sum of all two-body

interaction terms, each derived from different multipolar interactions [15, 16]. It can be expressed

as

E(2)
disp =−∑

i< j

(
C6,i j

R6
i j

+
C8,i j

R8
i j

+
C10,i j

R10
i j

+ · · ·

)
. (2)

Here, Ri j is the distance between ith and jth atoms. Cn,i j are nth-order dispersion coefficients

between ith and jth atoms. These coefficients are the results of interactions between individ-

ual instantaneous multipoles. They indicate dipole-dipole (n = 6), dipole- quadrupole (n = 8),

dipole-octupole and quadrupole-quadrupole interactions (n = 10) among others. In conjunction

with Eq(2), an appropriate damping function is added to remove the singularity at short distances.

All vdW corrections including Grimme’s -D2 [8], -D3 [9], Tkatchenko-Scheffler(TS) [17] and

many-body dispersion [12] employ empirical parameters in the damping function as well as for

free atom dispersion coefficients.

A popular approach to capture vdW interactions employs quantum Drude oscillators (QDO) to

model the electronic fluctuations. In these approaches, each atom is replaced by a QDO [16, 18–

21]. The parameters of the resulting model Hamiltonian are set by fitting with the point polar-

izability from empirical sources. The interaction energies between them provide the interatomic

dispersion energy. QDO model has been employed to simulate anionic water-cluster [22, 23], vi-

brational spectroscopy of water clusters [24], reproduce the radial probability densities for liquid

noble gas atoms[25] and precursor to force-field development[26–28]. Many-Body Dispersion

(MBD) method [12] is another example where one isotropic QDO per atom has been used to

model electron fluctuation. This method can capture many-body effects of all orders due to the

exact diagonalization of the interaction matrix [29, 30].

Recently, the anisotropic QDO model also has been successfully employed to compute the

vdW interaction[13] between molecular fragments. While the results were promising, errors were

introduced via (1) ad-hoc fragmentation scheme of the molecules, (2) the absence of higher-order

multipoles, and (3) the use of isotropic damping functions. However, the relative importance of

each error source was unclear in Ref.[13]. In this work, we have focused our investigation on

understanding the effects of higher-order multipoles and an anisotropic damping function. To this

end, we analyzed the results from our method for the A24 dataset [31] and a sub-set of complexes
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taken from the NCI-Atlas dataset (D442x10)[32]. We have chosen systems where the total num-

ber of atoms is < 10. This cutoff is introduced to avoid the need for any artificial fragmentation

scheme. We benchmarked our results against the interaction energy calculated via CCSD(T)/CBS

method with large basis sets. The complexes taken from the NCI-Atlas database also provide

benchmark data for potential energy curves.

This paper briefly describes the QDO model, damping function, and computational methodolo-

gies in section-II. In sectionIII we investigated the efficacy of our method on A24 and a subset of

D442 datasets. We conclude the paper in section-IV with indications of a few new directions.

II. THEORY AND COMPUTATIONAL METHODS

A. Calculation of Dispersion energy by QDO

The dispersion interaction between two electronic fragments can be captured from the instan-

taneously induced charge-density fluctuations. These fluctuating charge densities can be modeled

by three-dimensional, charge neutral, anisotropic QDOs placed at the center-of-mass of each frag-

ment. Each QDO consists of a positive charge at the core harmonically connected with a negative

charge. The total Hamiltonian (ĤQDO) between two QDOs, say A and B, is

ĤQDO = ĥA + ĥB +V̂Coul. (3)

V̂Coul is the Coulomb interaction potential between the charges of QDOs A and B. To simplify

our description, we assign all charges equal to unity. The free Hamiltonian of an oscillator A (ĥA)

with mass µA and frequencies (ωx,A,ωy,A,ωz,A) at position~rA = (xA,yA,zA) is given by (in atomic

units),

ĥA =− 1
2µA

∇
2
A +

µA

2
(ω2

x,Ax2 +ω
2
y,Ay2 +ω

2
z,Az2) (4)

with energy eigenvalues

En,A = (nx +
1
2
)h̄ωx,A +(ny +

1
2
)h̄ωy,A +(nz +

1
2
)h̄ωz,A. (5)

The details of the calculation of interaction energy between two anisotropic QDOs are found in

the theoretical section and supporting information of Ref.[13].

