Supporting Information: Cu-Catalysed Coupling of Aliphatic Amines with Alkylboronic Esters

Francesca M. Dennis, Antonio Romero Arenas, George Rodgers, Jonathan Andrews, Samantha L. Peralta-Arriaga, Benjamin M. Partridge*

Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, United

Kingdom

Email: <u>b.m.partridge@sheffield.ac.uk</u>

1	. Ge	neral Information	3					
2	. Su	bstrate synthesis	4					
3	. Cu	-catalysed Amination of Alkylboronic Esters						
	3.1.	General Procedures	10					
	3.2.	Optimisation of Reaction Conditions	11					
	3.3.	Scope of Reaction Using Cyclic Amines	13					
	3.4.	Acyclic secondary amines	16					
	3.5.	Coupling of Primary amines	18					
	3.6.	Diastereomeric Compounds	20					
	3.7.	Coupling of Benzylic Boronic Esters	25					
	3.8.	Coupling of Aliphatic Boronic Esters	32					
	3.9.	Coupling of Tertiary Boronic Esters	34					
	3.10.	Synthesis of a TRVP 1 Inhibitor	35					
	3.11.	Mechanistic Studies	36					
4	. NN	IR Spectra	44					
	4.1.	Boronic Esters	44					
	4.2.	Coupling of Secondary Amines	47					
	4.3.	Coupling of Primary Amines	63					
	4.4.	Diastereomeric Compounds	69					
	4.5.	Coupling of Benzylic Boronic Esters	76					
	4.6.	Coupling of Aliphatic Boronic Esters	94					

4.7. Coupling of Tertiary Boronic Esters	97
4.8. Synthesis of a TRVP 1 Inhibitor	100
4.9. Mechanistic Studies	101
5. References	103

1. General Information

All reagents and solvents used were supplied by commercial sources without further purification unless specified.

All air-sensitive reactions were carried out under a nitrogen or argon atmosphere using oven-dried apparatus. Anhydrous Et₂O, THF and toluene were dried and purified by passage through activated alumina columns using a solvent purification system. All petroleum ether used was 40-60 °C petroleum ether. Thin layer chromatography (TLC) was performed on aluminium-backed plates precoated with silica. Compounds were visualised by exposure to UV light or by dipping the plates into solutions of phosphomolybdic acid, ninhydrin, vanillin or KMnO₄ followed by heating. All flash chromatography was carried out using silica gel mesh 40-63. It should be noted that the time taken for chromatography of boronic esters should be kept to minimum to avoid extensive decomposition and reduced yields.

Infra-red spectra were recorded on a Perkin Elmer 100 FT instrument on the neat compound. NMR spectra were recorded on Bruker Advance 400 and 500 instruments at the indicated 101, 128, 126, 377, 400 and 500 MHz as dilute solutions in the indicated deuterated solvent. NMR spectra were recorded at ambient temperature unless otherwise stated. All chemical shifts (δ) reported in parts per million (ppm) relative to residual protio solvent (δ H: CHCl₃ = 7.27 ppm, DMSO = 2.50 ppm or CH₃CN = 1.94 ppm) or the solvent itself (δ C: CDCl₃ = 77.0 ppm, DMSO = 39.5 ppm or CH₃CN = 1.32, 118.3 ppm). All multiplets are designated by the following abbreviations: s = singlet, br s =broad singlet, d = doublet, dt = doublet triplet, td = triplet doublet, ddd = doublet of doublets of doublets, q = quartet, br q = broad quartet, m = multiplet. All coupling constants (J) are reported in Hertz (Hz). ¹³C NMR data were acquired as DEPT-Q experiments as standard. For samples where quaternary carbons were not observed by DEPT-Q, ¹³C NMR spectra were acquired as decoupled spectra. ¹⁹F NMR spectra acquired as decoupled spectra. High-resolution mass spectra were recorded using either electrospray ionization (ESI) or electron ionisation (EI) by the Chemistry Mass Spectrometry Facility in the Faculty of Science, University of Sheffield. HPLC analysis was performed using an Agilent 1260 Infinity II LC system. Melting points were measured using Linkam HFs91 heating stage, used in conjunction with a TC92 controller and are uncorrected.

2. Substrate synthesis

Boronic esters $(1, 6, 9a-d, 9f-9j, 9l-p, 12)^1$ and boronic esters $(9v, 9w)^2$ were prepared by literature methods.

Amines $S2^3$ and amine 12^4 were prepared were prepared by literature methods.

B(pin) (S)-4,4,5,5-Tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane ((S)-1) Boronic ester (S)-1 was prepared according to the procedure of Yun and co-workers.⁵ (s)-1 ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.19 (4H, m, ArH), 7.19-7.08 (1H, m, ArH), 2.45 (1H, q, J = 7.5 Hz, CH), 1.34 (3H, d, J = 7.5 Hz, CHCH₃), 1.22 (6H, s, 2 × CCH₃), 1.21 (6H, s, 2 × CCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 144.9 (C), 128.3 (2 × CH), 127.8 (2 × CH), 125.1 (CH), 83.3 (2 × C), 24.6 (2 × CH₃), 24.6 (2 × CH₃), 17.0 (CH₃).

¹¹**B** NMR (128 MHz, CDCl₃) δ 33.5.

e.r. = 2:98, measured through chiral HPLC analysis of the corresponding alcohol obtained after oxidation. Chiralpak ID column ($250 \times 4.6 \text{ mm}$), IPA:hexane = 1:99, 0.7 mL/min, column temperature = 22 °C, (*R*)-isomer t_r = 20.4 min and (*S*)-isomer t_r = 21.5 min.

B(pin) (±)-2-[1-(4-Chlorophenyl)ethyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9e)

Using a modification of the procedure of Yun and co-workers,⁶ an oven-dried flask was charged with CuCl (0.045 g, 0.45 mmol), tBuOK (0.121 g, 1.08 mmol) and dppBz (0.200 g, 0.45 mmol) and purged with N₂. Anhydrous toluene (16 mL) was added, and the mixture was stirred at room temperature for 10 min. Pinacolborane (3.13 mL, 21.6 mmol) was added and the mixture was stirred for 10 min. The 4-chlorostyrene (2.16 mL, 18.0 mmol) was added and the mixture heated to 60 °C for 16 h. The mixture was cooled to room temperature, passed through a plug of Celite eluting with EtOAc (10 mL), and concentrated *in vacuo*. Flash chromatography (2% EtOAc/petroleum ether) of the crude material gave boronic ester **9e** (1.41 g, 81%) as a white solid. The data were consistent with the literature.⁶

¹H NMR (400 MHz, CDCl₃) 7.25-7.22 (2H, m, ArH), 7.17-7.14 (2H, m, ArH), 2.41 (1H, q, J = 7.5 Hz, CH), 1.31 (3H, d, J = 7.5 Hz, CH₃), 1.21 (6H, s, 2 × CCH₃), 1.20 (6 H, s, 2 × CCH₃).
¹³C NMR (101 MHz, CDCl₃) δ 143.5 (C), 130.7 (C), 129.1 (2 × CH), 128.3 (2 × CH), 83.4 (2 × C), 24.6 (2 × CH₃), 24.6 (2 × CH₃), 16.9 (CH₃).
¹¹B NMR (128 MHz, CDCl₃) δ 33.3.

(±)-4,4,5,5-Tetramethyl-2-[1-(2-naphthalen-1-yl)ethyl]-1,3,2-

dioxaborolane (9k).