4



The leading order interaction energy between two anisotropic QDOs can be calculated from

second-order perturbation theory as,

EAB
QDO =− ∑

mA 6=0,nB 6=0

〈0A0B|H ′ |mAnB〉〈mAnB|H ′ |0A0B〉
W A

m0 +W B
n0

(6)

Here, mi = (mx,my,mz) is an excited state of i oscillator and W i
m0 = h̄(mxωx +myωy +mzωz). H ′

is the dipole part of the Coulomb interaction given by

H ′ =
3

∑
α

3

∑
β

qA(~rA)αTαβ qβ (~rB)β (7)

where,

Tαβ =
3RαRβ −R2δαβ

R5 . (8)

Here R = |~rA−~rB|. The polarizability tensor of anisotropic QDO A is given by,

A =


q2

A
µAω2

x,A
0 0

0 q2
A

µAω2
y,A

0

0 0 q2
A

µAω2
z,A

 (9)

where qA,µA, and ωA are the charge, mass, and frequency of the QDO, respectively. Throughout

this work, the values of qA,qB,µA, and µB are set to unity for simplicity. The frequencies along

three directions viz.ωx,ωy and ωz are obtained by fitting (Eq-(9)) with the polarizability tensor

calculated at CCSD/def2-TZVPPD level.

B. Modification of damping function

The dipole-coupled dispersion energy (E i j
vdW ) between a pair of interacting QDOs (indexed as i

and j) is obtained as,

E i j
vdW = E i j

QDO(Ri j) fdamp(Ri j) (10)

The damping function fdamp(Ri j) is employed to avoid the spurious divergence at small values of

Ri j. We have chosen a Fermi-type function

fdamp(Ri j) =
1

1+ exp
[
−B
(

Ri j

srRvdW
i j
−1
)] (11)
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for this work. Here B and sr are empirical parameters known as the steepness and global scaling

factor, respectively. These parameters depend on the underlying XC functionals[33]. In some

works, another empirical parameter s6 has also been introduced [8, 9, 33] in the fdamp(Ri j). To

reduce the number of empirical parameters, we have not used it in the present work. Additionally,

the introduction of s6 provides a constant and spurious modulation of vdW energy in the very

long-range[33]. For ith and jth molecular fragment pair, we computed Ri j as the distance between

their centers of mass. RvdW
i j is the sum of vdW radii of the ith fragment (RvdW

i ) and jth fragment

(RvdW
j ). In our earlier work[13], the isotropic vdW radius of an anisotropic fragment is calculated

from the power-law relation between point polarizability and vdW radii. [34]. The expression is

given below (in atomic units),

RvdW = 2.54α
1/7 (12)

where, α = (1/3)Tr{A}.

Since, in general, a molecular fragment is not spherically symmetric, the concept of anisotropic

vdW radii has been introduced in the present work. Individual vdW radii along each direction are

computed by

RvdW
(x) = 2.54α

1/7
xx

RvdW
(y) = 2.54α

1/7
yy

RvdW
(z) = 2.54α

1/7
zz .

(13)

The αxx,αyy and αzz terms are the diagonal elements of the dipole polarizability tensor of the

molecule/fragment. Note that for isotropic case, αxx = αyy = αzz producing isotropic vdW radius

RvdW given by Eq.(12).

This anisotropic vdW radii of the fragment allow the interaction energy to differ in different

directions. We also optimized the B and sr parameters for this work. The detailed analysis is

provided in section III.