Using a modification of the procedure of Yun and co-workers,⁶ an oven-dried flask was charged with CuCl (0.064 g, 0.65 mmol), tBuOK (0.174 g, 1.55 mmol) and dppBz (0.290 g, 0.650 mmol) and purged with N₂. Anhydrous toluene (16 mL) was added, and the mixture was stirred at room temperature for 10 min. Pinacolborane (4.5 mL, 31 mmol) was added and the mixture was stirred for 10 min. The 2-vinylnaphthalene (4.00 g, 26.0 mmol) was added and the mixture heated to 60 °C for 16 h. The mixture was cooled to room temperature, passed through a plug of Celite eluting with EtOAc (10 mL), and concentrated *in vacuo*. Flash chromatography (4% EtOAc/petroleum ether) of the crude material gave boronic ester **9k** (6.20 g, 84%) as a white solid. The data were consistent with the literature.⁷

m.p 80-81 °C (EtOAc); literature = 61-63 °C (not specified).⁸

¹**H** NMR (400 MHz, CDCl₃) δ 7.80-7.74 (3H, m, Ar**H**), 7.65 (1H, s, Ar**H**), 7.45-7.37 (3H, m, Ar**H**), 2.62 (1H, q, *J* = 7.5 Hz, C**H**), 1.43 (3H, d, *J* = 7.5 Hz, CHC**H**₃), 1.22 (6H, s, 2 × CC**H**₃), 1.21 (6H, s, 2 × CC**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 142.6 (C), 133.8 (C), 131.7 (C), 127.6 (CH), 127.5 (CH), 127.5 (CH), 127.2 (CH), 125.6 (CH), 125.2 (CH), 124.7 (CH), 83.4 (2 × C), 24.6 (2 × CH₃), 24.6 (2 × CH₃), 16.8 (CH₃).

¹¹**B NMR** (128 MHz, CDCl₃) δ 34.0.

2-[6-Chloro-1-(phenyl)hexyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9n)

Using a modification of the procedure by Lalic and Armstrong,⁹ a Schlenk flask containing NaO'Bu (0.384 g, 4.00 mmol, 2.0 equiv), IPrCuCl (0.195 g, 0.400 mmol, 0.20 equiv), was backfilled with nitrogen three times. HBpin (0.767 g, 6.00 mmol, 3.0 equiv), anhydrous toluene (40 mL, 0.05 M) and 6-chloro-1-hexyne (0.233 g, 2.00 mmol, 1.0 equiv) were added, and the mixture was stirred at 45 °C until the yellow colour disappeared (~5 mins). Pd₂dba₃ (22.9 mg, 0.025 mmol, 0.0125 equiv), XPhos (47.2 mg, 0.1 mmol, 0.025 equiv) and bromobenzene (0.628 g, 4.00 mmol, 2.0 equiv) were added, and the mixture was vigorously stirred at 45 °C for 18 h. The mixture was cooled to room temperature, diluted with Et₂O (20 mL), and washed with 1 M HCl (20 mL) and brine (20 mL). The organic phase was dried (Na₂SO₄), filtered through a pad a silica gel eluting with Et₂O, and concentrated *in vacuo*.

Flash chromatography (100% hexane \rightarrow 100% CH₂Cl₂) of the crude material gave *boronic ester* **9n** (0.215 g, 33%) as a colourless oil.

IR 2978, 2932, 1371, 1321, 1142 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.28-7.17 (4H, m, Ar**H**), 7.15-7.10 (1H, m, Ar**H**), 3.49 (2H, t, *J* = 6.8 Hz, C**H**₂Cl), 2.29 (1H, t, *J* = 7.9 Hz, C**H**), 1.90-1.80 (1H, m, C**H**_AH_B), 1.78-1.69 (2H, m, C**H**₂CH₂Cl), 1.69-1.60 (1H, m, CH_A**H**_B), 1.48-1.38 (2H, m, C**H**₂), 1.33-1.28 (2H, m, C**H**₂), 1.21 (6H, s, 2 × CC**H**₃), 1.18 (6H, s, 2 × CC**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 143.2 (C), 128.3 (2 × CH), 128.3 (2 × CH), 125.2 (CH), 83.3 (2 × OC), 45.1 (CH₂), 32.5 (CH₂), 32.3 (CH₂), 28.4 (CH₂), 26.8 (CH₂), 24.6 (2 × CH₃), 24.6 (2 × CH₃).
¹¹B NMR (128 MHz, CDCl₃) δ 33.4.

HRMS (QTOF) Exact mass calcd for $[C_{18}H_{28}^{11}B^{35}ClO_2]^+$ [M+H]⁺: 323.1994, found: 323.1959.

Using a modification of the procedure by Aggarwal and co-workers,¹⁰ a Schlenck flask containing carbamate **S1**¹¹ (3.14 g, 14.6 mmol) was backfilled with nitrogen three times. TMEDA (2.18 mL, 14.6 mmol) and anhydrous Et₂O (40 mL) were added, and the mixture was cooled to -78 °C. *s*-BuLi (1.3 M in cyclohexane, 10.4 mL, 14.6 mmol) was added dropwise and the mixture was stirred at -78 °C for 5 h. A solution of 1-methylindole-5-boronic acid pinacol ester (2.49 g, 9.68 mmol) in Et₂O (10 mL) was added dropwise and the mixture was stirred at -78 °C for 1 h. A solution of MgBr₂^{Error! B} ^{ookmark not defined.} in Et₂O¹ (2.67 g, 14.6 mmol, 1 M) was added dropwise and the mixture was stirred at 34 °C for 18 h. Toluene (30 mL) was added and mixture heated to 75 °C for 18 h. H₂O (60 mL) was added, and the mixture extracted with Et₂O (3 × 60 mL). The combined organic layers were dried (MgSO4), filtered, and concentrated *in vacuo*. The crude material was purified by column chromatography (5% EtOAc/45% hexane/50% CH₂Cl₂) to give *boronic ester* **90** (0.633 g, 20%) as an off white solid.

¹ Freshly prepared before use, by the following procedure: A flask was charged with Mg turnings (1.1 equiv.) and purged with N₂. Et₂O (3 mL) followed by 1,2-dibromoethane (1 equiv.) were added, and the mixture was stirred at room temperature for 2 h.

m.p. = 91-93 °C (CH₂Cl₂), no literature data available.

IR 2926, 2890, 1668, 1607, 1447, 1336, 1111 cm⁻¹...

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 (1H, s, Ar**H**), 7.22 (1H, d, J = 8.4 Hz, Ar**H**), 7.12 (1H, d, J = 8.4 Hz, Ar**H**), 7.00 (1H, d, J = 3.1 Hz, Ar**H**), 6.41 (1H, d, J = 3.1 Hz, Ar**H**), 3.76 (3H, s, OCH₃), 3.40-3.32 (2H, m, OCH₂), 3.31 (3H, s, NCH₃), 2.50 (1H, t, J = 8.6 Hz, C**H**), 2.23-2.17 (1H, m, CHCH_AH_B), 1.98-1.89 (1H, m, CHCH_AH_B), 1.21 (6H, s, 2 × CCH₃), 1.19 (6 H, s, 2 × CCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 135.2 (C), 133.4 (C), 128.7 (C), 128.5 (CH), 122.7 (CH), 120.0 (CH), 108.9 (CH), 100.4 (CH), 83.1 (2 × C), 72.2 (CH₂), 58.4 (CH₃), 33.0 (CH₂), 32.8 (CH₃), 24.6 (2 × CH₃), 24.6 (2 × CH₃).

¹¹**B** NMR (128 MHz, CDCl₃) δ 33.7.

HRMS (QTOF) Exact mass calcd for [C₁₉H₂₈¹¹BNNaO₃]+ [M+Na]+: 352.2054. Found: 352.2066.

2-(3-Azidopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9s)

NaN₃ (0.488 g, 7.51 mmol) was added to a solution of 2-(3-bromopropyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (1.25 g, 5.00 mmol) in DMF (3.30 ml) and the mixture was stirred at 60 °C for 24 h. H₂O (50 mL) was added, and the mixture extracted with Et₂O (3×50 mL). The combined organic layers were washed with brine (100 ml), dried (MgSO₄), filtered, and concentrated *in vacuo to* give the azide **9s** as a colourless oil (1.05 g, 99%). The data were consistent with the literature.¹² **¹H NMR** (400 MHz, CDCl₃) δ 3.24 (2H, t, *J* = 7.0 Hz, CH₂N₃), 1.71 (2H, tt, *J* = 7.7, 7.0 Hz, N₃CH₂CH₂), 1.24 (12H, s, $3 \times$ CH₃), 0.83 (2H, t, *J* = 7.7 Hz, CH₂B). **¹³C NMR** (101 MHz, CDCl₃) δ 83.2 ($2 \times$ C), 53.4 (CH₂), 24.8 ($4 \times$ CH₃), 23.5 (CH₂). **¹¹B NMR** (128 MHz, CDCl₃) δ 33.8.