To obtain the components of the total interaction energy, SAPT2+(3)δmp2 [35] (suggested in

benchmark study in Ref. [36]) calculations are carried out with aug-cc-pVTZ (aug-cc-pVTZ-PP

for atoms heavier than Kr)[37, 38] basis set. The segregation of interaction energy is performed
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by the following equation, [35]

ESAPT 2+(3)δMP2
IE = ESAPT 2

IE +
[
E(21)

disp +E(22)
disp

]
disp

+
[
E(13)

elst,r

]
elst

+
[
E(30)

disp,r

]
disp

+EMP2−ESAPT 2
IE

(14)

The interaction energies at PBE/def2-QZVPPD [39, 40] with dispersion correction -D2[8] and

-D3[9] are calculated with Turbomole 7.5 [41],static polarizability (at CCSD/def2-TZVPPD [40]

level) and SAPT2+(3)δmp2 calculations are performed with Psi4 [42]. It must be mentioned

here that static polarizability tensors were calculated previously at a higher zeta basis, def2-

QZVPPD[13]. However, we have compared the output for both TZ and QZ showing quantitatively

similar results. The calculations of the electron density differences, provided in sectionIII C 1, are

performed with Multiwfn [43] and plotted with VMD [44] at 0.0002 a.u. iso-density value.

III. RESULTS AND DISCUSSION

A. Estimation of anisotropy in A24 dataset

In order to verify the anisotropic nature of the electron density of the monomers of A24 dataset,

we have calculated the vdW radii in all three directions (RvdW
(x) , RvdW

(y) and RvdW
(z) ) using Eq(13). The

different vdW radii for the monomers of the A24 dataset in three different directions are provided

in Table-III A. ‘Ar’ atom is found to be perfectly isotropic, while water, ammonia, HCN, HF,

methane, and borane are nearly isotropic. Moderate anisotropy is observed for the rest of the

monomers. We have also provided the vdW radii for a few monomers of the D442X10 dataset

in the lower panel of Table-III A. Note that the change in anisotropy is directly correlated with

the chain length for long-chain molecules, thereby highlighting the necessity of an anisotropic

damping function.
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Monomers RvdW
x RvdW

y RvdW
z

Water 3.51 3.52 3.49

Ammonia 3.68 3.73 3.68

HCN 3.69 3.69 3.95

HF 3.21 3.21 3.31

Methane 3.79 3.79 3.79

HCHO 3.95 3.67 3.82

Ethene 4.01 3.95 4.21

Ethyne 3.85 4.14 3.85

Borane 3.85 3.71 3.85

Ethane 4.14 4.07 4.07

Ar 3.58 3.58 3.58

diphosphene 4.69 4.36 4.42

CS2 3.97 4.15 4.05

P4 4.85 4.85 4.85

CO2 4.01 3.75 3.65

diphosphine 4.63 4.44 4.53

butadyine 4.62 4.17 4.30

propyne 4.19 4.32 4.13

diazene 3.96 3.86 3.67

methylazide 4.53 4.10 4.12

TABLE I. Anisotropy of vdW radii of the monomers. All values are in atomic units and approximated to

second decimal places.

We optimized B and sr parameters by minimizing the difference between reference CCSD(T)/CBS

and PBE-QDO such that,

ε = ECCSD(T )/CBS− (EPBE +EQDO
vdW ) (15)

is minimized. Here, EPBE and EQDO
vdW are interaction energies from PBE functional and QDO

model, respectively. In reality, however, ε should always be negative for the present method due
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to the absence of higher-order multipoles in our description. We have minimized ε for complexes

in the A24 database to get the optimal B and sr using the differential evolution method in scipy[45].

The optimized value of B and sr for PBE functional are found to be 16 and 0.8, respectively. The

inclusion of higher-order multipole is expected to alter these values and will be the subject of

further studies.

B. Application to A24 dataset

Utilizing these optimized values, the PBE-QDO energy for the A24 dataset are calculated. The

deviation of interaction energy from the reference CCSD(T)/CBS values for PBE, PBE-D2, PBE-

D3 and PBE-QDO methods are presented in the Fig-1.

FIG. 1. Deviation (in kcal/mol) from CCSD(T)/CBS of PBE, PBE-D2, PBE-D3 and PBE-QDO.