4,4,5,5-Tetramethyl-2-[3-(phenylsulfanyl)propyl]-1,3,2-dioxaborolane (9t)

Thiophenol (0.61 ml, 5.98 mmol) was added to a stirring solution of 2-(3-bromopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.25 g, 5.01 mmol) and K₂CO₃ (1.38 g, 10.0 mmol) in MeCN (10.0 ml) and stirred at r.t. for 22 h. H₂O (50 mL) was added, and the mixture extracted with Et₂O (3×50 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated *in vacuo*. Flash column chromatography (99% hexane/1% Et₃N to 89% hexane/10% Et₂O/1% Et₃N) of the crude

material gave thioether **9t** (1.21 mg, 87%) as a yellow oil. The data were consistent with the literature.¹³

¹**H** NMR (400 MHz, CDCl₃) δ 7.39-7.30 (2H, m, Ar**H**), 7.29-7.22 (2H, m, Ar**H**), 7.18-7.09 (1H, m, Ar**H**), 2.93 (t, *J* = 7.5 Hz, C**H**₂S), 1.78 (2H, tt, *J* = 7.5, 7.7 Hz, CC**H**₂C), 1.24 (12H, s, 3 × C**H**₃), 0.92 (2H, t, *J* = 7.7 Hz, C**H**₂B).

¹³C NMR (101 MHz, CDCl₃) δ 137.1 (C), 128.7 (2 × CH), 128.5 (2 × CH), 125.4 (CH), 83.1 (2 × C), 35.5 (CH₂), 24.8 (4 × CH₃), 23.9 (CH₂).

¹¹**B** NMR (128 MHz, CDCl₃) δ 33.8.

3. Cu-catalysed Amination of Alkylboronic Esters

3.1. General Procedures

General Procedure 1 (GP1): Preparative scale Cu-catalysed amination of alkylboronic esters

 $\begin{array}{c} \text{Bpin} \\ R^1 \overset{\text{Bpin}}{\longleftarrow} R^2 \end{array} \xrightarrow{R^3} \overset{\text{H}}{\overset{\text{N}}{\bigwedge}} R^4 \end{array} \xrightarrow[\text{Toluene: IPA (1:1)}]{\text{Toluene: IPA (1:1)}} \underset{\text{80 °C, air, 18 h}}{\overset{\text{R}^3}{\longrightarrow}} R^3 \overset{\text{R}^4}{\underset{R^2}{\longrightarrow}}$

Isopropyl alcohol (0.38 mL) and toluene (0.38 mL) were added to a flask containing the corresponding boronic ester (0.50 mmol, 1 equiv.), amine (1.75 mmol, 3.5 equiv.) and CuBr₂ (0.05 mmol, 10 mol%), and the mixture was stirred under air at 80 °C until the reaction was complete (as determined by TLC). The mixture was cooled to room temperature, passed through a plug of silica eluting with Et₂O, and concentrated *in vacuo*. The crude material was purified by column chromatography.

A video guide to help readers see how we set up our reaction, including some tips for problem solving, can be found here: <u>https://digitalmedia.sheffield.ac.uk/id/1_isl6hrng.</u>

General Procedure 2 (GP2): Preparative scale Cu-catalysed amination of alkylboronic esters with reductive workup.

$$\begin{array}{c} \text{Bpin} & \text{H} \\ R^{1} \stackrel{\text{L}}{\longleftarrow} R^{2} & R^{3} \stackrel{\text{N}}{\longrightarrow} R^{4} \end{array} \xrightarrow[2]{10 \text{ CuBr}_{2} (10 \text{ mol}\%)}_{\text{Toluene: IPA (1:1)}} \begin{array}{c} R^{3} \\ R^{0} \stackrel{\text{C}}{\leftarrow} \text{, air, 18 h} \\ \hline 2) \text{ NaBH}_{4} (1.3 \text{ equiv}) \\ \text{EtOH, 2 h} \end{array} \xrightarrow[R^{1}]{R^{2}}$$

Isopropyl alcohol (0.38 mL) and toluene (0.38 mL) were added to a flask containing the corresponding boronic ester (0.50 mmol, 1 equiv.), amine (1.75 mmol, 3.5 equiv.) and CuBr₂ (0.05 mmol, 10 mol%), and the mixture was stirred under air at 80 °C until the reaction was complete (as determined by TLC). The mixture was cooled to room temperature, passed through a plug of silica eluting with Et₂O, and concentrated *in vacuo*. EtOH (1 mL) and NaBH₄ (0.025 g, 0.65 mmol) were added, and the mixture stirred at RT for 2 h. The mixture was diluted with EtOAc (10 mL) and H₂O (10 mL) and extracted with EtOAc (3×10 mL). The combined organic phases were dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude material was purified by column chromatography.

3.2. Optimisation of Reaction Conditions

Reactions conducted as part of the optimisation process were typically conducted on 0.5 mmol scale with respect to boronic ester **1**. It was found that smaller scale reactions (e.g. 0.05 mmol scale) did work but showed lower reproducibility, presumably due to inefficient gas transfer from air to solution limiting catalyst turnover which can be harder to control on smaller scale.

Fratras	Cu	Cu	L	Amine	solvent	т (°С)	Time	Conc.	Yield			
Entry	Source	mol%	(mol%)	equiv			Time		1	2	3	4
1 ^b	Cu(OAc) ₂	200	-	4	toluene/pyr	80	16 h	0.1 M	53%	0%	2%	-
2 ^b	CuBr ₂	200	-	4	toluene/pyr	80	16 h	0.1 M	51%	46%	-	-
3 ^b	CuBr	200	-	4	toluene/pyr	80	16 h	0.1 M	36%	51%	0%	-
4 ^b	CuCl	200	-	4	toluene/pyr	80	16 h	0.1 M	43%	5%	3%	-
5 ^b	Cul	200	-	4	toluene/pyr	80	16 h	0.1 M	84%	0%	0%	-
6 ^b	CuCl ₂	200	-	4	toluene/pyr	80	16 h	0.1 M	42%	22%	2%	-
7 ^b	CuBr ₂	200	-	4	toluene/pyr	50	16 h	0.1 M	50%	25%	-	-
8 ^b	CuBr ₂	200	-	4	toluene/pyr	50	64 h	0.1 M	-	63%	-	-
9 ^{b,c}	CuBr ₂	200	-	4	toluene/pyr	80	16 h	0.1 M	51%	26%	0%	-
10 ^{b,d}	CuBr ₂	200	-	4	toluene/pyr	80	16 h	0.1 M	32%	30%	0%	-
11 ^{b,e}	CuBr ₂	200	-	4	toluene/pyr	80	16 h	0.1 M	0%	35%	0%	-
12 ^b	CuBr ₂	100	-	4	toluene/pyr	80	16 h	0.16 M	33%	68%	-	-
13 ^b	CuBr ₂	50	-	4	toluene/pyr	80	16 h	0.16 M	45%	34%	-	-
14 ^b	CuBr ₂	100	-	40	-	80	16 h	0.025 M	<5%	>95%	<5%	-
15 ^b	CuBr ₂	50	L1 (100)	4	toluene/pyr	80	16 h	0.16 M	52%	49%		
16 ^b	CuBr ₂	50	L4 (100)	4	toluene/pyr	80	16 h	0.16 M	63%	22%	-	-
17 ^b	CuBr₂	50	L5 (100)	4	toluene/pyr	80	16 h	0.16 M	65%	32%	-	-
18 ^b	CuBr ₂	50	L6 (100)	4	toluene/pyr	80	16 h	0.16 M	67%	23%	-	-
19 ^b	CuBr ₂	25	L1 (25)	4	toluene	80	16 h	0.16 M	91%	7%	0%	-
20	CuBr ₂	25	L2 (25)	40	-	40	18 h	0.025 M	<5%	95%	-	-
21	CuBr ₂	25	L7 (25)	40	-	40	18 h	0.025 M	<5%	84%	-	-
22	CuBr ₂	25	L3 (25)	40	-	40	18 h	0.025 M	<5%	67%	-	-
23 ^f	CuBr ₂	50	L1 (25)	4	toluene	80	16 h	0.16 M	<5%	30%	34%	-
24 ^g	CuBr ₂	50	L1 (25)	4	toluene	80	16 h	0.16 M	<5%	54%	13%	-
25 ^h	CuBr ₂	50	L1 (25)	4	toluene	80	16 h	0.16 M	<5%	40%	11%	-
26	CuBr ₂	50	-	4	toluene	80	16 h	0.16 M	<5%	45%	13%	-
27	CuBr ₂	25	-	4	toluene	80	16 h	0.16 M	<5%	25%	9%	-
28	CuBr ₂	25	L1 (25)	4	toluene	60	18 h	0.3 M	<5%	81%	9%	10%
29	CuBr ₂	25	L1 (25)	4	IPA	60	18 h	0.3 M	<5%	95%	<5%	3%
30	CuBr ₂	25	L1 (25)	4	dioxane	60	18 h	0.3 M	<5%	88%	10%	2%
31	CuBr ₂	25	L1 (25)	4	PrOAc	60	18 h	0.3 M	<5%	91%	6%	3%
32	CuBr ₂	25	L1 (25)	4	tol/IPA (1:1)	60	18 h	0.3 M	<5%	95%	<5%	2%
33	CuBr ₂	25	L1 (25)	4	tol/IPA (3:1)	60	18 h	0.3 M	<5%	95%	<5%	3%
34	CuBr ₂	25	L1 (25)	4	tol/IPA (1:1)	80	18 h	0.3 M	28%	57%	-	-
35	CuBr ₂	25	L1 (25)	4	tol/IPA (3:1)	80	18 h	0.6 M	<5%	95%	-	-
36	CuBr ₂	25	L1 (25)	4	tol/IPA (3:1)	80	18 h	0.6 M	<5%	95%	-	-
37	CuBr ₂	15	L1 (15)	4	tol/IPA (1:1)	80	18 h	0.6 M	<5%	80%	<5%	-