Except for the water· · ·ammonia (Cs), HF dimer (Cs), and HF· · ·methane (C3v) complexes,

interaction energy calculated with PBE functional provides under-binding (more positive than

the actual CCSD(T) interaction energies). We computed basis set superposition error (BSSE) for

all complexes by counterpoise method (CP)[46]. We found negligible corrections arising due to
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BSSE for all systems (largest BSSE is found for ethene dimer (D2h) as ≈ 0.0000533 Hartree or

≈ 0.0334 kcal/mol) [47]. In all systems, the PBE-D3 method (blue vertical bars in Fig.1) shows

better agreement with reference interaction energy than the -D2 method. However, these two

methods generally overestimate the interaction energy. On the contrary, the PBE-QDO method

(green vertical bars in Fig.1) shows better agreement with the benchmark results. The only excep-

tion to this trend is ethene dimer (D2h), where the deviation from the reference value is slightly

larger than 0.5 kcal/mol. In most complexes, PBE-QDO underestimates the interaction energy

emphasizing the role of higher multipole moments. The statistical analysis of errors due to PBE,

PBE-D2, PBE-D3, and PBE-QDO are given in Table-III B. Overall, for the A24 dataset, -the D2

correction on PBE deteriorates the result, while -the D3 correction recovers the accuracy. We have

also compared the root mean squared deviation value for PBE and PBE-D2 results with results

from our method (cf. Ref.[48]), which are also provided in Table-III B in parentheses.

TABLE II. Statistical analysis of error by PBE, PBE-D2, PBE-D3 and PBE-QDO with respect to benchmark

CCSD(T)/CBS data of A24 dataset.

- PBE PBE-D2 PBE-D3 PBE-QDO

MAEa 0.386 0.460 0.350 0.236

MREb 0.405 0.308 0.286 0.204

MAREc 0.007 0.009 0.006 0.004

RMSDd 0.473(0.46)e 0.578(0.59)e 0.399 0.284
a Mean Absolute Error (in kcal/mol); b Mean Relative Error; c Mean Relative Absolute Error; d Root Mean

Squared Deviation (in kcal/mol); e Data obtained from Ref.[48]

C. Calculation of D442x10 dataset

To further our investigation, we have chosen 120 small (number of atoms < 10) molecular sys-

tems from D442X10 dataset[32]. These include systems of diverse electronic natures such as noble

gas atoms, P4(number of atoms = 4), CHnXn (n = 1,2,3; X=halogens and number of atoms = 5), S6

(number of atoms = 6) etc. The interaction energy curve (IEC) H2 · · ·P4 and P4 · · ·P4 complexes

are shown in Fig-2. The 10-point IECs show the interaction energies at distances Rscaled = γReq

where γ is the scale factor and Req is the equilibrium distance. The IEC of H2 · · ·P4 shows that
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PBE-QDO (blue curve) accurately describes the interaction energies calculated at CCSD(T) (red

curve) at all distances of the IEC. PBE does not show almost any binding, while both PBE-D2 and

PBE-D3 significantly overbind. Furthermore, PBE-D2 and PBE-D3 methods can not predict the

correct position of the IEC minimum. For P4 · · ·P4 PBE functional can not predict any binding as

well. While PBE-QDO recovers some binding energy compared to PBE, the binding is still vastly

underestimated. PBE-D2 and PBE-D3 fare better than PBE-QDO here but still fail to reproduce

the accurate binding energy curve. Interestingly, PBE-D2 performs better than PBE-D3, which

is counter-intuitive. Since our method does not include any higher order multipole, their explicit

inclusion in the future is expected to correct our results. Further analysis in sectionIII C 1 indicates

that quadrupole-quadrupole interaction may play a significant role in capturing correct binding

energy for this system. IEC for all other complexes is given in Supporting Information (SI).

FIG. 2. IEC (in kcal/mol) for H2 · · ·P4 (A:) and P4 · · ·P4 (B:) complexes against scaled distance.

In almost all systems considered in this dataset, -D2 and -D3 corrections over-bind the com-

plexes, while QDO correction under-binds them, following the same trend observed for the A24

dataset. This problem is quite amenable for our case since the two-body interactions due to higher

multipole are all negative and expected to reduce the error. However, similar corrections to PBE-

D2 or PBE-D3 will increase the error. Only the inclusion of three-body interactions may reduce the

error in these later methods. For a few systems, PBE-QDO correction also produces over-binding.

However, the amounts of such overbinding are generally negligible except for diazene· · ·F2 com-

plex (see Supporting information). However, this particular complex is already over-bound by

PBE itself (BSSE correction ≈ 0.012 kcal/mol and therefore cannot compensate for the error),

and therefore, any vdW correction based on two-body interaction is bound to worsen the situa-
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tion. Among 120 complexes considered, PBE-QDO underestimates 18 complexes by more than 1

kcal/mol. For these cases, PBE also underbinds significantly. As a result, our method could not

stand up to the challenge of correcting all errors introduced by the underlying XC-functional.

For the 120 complexes taken from D442, we have analyzed our results in terms of MAE,

MRE, MARE, and RMSD (Table-III C). The results from bare PBE functional are the least accu-

rate. While the rectification by the PBE-QDO method is still less than PBE-D2 and PBE-D3, the

consistent over-binding by both PBE-D2 and PBE-D3 methods indicates an over-correction by

the corresponding damping functions. However, if we exclude the 18 outliers from the analysis

(values in parentheses in Table III C), PBE and PBE-QDO show significantly improved results.

Moreover, the corrections due to PBE-QDO becomes at par with the PBE-D2 and PBE-D3. We

will separately analyze some of these cases in sectionIII C 1. As seen from the detailed plots in SI,

PBE-QDO consistently underbinds the complexes emphasizing the role of higher multipoles.

The problem of using isotropic vdW radii for fragments in our damping function has already

been discussed before in III. To clarify further, a comparison between the results obtained by

an isotropic (PBE-QDOiso) and an anisotropic (PBE-QDOaniso) damping function are presented

in Table-III C. No significant improvement is observed between PBE and PBE-QDOiso has been

observed, rendering the use of the isotropic damping function useless for our purpose. Therefore,

the anisotropic damping function is an essential element of our model. However, note that the

source of anisotropy is the vdW radii rather than any arbitrary empirical parameters. As a result,

we are not increasing the number of empirical parameters in our present work.

1. Analysis of electron density difference

To investigate the reasons for large deviations in interaction energies for 18 outlier complexes,

electron density differences (EDD) have been computed for them. EDD is computed as the dif-

ference in density of dimer and that of monomers as ∆ρ = ρAB(r)− (ρA(r)+ρB(r)) where ρAB,

ρA and ρB are electron densities of the dimer AB, monomer A and monomer B, respectively. The

EDD for four complexes is presented in Fig3. Our method accurately describes interaction energy

for P4 · · ·H2 complex (≈ 0.01 kcal/mol over-binding). The density deformation at equilibrium

distance is minimal for this complex as well. As a result, the frequency parametrization of QDO

is expected to be unaltered at different inter-monomer distances, thereby explaining our method’s
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TABLE III. Statistical analysis of error by PBE, PBE-D2, PBE-D3 and PBE-QDO with respect to bench-

mark CCSD(T)/CBS data of D442 dataset.e

- PBE PBE-D2 PBE-D3 PBE-QDOaniso
f PBE-QDOiso

g

MAEa 0.674(0.400) 0.238(0.217) 0.210(0.181) 0.465(0.244) 0.637(0.366)

MREb 0.659(0.616) 0.685(0.781) 0.679(0.775) 0.589(0.571) 0.675(0.639)

MAREc 0.007(0.007) 0.002(0.004) 0.002(0.003) 0.005(0.004) 0.007(0.006)

RMSDd 1.056(0.564) 0.313(0.288) 0.298(0.236) 0.778(0.341) 1.018(0.523)
a Mean Absolute Error (in kcal/mol); b Mean Relative Error; c Mean Relative Absolute Error; d Root Mean

Squared Deviation (in kcal/mol); e Values in parentheses are calculated for the same dataset after removing

18 outliers appeared for PBE-QDO. f Values obtained with anisotropic damping function g Values

obtained with isotropic damping function; the form of which is shown in Ref.[13].

success. For P4 · · ·P4, F2 · · ·diazene and S6 · · ·Br2 the change in density is significant. Therefore,

the parametrization of QDO model is expected to change for these systems with the change in

inter-monomer distance. Since our parameterizations are done for free monomer systems, a sig-

nificant deviation from the accurate interaction energy at equilibrium is expected. Indeed, except

for the P4 · · ·H2 complex, all other complexes show such behavior. Interestingly, while the electron

density has changed by a significant amount for F2 · · ·diazene at equilibrium, our method does not

fare very bad here (≈ 0.7 kcal/mol over-binding). We will investigate the reason for this behavior

in the next section. Additionally, the EDD analysis reveals quadrupolar charge distribution com-

pared to the monomer electron density for the later three complexes. Since our method is only

limited to dipole-coupling, it could not capture the quadrupole-quadrupole interaction leading to

the above-mentioned failure.