Entry		Cu	L	Amine	solvent	T (°C) Time	Time	Conc	Yield			
	Source	mol%	(mol%)	equiv			conc.	1	2	3	4	
38	CuBr ₂	15	L1 (15)	4	tol/IPA (3:1)	80	18 h	0.6 M	<5%	94%	6%	-
39	CuBr ₂	15	L1 (15)	3	tol/IPA (1:1)	80	18 h	0.6 M	<5%	84%	9%	-
40	CuBr ₂	15	L1 (15)	3.5	tol/IPA (1:1)	80	18 h	0.6 M	<5%	93%	5%	-
41	CuBr ₂	15	L1 (15)	2	tol/IPA (1:1)	80	18 h	0.6 M	<5%	77%	7%	-
42	CuBr ₂	10	L1 (10)	4	tol/IPA (1:1)	80	18 h	0.6 M	<5%	95%	3%	-
43	CuBr ₂	10	L1 (10)	4	tol/IPA (3:1)	80	18 h	0.6 M	<5%	81%	19%	-
44	CuBr ₂	10	L1 (10)	3	tol/IPA (1:1)	80	18 h	0.6 M	<5%	79%	6%	-
45	CuBr ₂	10	-	3.5	tol/IPA (1:1)	80	18 h	0.6 M	<5%	95%	0%	-
46	CuBr ₂	5	-	3.5	tol/IPA (1:1)	80	18 h	0.6 M	<5%	78%	7%	-
47	CuBr ₂	10	-	3.5	MeCN	80	18 h	0.6 M	<5%	78%	8%	5%
48	CuBr ₂	10	-	3.5	MeCN/IPA (1:1)	80	18 h	0.6 M	<5%	77%	7%	6%
49	CuBr ₂	10	-	3.5	tol/IPA (1:1)	80	4h	0.6 M	44%	55%	-	-
50	CuBr ₂	10	-	3.5	tol/IPA (1:1)	RT	18 h	0.6 M	51%	13%	6%	30%
51	-	0	-	3.5	tol/IPA (1:1)	80	18 h	0.6 M	<5%	<5%	4%	58%
52 ^b	CuBr ₂	10	-	3.5	tol/IPA (1:1)	80	18 h	0.6 M	93%	3%	0%	0%
53	S2	100	-	4	toluene	80	16 h	0.16 M	n.d.	0%	-	-
54 ⁱ	CuBr ₂	10	-	1	tol/IPA (1:1)	80	18 h	0.6 M	20% ^j	46%	35% ^j	12% ^j
OH N ^{Ph}		ĺ			F	N N N N N N N N N N N N N N N N N N N			OMe OMe			
	L1			L2			L3 >Ph Pi	ı		Ph 、	L4	

N_{Ph} OH N_{Ph}

a) Reactions performed using 0.5 mmol of boronic ester **1** unless otherwise stated. Yields determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard; b) reaction carried out under an inert atmosphere (either N₂ or Ar); c) using CsF (2 equiv); d) using Na₂CO₃ (2 equiv); e) using KOtBu (2 equiv); f) using Cs₂CO₃ (0.5 equiv); g) using Na₂CO₃ (0.5 equiv); h) using KOtBu (0.5 equiv); i) reaction using morpholine as the limiting reagent and 3.5 equivalents of boronic ester **1**; j) yield based on boronic ester **1**; pyr = pyridine; tol = toluene; n.d. = not determined

3.3. Scope of Reaction Using Cyclic Amines

(±)-*N*-(1-Phenylethyl)morpholine (2)

Isopropyl alcohol (2.75 mL) and toluene (2.75 mL) were added to a flask containing boronic ester **1** (1.00 g, 4.31 mmol), morpholine (1.31 g, 15.1 mmol) and CuBr₂ (96.3 mg, 2 0.43 mmol), and the mixture was stirred under air at 80 °C for 18 h. The mixture was cooled to room temperature, passed through a plug of silica eluting with Et₂O and EtOAc, and concentrated in vacuo. Flash column chromatography (69% hexane/30% EtOAc/1% Et₃N) of the crude material gave amine **2** (720 mg, 87%) as a colourless oil. The data were consistent with the literature.¹⁴

¹**H NMR** (400 MHz, CDCl₃) δ 7.31-7.23 (4 H, m, Ar**H**), 7.22-7.16 (1H, m, Ar**H**), 3.68-3.58 (4H, m, 2 × OC**H**₂), 3.24 (1H, q, *J* = 6.6 Hz, C**H**), 2.49-2.38 (2H, m, NC**H**₂), 2.36-2.27 (2H, m, NC**H**₂), 1.30 (3H, d, *J* = 6.6 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 143.9 (C), 128.3 (2 × CH), 127.6 (2 × CH), 127.0 (CH), 67.2 (2 × CH₂), 65.4 (CH), 51.3 (2 × CH₂), 19.8 (CH₃).

(±)-N-(1-Phenylethyl)pyrrolidine (5a)

The title compound was prepared according to **GP1** using boronic ester **1** (0.118 g, 0.508 mmol) and pyrrolidine (124.8 mg, 1.75 mmol), heating for 18 h. Flash column chromatography (99% EtOAc/1% Et₃N) of the crude material gave amine **5a** (60.6 mg, 68%) as a colourless oil. The data were consistent with the literature.¹⁵

¹**H NMR** (400 MHz, CDCl₃) δ 7.37-7.27 (4H, m, Ar**H**), 7.25-7.19 (1H, m, Ar**H**) 3.18 (1H, q, *J* = 6.6 Hz, C**H**), 2.61-2.50 (2H, m, NC**H**₂), 2.42-2.32 (2H, m, NC**H**₂), 1.82-1.70 (4H, m, 2 × C**H**₂), 1.41 (3H, d, *J* = 6.6 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 145.6 (C), 128.2 (2 × CH), 127.2 (2 × CH), 126.8 (CH), 66.0 (CH), 53.0 (2 × CH₂), 23.4 (2 × CH₂), 23.1 (CH₃).