2. SAPT analysis

The success of our method for the F2 · · ·diazene complex, despite the large charge redistribution

at equilibrium distance compared to the individual monomers, dictated us to investigate the rela-

tive importance of dispersion interaction in these complexes. We compute the relative dispersion

contribution Rdisp as

Rdisp =
Edispersion

Eelectrostatic +Einduction +Edispersion
×100. (16)

13



FIG. 3. EDD plot for (A) P4 · · ·H2, (B) F2 · · ·diazene, C: P4 · · ·P4 and D: S6 · · ·Br2 at 0.0002 a.u. isodensity

value. Blue and red mesh denotes increase and decrease of density respectively.

where Edispersion, Eelectrostatic and Einduction are dispersion, electrostatic and induction contributions

to the total interaction energy. We obtained these contributions via SAPT 2+(3)δMP2 analysis.

We also computed Rdisp for three well behaved systems (Ne· · ·Ne, P4 · · ·H2 and P4 · · ·N2) for

comparison. Table III C 2 summarizes these results.

All 18 systems show higher dispersion contribution towards total interaction energy compared

to F2 · · ·diazene. Therefore, the overall effect of the absence of quadrupole moment in our de-

scription does not affect the accuracy for the case of F2 · · ·diazene. Rdisp for last three complexes

in Table III C 2 are also large. However, since the electron density does not deform significantly

for these complexes at equilibrium distance compared to their monomeric counterpart, we obtain

good results for these systems. This analysis indicates that for systems with (1) large Rdisp and

(2) large density deformation, our model requires contributions from quadrupole moments to at-

tain accuracy. Other systems, which constitute the majority of the concerned databases, are well

described by our method.

3. Performance of PBE-QDO method for varying system sizes

It is imperative to understand the effect of system size on the underlying density functional

and the QDO correction over it. To do so, We have analyzed the deviations of PBE and PBE-

QDO interaction energies from the CCSD(T)/CBS (at equilibrium distance) as a function of the
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TABLE IV. Symmetry Adapted Perturbation Theory 2+(3)δMP2 analysis for selected complexes. All val-

ues (except %Dispersion) are in kcal/mol.