(±)-N-(1-Phenylethyl)piperidine (5b)

The title compound was prepared according to **GP1** using boronic ester **1** (0.117 g, 0.504 mmol) and piperidine (0.150 g, 1.76 mmol), heating for 18 h. Flash column chromatography (69% hexane/30% EtOAc/1% Et₃N) of the crude material gave amine **5b** (73.8 mg, 77%) as a colourless oil. The data were consistent with the literature.¹⁶

¹**H** NMR (400 MHz, CDCl₃) δ 7.32-7.27 (4H, m, Ar**H**), 7.27-7.18 (1H, m, Ar**H**), 3.38 (1H, q, J = 6.7 Hz, C**H**), 2.45-2.37 (4H, m, 2 × NC**H**₂), 1.55-1.50 (4H, m, 2 × NCH₂C**H**₂), 1.39-1.34 (5H, m, C**H**₃ and NCH₂CH₂C**H**₂).

¹³C NMR (101 MHz, CDCl₃) δ 143.7 (C), 128.0 (2 × CH), 127.8 (2 × CH), 126.7 (CH), 65.2 (CH), 51.5 (2 × CH₂), 26.2 (2 × CH₂), 24.5 (CH₂), 19.4 (CH₃).

(\pm) -1-(1-Phenylethyl)azepane (5c)

The title compound was prepared according to **GP1** using boronic ester **1** (0.118 g, 0.508 mmol) and 1-acetylpiperazine (0.202 μ L, 1.79 mmol), heating for 18 h. The crude was concentrated under vacuo, dissolved in 5 mL EtOAc and extracted with aqueous HCl (1 M, 3 × 3 mL). The aqueous phases were combined and basified to pH > 10 with a solution of sat Na₂CO₃ and extracted with EtOAc (3 × 10 mL). The organic phase was dried over MgSO₄ and concentrated under vacuo. Flash column chromatography (100% CH₂Cl₂ to 50% CH₂Cl₂/50% EtOAc /1% Et₃N) of the crude material gave amine **5c** (62.9 mg, 61%) as a yellow oil. The data were consistent with the literature.¹⁷

¹**H** NMR (400 MHz, CDCl₃) δ 7.41-7.36 (2H, m, Ar**H**), 7.35-7.29 (2H, m, Ar**H**), 7.26-7.21 (1H, m, Ar**H**), 3.79 (1H, q, *J* = 6.7 Hz, C**H**), 2.66 (4H, br s, 2 × C**H**₂N), 1.60 (8H, br s, 2 × NCH₂C**H**₂C**H**₂), 1.38 (3H, d, *J* = 6.7 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 144.8 (C), 127.9 (2 × CH), 127.6 (2 × CH), 126.5 (CH), 63.2 (CH), 52.0 (2 × CH₂), 28.9 (2 × CH₂), 27.0 (2 × CH₂), 18.2 (CH₃).

(±)-4,4-Difluoro-1-(1-phenylethyl)piperidine (5d)

The title compound was prepared according to **GP1** using boronic ester **1** (0.116 g, 0.500 mmol) and (0.214 g, 1.77 mmol), heating for 18 h. Flash column chromatography (100% CH₂Cl₂ to 5% Et₂O/95% CH₂Cl₂) of the crude material gave *amine* **5d** (61.5 mg, 55%) as a pale-yellow oil.

IR 2973, 2813, 1453, 1363, 1098, 927 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35-7.29 (4H, m, Ar**H**), 7.29-7.22 (1H, m, Ar**H**), 3.52 (1H, q, J = 6.7 Hz, C**H**), 2.59 (dt, J = 11.6, 5.6 Hz, 2H, 2 × NCH_ACH_B), 2.51 (dt, J = 11.6, 5.6 Hz, 2H, 2 × NCH_ACH_B), 2.04-1.88 (4H, m, 2 × C**H**₂), 1.38 (3H, d, J = 6.7 Hz, CHCH₃).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.7 (C), 128.3 (2 × CH), 127.4 (2 × CH), 127.0 (CH), 122.2 (t, $J_{C-F} = 241.6$ Hz, CF₂), 63.7 (CH), 47.0 (t, $J_{C-F} = 5.4$ Hz, 2 × CH₂), 34.2 (t, $J_{C-F} = 22.7$ Hz, 2 × CH₂), 19.3 (CH₃).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -97.9.

HRMS (Q-TOF) Exact mass calcd for [C₁₃H₁₈F₂N]⁺ [M+H]⁺: 226.1402, found: 226.1413.

OH (\pm) -1-(1-Phenylethyl)piperidin-4-ol (5e)

5e

The title compound was prepared using a modification of **GP1** using boronic ester **1** (0.117 g, 0.504 mmol) and 4-hydroxypiperidine (0.181 g, 1.79 mmol), heating for 18 h. The mixture was cooled to room temperature and concentrated *in vacuo*. The mixture was dissolved in EtOAc (5 mL) and extracted with aqueous HCl (1 M, 3×5 mL). The

combined aqueous phases were basified using aqueous NaOH (2 M, 3×5 mL) and extracted with EtOAc (3×10 mL). The combined organic phases were dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude material was purified by column chromatography (99% EtOAc/ 1% TEA) to give amine **5e** (61.5 mg, 60%) as an off-white solid. The data were consistent with the literature.¹⁸ **m.p.** = 100-102 °C (EtOAc), no literature data available.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34-7.27 (4H, m, Ar**H**), 7.26-7.19 (1H, m, Ar**H**), 3.60 (1H, tt, *J* = 8.9, 4.2 Hz, C**H**OH), 3.43 (1H, q, *J* = 6.8 Hz, NC**H**), 2.91-2.80 (1H, m, NC**H**_AH_B), 2.75-2.66 (1H, m, NCH_A**H**_B), 2.24 (1H, br s, O**H**), 2.16-2.02 (2H, m, NC**H**₂), 1.93-1.78 (2H, m, OCHC**H**_AH_B), 1.64-1.46 (2H, m, OCHCH_A**H**_B), 1.37 (3H, d, *J* = 6.8 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 143.6 (C), 128.1 (2 x CH), 127.6 (2 x CH), 126.8 (CH), 68.1 (CH), 64.4 (CH), 48.1 (CH₂), 48.1 (CH₂), 34.7 (CH₂), 34.6 (CH₂), 19.5 (CH₃).

(±)-1,2,3,4-Tetrahydro-2-(1-phenylethyl)isoquinoline (5f)

The title compound was prepared according to **GP2** using boronic ester **1** (0.118 g, 0.506 mmol) and 1,2,3,4-tetrahydroisoquinoline (0.238 g, 1.79 mmol), heating for 18 h. Flash column chromatography (79.5% hexane/20% EtOAc/0.5% Et₃N) of the crude material gave amine **5f** (78.1 mg, 65%) as a yellow oil. The data were consistent with the literature.¹⁴

¹**H NMR** (400 MHz, CDCl₃) δ 7.41-7.38 (2H, m, Ar**H**), 7.36-7.32 (2H, m, Ar**H**), 7.29-7.25 (1H, m, Ar**H**), 7.14-7.08 (3H, m, Ar**H**), 7.02-6.99 (1H, m, Ar**H**), 3.83 (1H, d, *J* = 14.8 Hz, ArC**H**_ACH_BN), 3.62-3.54 (2H, m, C**H** and ArCH_AC**H**_BN), 2.96-2.77 (3H, m, C**H**₂ and C**H**_CCH_D), 2.67-2.60 (1H, m, CH_CCH_D), 1.49 (3H, d, *J* = 6.7 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 144.3 (C), 135.2 (C), 134.6 (C), 128.6 (CH), 128.3 (2 × CH), 127.6 (2 × CH), 126.9 (CH), 126.8 (CH), 126.0 (CH), 125.5 (CH), 64.4 (CH), 53.6 (CH₂), 48.0 (CH₂), 29.3 (CH₂), 20.1 (CH₃).

(±)-4-(1-(8-Oxa-3-azabicyclo[3.2.1]oct-3-yl)ethyl)benzene (5g)

The title compound was prepared according to **GP1** using boronic ester **1** (0.116 g, 0.500 mmol) and 8-oxa-3-azabicyclo[3.2.1]octane (95% w/w, 0.208 mg, 1.75 mmol), heating for 18 h. Flash column chromatography (1: 100% CH₂Cl₂ to 70% hexane/30% EtOAc; 2: 80% hexane/20% Et₂O) of the crude material gave *amine* **5g** (38.3 mg, 35%) as a yellow oil.

IR 2950, 2800, 1451, 1142, 997, 878 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36-7.27 (4H, m, Ar**H**), 7.25-7.17 (1H, m, Ar**H**), 4.35-4.29 (1H, m, OC**H**), 4.20-4.14 (1H, m, OC**H**), 3.29 (1H, q, *J* = 6.7 Hz, C**H**CH₃), 2.75 (1H, dt, *J* = 10.8, 1.8 Hz, NC**H**_AH_B), 2.40-2.31 (2H, m, NC**H**_CH_D, NCH_A**H**_B), 2.19 (dd, *J* = 11.2, 1.5 Hz, 1H, NCHc**H**_D), 2.09-1.98 (1H, m, C**H**_AH_BCH₂), 1.94-1.73 (3H, m, CH_A**H**_BC**H**₂), 1.27 (3H, d, *J* = 6.7 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 145.1 (C), 128.2 (2 × CH), 127.3 (2 × CH), 126.8 (CH), 74.9 (2 × CH), 64.3 (CH), 57.0 (CH₂), 55.2 (CH₂), 28.6 (CH₂), 28.5 (CH₂), 20.0 (CH₃).

HRMS (QTOF) Exact mass calcd for [C₁₄H₂₀NO]⁺ [M+H]⁺: 218.1539, found: 218.1539.

(±)-1-Piperazinecarboxylic acid, 4-(1-phenylethyl)-, 1,1-dimethylethyl ester (5h)

The title compound was prepared according to **GP1** using boronic ester **1** (0.116 g, 0.502 mmol) and *N*-Bocpiperizine (0.326 g, 1.75 mmol), heating for 18 h. Flash column chromatography (69% hexane/30% EtOAc/1% Et₃N) of the crude material gave amine **5h** (0.112 g, 77%) as a colourless oil. The data were consistent with the

literature.14

¹**H** NMR (400 MHz, CDCl₃) δ 7.35-7.29 (4H, m, Ar**H**), 7.28-7.23 (1H, m, Ar**H**), 3.45-3.35 (5H, m, 2 × C**H**₂ and C**H**), 2.50-2.40 (2H, m, C**H**₂), 2.38-2.30 (2H, m, C**H**₂), 1.45 (9H, s, 3 × CC**H**₃), 1.38 (3H, d, *J* = 6.7 Hz, CHC**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 154.7 (C), 143.6 (C), 128.2 (2 × CH), 127.6 (2 × CH), 126.9 (CH), 79.4 (C), 64.7 (CH), 50.2 (4 × CH₂), 28.4 (3 × CH₃), 19.6 (CH₃).

(±)-1-[(4-Methylphenyl)sulfonyl]-4-(1-phenylethyl)piperazine (5i)

The title compound was prepared according to **GP1** using boronic ester **1** (0.116 g, 0.500 mmol) and *N*-tosylpiperizine (0.420 g, 1.75 mmol), heating for 18 h. Flash column chromatography (99% hexane/1% Et₃N \rightarrow 99% Et₂O /1% Et₃N) of the crude material gave amine **5i** (84.6 mg, 49%) as a white solid. The data were consistent with the literature.¹⁹ **m.p.** 148-149 °C (XX). No literature value available.

¹**H** NMR (400 MHz, CDCl₃) δ 7.66-7.59 (2H, m, Ar**H**), 7.35-7.18 (7H, m, Ar**H**), 3.36 (1H, q, J = 6.6 Hz, C**H**), 3.03-2.92 (4H, m, 4 × C**H**₂), 2.62-2.52 (2H, m, C**H**₂), 2.50-2.40 (5H, m, C**H**₂ and ArC**H**₃), 1.32 (3H, d, J = 6.6 Hz, CHC**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 143.6 (C), 143.3 (C), 132.4 (C), 129.6 (2 × CH), 128.3 (2 × CH), 127.9 (2 × CH), 127.5 (2 × CH), 127.1 (CH), 64.4 (CH), 49.5 (2 × CH₂), 46.3 (2 × CH₂), 21.5 (CH₃), 19.5 (CH₃).

3.4. Acyclic secondary amines

(\pm) -N- α -Dimethyl-N-(phenylmethyl)benzenemethanamine (5j)

The title compound was prepared according to **GP1** using boronic ester **1** (0.116 g, 0.503 mmol) and *N*-methylbenzylamine (0.214 g, 1.77 mmol), heating for 18 h.

Flash column chromatography (94% hexane/5% EtOAc/1% Et₃N) of the crude material gave amine **5j** (71.2 mg, 63%) as a colourless oil. The data were consistent with the literature.²⁰

¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.41 (2H, m, Ar**H**), 7.37-7.31 (6H, m, Ar**H**), 7.28-7.22 (2H, m, Ar**H**), 3.66 (1H, q, *J* = 6.8 Hz, C**H**), 3.60 (1H, d, *J* = 13.3 Hz, C**H**_AH_B), 3.32 (1H, d, *J* = 13.3 Hz, CH_A**H**_B), 2.15 (3H, s, NC**H**₃), 1.44 (3H, d, *J* = 6.8 Hz, CHC**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 144.2 (C), 140.1 (C), 128.7 (2 × CH), 128.2 (2 × CH), 128.1 (2 × CH), 127.7 (2 × CH), 126.8 (CH), 126.7 (CH), 63.2 (CH), 58.9 (CH₂), 38.3 (CH₃), 18.4 (CH₃).

(±)-[(4-Fluorophenyl)methyl](methyl)(1-phenylethyl)amine (5k)

^{5k} F The title compound was prepared according to **GP1** using boronic ester **1** (0.116 g, 0.503 mmol) and *N*-methyl-4-fluorobenzylamine (0.245 g, 1.76 mmol), heating for 18 h. Flash column chromatography (94% hexane/5% EtOAc/1% Et₃N) of the crude material gave *amine* **5k** (64.4 mg, 53%) as a colourless oil.

IR 2981, 2790, 1604, 1506, 1453, 1125 cm⁻¹.

5j

¹**H** NMR (400 MHz, CDCl₃) δ 7.44-7.34 (4H, m, Ar**H**), 7.31-7.24 (3H, m, Ar**H**), 7.04-7.96 (2H, m, Ar**H**), 3.65 (1H, q, *J* = 6.7 Hz, C**H**), 3.55 (1H, d, *J* = 13.3 Hz, C**H**_AH_B), 3.28 (2H, d, *J* = 13.3 Hz, CH_A**H**_B), 2.14 (3H, s, NC**H**₃), 1.44 (3H, d, *J* = 6.7 Hz, CHC**H**₃).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.9 (C, d, $J_F = 245.5$ Hz), 144.1 (C), 135.7 (C), 130.1 (2 × CH, d, $J_F = 8.4$ Hz), 128.2 (2 × CH), 127.6 (2 × CH), 126.8 (CH), 114.9 (2 × CH, d, $J_F = 20.5$ Hz), 63.2 (CH), 58.1 (CH₂), 38.2 (CH₃), 18.4 (CH₃).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -116.5.