Complexes Electrostatic Exchange Induction Dispersion Total Rdisp

CS2 · · ·Br2 -1.1783 3.2325 -0.1099 -4.0794 -2.1351 75.99

S6 · · ·Br2 -3.1654 7.6502 -0.2342 -7.1029 -2.8523 67.63

P4 · · ·Br2 -2.0290 5.2141 -0.1524 -5.6813 -2.6487 72.26

diphosphene · · ·CCl4 -2.4673 6.3295 -0.4387 -5.3467 -1.9233 64.79

P4 · · ·CHF3 -0.9472 2.5601 0.0722 -3.1853 -1.5001 75.75

CO2 · · · I2 -1.0192 2.6313 -0.2259 -2.9071 -1.5209 70.01

CO2 · · ·CH2Br2 -2.5555 3.8438 -0.4194 -3.8358 -2.9670 56.32

CO2 · · ·CHCl3 -1.3044 2.8603 -0.1794 -3.3182 -1.9418 69.10

hydrogenazide· · ·CI4 -3.1590 6.8818 -1.885 -5.7501 -3.9123 53.27

hydrogenazide· · ·CHCl3 -2.3649 4.3498 -1.1986 -3.8505 -3.0642 51.93

P4 · · ·P4 -4.5426 11.7006 -0.8545 -12.5611 -6.2578 69.94

CO2 · · ·CS2 -1.0933 2.3488 -0.2143 -2.7252 -1.6840 67.57

CO2 · · ·diphosphine -2.1045 3.6130 -0.3752 -3.2971 -2.1638 57.07

CH2I2 · · · I2 -2.2648 6.2515 -0.7205 -6.3128 -3.0466 67.89

CHBr3 · · ·Br2 -4.1919 5.4122 1.7359 -5.2362 -2.2799 68.07

CS2 · · · I2 -1.577 4.1749 -0.1632 -4.9966 -2.5619 74.17

Xe· · ·CH2I2 -0.9690 2.8932 -0.3467 -3.162 -1.5844 70.61

Kr· · ·CHI3 -1.1606 3.0346 -0.1174 -2.9697 -1.2131 69.91

F2 · · ·diazene -0.3636 1.2515 -0.1589 -1.1662 -0.4373 45.55

P4 · · ·H2 -0.3342 1.3988 -0.1225 -1.4453 -0.5032 76.99

P4 · · ·N2 -0.6981 2.4179 0.0459 -2.6746 -0.9089 80.39

Ne· · ·Ne -0.0262 0.1116 0.0007 -0.1301 -0.0439 83.61

system size. Here we employed two metrics of system size. In the first case, we defined the size
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(reminiscent of steric size) of the complexes as their average vdW radii Rcomplex defined as

R̄A = (RvdW
A,x +RvdW

A,y +RvdW
A,z )/3

R̄B = (RvdW
B(x)

+RvdW
B(y)

+RvdW
B(z)

)/3

Rcomplex = R̄A + R̄B

(17)

for monomers A and B. Here RvdW
α,i is the vdW radius of α monomer along i direction (cf. Eq.(13)).

The result is shown in Fig.4(A). We have also analysed the deviation in interaction energy from

bare PBE functional (cf. Eq.(15)) as

ε0 = ECCSD(T )/CBS−EPBE (18)

in the same plot. The other metric of system size used here is the total number of the electrons

Ndimer shown in Fig.4(B). The variation of ε and ε0 with Rcomplex show a polynomial growth of

error for PBE as well as for PBE-QDO. A polynomial fit of the form

∆E = a×Rb
complex + c (19)

were used to quantify the nature of growth. Here, ∆E is the shorthand for ε and ε0. The fitting

parameters a,b and c are provided in Table-V:

Method a b c

PBE −1.5×10−08 8.58 0.23

PBE-QDO −2.0×10−09 9.36 0.21

TABLE V. Fitting parameters for scatter plot of 4(a)

We can see from Fig.4(A) that for both PBE-QDO and PBE , the exponent of growth is quite

large. However, PBE-QDO works better due to small a value. Visual inspection of the plot clearly

shows that the the correction by QDO model is comparatively larger for larger complex size while

still being inadequate to recover the error incurred by the PBE functional. Therefore, a better XC

functional with smaller exponent b is required to be working with present version of our method.

We can see that above around 8.25 bohr, the PBE-QDO method start failing to capture the chemical

accuracy. Similar threshold of 50 electrons can also be obtained from Fig.4(B).
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FIG. 4. A: Size vs accuracy comparison, B: number of electrons vs accuracy between PBE and PBEQDO

for reduced D442 dataset. ε and ε0 are defined in Eq.(15) and Eq.(18) respectively.

IV. CONCLUSION

In summary, we have utilized the anisotropic QDO model coupled with an anisotropic damping

function to capture the intermolecular vdW interactions. The method is applied to A24 and a re-

duced version of the D442X10 dataset without fragmenting the monomers, thus eliminating errors

originating from fragmentation. The only fitting parameter used in the anisotropic damping func-

tion depends upon the XC functional. We have analyzed this model’s accuracy and limitations at

the dipole-dipole interaction limit. Our method fairs well for the large majority of 144 complexes

considered here. We have also analyzed the reasons for our model’s failures for these 18 complexes

via SAPT and electron density difference analyses. We found that the electron density deforms

at the equilibrium distance for all such cases compared to the monomers. Particularly, it affects

the cases where the dispersion contribution to total interaction energy is significant. These results

suggest that the higher-multipole corrections and an on-the-fly QDO parametrization procedure

are required to improve our method further. We will consider these challenges in future works.

With this work, we have pushed our dipole-coupled model to its limit and opened the directions

for further work.
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