HRMS (Q-TOF) Exact mass calcd for [C₁₆H₁₈FN]⁺ [M+H]⁺: 244.1496, found: 244.1508.

(±)-N-Methyl-N-(furan-2-ylmethyl)-1-phenylethanamine (5l)

The title compound was prepared according to **GP1** using boronic ester **1** (0.117 g, 0.504 mmol) and *N*-methylfurfurylamine (0.196 g, 1.76 mmol), heating for 18 h. Flash column chromatography (94% hexane/5% EtOAc/1% Et₃N) of the crude material gave amine **51** (69.6 mg, 64%) as a colourless oil. The data were consistent with the literature.²¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.41-7.32 (5H, m, Ar**H**), 7.29-7.24 (1H, m, Ar**H**), 6.33 (1H, dd, J = 3.1, 1.9 Hz, Ar**H**), 6.17 (1H, d, J = 3.1 Hz, Ar**H**), 3.67 (d, J = 14.4 Hz, C**H**_ACH_B), 3.58 (1H, q, J = 6.7 Hz, C**H**), 3.44 (1H, d, J = 14.4 Hz, CH_AC**H**_B), 2.23 (3H, s, NC**H**₃), 1.44 (3H, t, J = 6.7 Hz, CHC**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 152.9 (C), 143.8 (C), 141.9 (CH), 128.2 (2 × CH), 127.7 (2 × CH), 126.9 (CH), 109.9 (CH), 108.3 (CH), 62.7 (CH), 51.0 (CH₂), 38.9 (CH₃), 19.6 (CH₃).

$_{_{_{_{_{_{}}}OMe}}}$ (±)-*N*-(2,2-Dimethoxyethyl)-*N*, α -dimethylbenzenemethanamine (5m)

The title compound was prepared according to **GP1** using boronic ester **1** (0.118 g, 0.508 mmol) and 2,2-dimethoxy-*N*-methylethylamine (0.223 g, 1.78 mmol), heating for 18 h. Flash column chromatography (79% hexane / 20% EtOAc /1% Et₃N) of the crude material gave amine **5m** (86.0 mg, 76%) as a green oil.

IR: 2830, 1451, 1124, 1071 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35-7.27 (4H, m, Ar**H**), 7.26-7.20 (1H, m, Ar**H**), 4.43 (1H, dd, J = 5.5, 5.1 Hz, C**H**O), 3.65 (1H, q, J = 6.8 Hz, CH₃C**H**), 3.30 (3H, s, OC**H**₃), 3.28 (3H, s, OC**H**₃), 2.60 (1H, dd, J = 13.4, 5.3 Hz, C**H**_ACH_B), 2.42 (1H, dd, J = 13.4, 5.3 Hz, CH_AC**H**_B), 2.28 (3H, s, NC**H**₃), 1.38 (d, J = 6.8 Hz, 1H, CHC**H**₃).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.1 (C), 128.0 (2 × CH), 127.8 (2 × CH), 126.8 (CH), 103.3 (CH), 63.8 (CH), 55.3 (CH₂), 53.3 (CH₃), 53.0 (CH₃), 39.7 (CH₃), 17.7 (CH₃).

HRMS (QTOF) Exact mass calcd for [C₁₃H₂₂NO₂]⁺ [M+H]⁺: 224.1645, found: 224.1654.

CN (±)-3-(Methyl-(1-phenylethyl)amine)propanenitrile (5n)

The title compound was prepared according to **GP1** using boronic ester **1** (0.116 g, 0.500 mmol) and *N*-(methylamino)propionitrile (0.143 g, 1.70 mmol), heating for 18 h. Flash column chromatography (60% hexane/40% Et₂O) of the crude material gave *amine* **5n** (65.5 mg, 70%) as a colorless oil.

IR 2974, 2799, 2238, 1251, 1371, 1070, 958 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35-7.30 (4H, m, Ar**H**), 7.27-7.24 (1H, m, Ar**H**), 3.62 (1H, q, J = 6.7 Hz, NC**H**), 2.77 (1H, dt, J = 12.9, 7.2 Hz, NC**H**_AH_B), 2.62 (1H, dt, J = 12.9, 6.8 Hz, NCH_AH_B), 2.42 (2H, dd, J = 7.2, 6.8 Hz, CH₂CN), 2.26 (3H, s, NCH₃), 1.37 (3H, d, J = 6.7 Hz, CHCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 143.3 (C), 128.4 (2 × CH), 127.5 (2 × CH), 127.2 (CH), 118.9 (C),
63.3 (CH), 49.7 (CH₂), 38.4 (CH₃), 18.4 (CH₃), 16.5 (CH₂).

HRMS (Q-TOF) Exact mass calcd for $[C_{12}H_{17}N_2]^+$ [M+H]⁺: 189.1386, found: 189.1393.

3.5. Coupling of Primary amines

HN1

____Ph (±)-N-Phenethyl-1-phenethanamine (50)

The title compound was prepared according to **GP1** using boronic ester **1** (0.127 g, 0.547 mmol) and 2-phenylethylamine (240 μ L, 1.90 mmol), heating for 18 h. The

crude was concentrated under vacuo, dissolved in 5 mL EtOAc and extracted with aqueous HCl (1

M, 3×3 mL). The aqueous phases were combined, basified to pH > 10 with a solution of saturated aqueous Na₂CO₃, and extracted with EtOAc (3×10 mL). The organic phase was dried over MgSO₄ and concentrated *in vacuo*. Flash column chromatography (75% hexane/25% EtOAc \rightarrow 100% EtOAc) of the crude material gave amine **50** (68.3 mg, 55%) as a yellow oil. The data were consistent with the literature.²²

¹**H** NMR (400 MHz, CDCl₃) δ 7.38-7.16 (10H, m, Ar**H**), 3.81 (1H, q, *J* = 6.6 Hz, C**H**), 2.87-2.69 (4H, m, 2 × C**H**₂), 1.45 (1H, br s, N**H**), 1.37 (d, *J* = 6.6 Hz, 3H, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 145.5 (C), 140.0 (C), 128.6 (2 × CH), 128.3 (4 × CH), 126.8 (CH), 126.5 (2 × CH), 126.0 (CH), 58.1 (CH), 48.9 (CH₂), 36.4 (CH₂), 24.3 (CH₃).

(±)-[3-(Morpholin-4-yl)propyl](1-phenylethyl)amine (5p)

⁵p The title compound was prepared according to **GP1** using boronic ester **1** (0.117 g, 0.504 mmol) and 3-morpholinopropylamine (0.253 g, 1.78 mmol), heating for 18 h. Flash column chromatography (97% CH₂Cl₂/2% MeOH/1% Et₃N) of the crude material gave *amine* **5**p (61.7 mg, 49%) as a yellow oil.

IR 2960, 2810, 1675, 1455, 1275, 1118 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36-7.30 (4H, m, Ar**H**), 7.27-7.22 (1H, m, Ar**H**), 3.77 (1H, q, *J* = 6.6 Hz, C**H**), 3.68 (4H, t, *J* = 4.7 Hz, 2 × OC**H**₂), 2.65-2.57 (1H, m, CHNC**H**_ACH_B), 2.54-2.32 (7H, m, CHNCH_AC**H**_B, C**H**₂N(CH₂)₂ and 2 × NC**H**₂CH₂O), 1.76-1.63 (2H, m, NCH₂C**H**₂CH₂), 1.39 (3H, d, *J* = 6.6 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 145.1 (C), 128.4 (2 × CH), 127.0 (CH), 126.5 (2 × CH), 66.9 (2 × CH₂), 58.4 (CH), 57.5 (CH₂), 53.7 (2 × CH₂), 46.5 (CH₂), 26.3 (CH₂), 24.0 (CH₃).

HRMS (Q-TOF) Exact mass calcd for [C15H25N2O]⁺ [M+H]⁺: 249.1961, found: 249.1970

(±)-N-(1-Phenylethyl)aniline (5q)

HN

The title compound was prepared according to **GP1** using boronic ester **1** (0.117 g, 0.505 mmol) and aniline (0.163 mg, 1.75 mmol), heating for 18 h. Flash column chromatography (98% hexane/2% EtOAc) of the crude material gave amine **5q** (44.3

mg, 45%) as an orange oil. The data were consistent with the literature.²³

¹**H NMR** (400 MHz, CDCl₃) δ 7.42-7.38 (2H, m, Ar**H**), 7.37-7.32 (2H, m, Ar**H**), 7.27-7.23 (1H, m, Ar**H**), 7.15-7.09 (2H, m, Ar**H**), 6.70-6.65 (1H, m, Ar**H**), 6.56-6.52 (2H, m, Ar**H**), 4.51 (1H, q, *J* = 6.7 Hz, C**H**), 4.16 (1H, br s, N**H**), 1.55 (3H, d, *J* = 6.7 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 147.1 (C), 145.1 (C), 129.1 (2 × CH), 128.6 (2 × CH), 126.9 (CH), 125.8 (2 × CH), 117.3 (CH), 113.4 (2 × CH), 53.5 (CH), 25.0 (CH₃).

HN HN 5r

F (±)-4-Fluoro-N-(1-phenylethyl)aniline (5r)

The title compound was prepared according to **GP1** using boronic ester **1** (0.116 g, 0.500 mmol) and 4-fluoroaniline (0.196 g, 1.76 mmol), heating for 18 h. Flash column chromatography (98% hexane/2% EtOAc) of the crude material gave

amine 5r (53.0 mg, 49%) as an orange oil. The data were consistent with the literature.²³

¹**H NMR** (400 MHz, CDCl₃) δ 7.40-7.33 (4H, m, Ar**H**), 7.27-7.23 (1H, m, Ar**H**), 6.85-6.78 (2H, m, Ar**H**), 6.48-6.43 (2H, m, Ar**H**), 4.44 (1H, q, *J* = 6.7 Hz, C**H**), 4.04 (1H, br s, N**H**), 1.53 (3H, d, *J* = 6.7 Hz, C**H**₃).

¹³**C NMR** (101 MHz, CDCl₃) δ 155.7 (C, d, J_F = 234.6 Hz), 144.9 (C), 143.5 (C), 128.7 (2 × CH), 127.0 (CH), 125.8 (2 × CH), 115.5 (2 × CH, d, J_F = 22.3 Hz), 114.1 (2 × CH, d, J_F = 7.1 Hz), 54.1 (CH), 25.0 (CH₃).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -128.2.

OMe (±)-4-Methoxy-N-(1-phenylethyl)aniline (5s)

The title compound was prepared according to **GP1** using boronic ester **1** (0.117 g, 0.505 mmol) and *p*-anisidine (0.217 g, 1.76 mmol), heating for 18 h. Flash column chromatography (96% hexane/4% EtOAc) of the crude material gave

amine **5s** (31.6 mg, 28%) as an orange oil. The data were consistent with the literature.²³ **¹H NMR** (400 MHz, CDCl₃) δ 7.41-7.37 (2H, m, Ar**H**), 7.36-7.32 (2H, m, Ar**H**), 7.31-7.21 (1H, m, Ar**H**), 6.75-6.69 (2H, m, Ar**H**), 6.53-6.47 (2H, m, Ar**H**), 4.44 (1H, q, *J* = 6.7 Hz, C**H**), 3.72 (3H, s, OC**H**₃), 1.52 (3H, d, *J* = 6.7 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 151.9 (C), 145.4 (C), 141.5 (C), 128.6 (2 × CH), 126.8 (CH), 125.9 (2 × CH), 114.7 (2 × CH), 114.6 (2 × CH), 55.7 (CH₃), 54.3 (CH), 25.1 (CH₃).

3.6. Diastereomeric Compounds

(±)-2-Methyl-1-(1-phenylethyl)piperidine (5t)

The title compound was prepared according to **GP1** using boronic ester **1** (0.117 g, 0.502 mmol) and 2-methyl piperidine (0.175 g, 1.76 mmol), heating for 18 h. Flash column chromatography (69% hexane/30% EtOAc/1% Et₃N) of the crude material gave amine **5ta** (21.0 mg, 21%) as a yellow oil and amine **5tb** (17.3 mg, 17%) as a yellow oil. The data for **5ta**²⁴ and **5tb**²⁵ were consistent with the literature.

(±)-(*S*,*S*)-2-Methyl-1-(1-phenylethyl)piperidine (5ta)

IR 2930, 2793, 1447, 1373, 1279, 1066 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.47-7.42 (2H, m, ArH), 7.35-7.29 (2H, m, ArH), 7.24-5ta
¹H NMR (400 MHz, CDCl₃) δ 7.47-7.42 (2H, m, ArH), 7.35-7.29 (2H, m, ArH), 7.24-7.20 (1H, m, ArH), 4.07 (1H, q, J = 6.7 Hz, ArCH), 2.87-2.80 (1H, m, NCHCH₂), 2.40-2.33 (1H, m, CH_ACH_B), 2.20-2.12 (1H, m, CH_ACH_B),1.75-1.68 (1H, m, CH₂), 1.67-1.59 (1H, m, CH₂), 1.47-1.31 (4H, m, 2 × CH₂), 1.27 (3H, d, J = 6.7 Hz, ArCHCH₃), 1.14 (3H, d, J = 6.3 Hz, CH₂CHCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 145.8 (C), 127.9 (2 × CH), 127.7 (2 × CH), 126.2 (CH), 56.6 (CH), 52.0 (CH), 44.9 (CH₂), 34.7 (CH₂), 26.4 (CH₂), 23.4 (CH₂), 17.0 (CH₃), 12.5 (CH₃). HRMS (QTOF) Exact mass calcd for [C₁₄H₂₁N]⁺ [M+H]⁺: 204.1747, found: 204.1751.

(±)-(*R*,*S*)-2-Methyl-1-(1-phenylethyl)piperidine (5tb)

IR 2940, 2523, 1455, 1205, 1064 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35-7.22 (5H, m, Ar**H**), 4.10 (1H, q, J = 6.9 Hz, ArC**H**), ^{5tb} 2.89-2.83 (1H. m, NC**H**_AH_B), 2.39-2.32 (1H, m, NC**H**CH₂), 2.18-2.09 (1H, m, NCHA**H**_B), 1.64-1.50 (4H, m, 2 × C**H**₂), 1.42 (3H, d, J = 6.9 Hz, ArCHC**H**₃), 1.39-1.29 (1H, m, C**H**₂), 1.25-1.17 (1H, m, C**H**₂), 1.14 (3H, d, J = 6.2 Hz, CH₂CHC**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 141.8 (C), 128.1 (2 × CH), 127.8 (2 × CH), 126.6 (CH), 57.4 (CH), 52.4 (CH), 44.8 (CH₂), 34.7 (CH₂), 26.5 (CH₂), 22.9 (CH₂), 20.1 (CH₃), 17.3 (CH₃).

HRMS (QTOF) Exact mass calcd for $[C_{14}H_{21}N]^+$ $[M+H]^+$: 204.1747, found: 204.1754.

(±)-3-Methyl-4-(1-phenylethyl)morpholine (5u)

The title compound was prepared according to **GP1** using boronic ester **1** (0.116 g, 0.498 mmol) and (*R*)-3-methylmorpholine (182 mg, 1.80 mmol), heating for 18 h. The mixture was concentrated *in vacuo*, dissolved in 5 mL EtOAc and extracted with aqueous HCl (1 M, 3×3 mL). The combined aqueous phases were and basified to pH > 10 using saturated aqueous Na₂CO₃, and extracted with CH₂Cl₂ (3×10 mL). Flash column chromatography (75% hexane/25% EtOAc to 50% hexane/50% EtOAc) of the crude material gave two diastereoisomers, *amine* **5ua** (23.5 mg, 23%) as a colourless oil and *amine* **5ub** (23.2 mg, 23%) as a colourless oil.

Mixture of diastereomers:

HRMS (Q-TOF) Exact mass calcd for [C₁₃H₂₀NO]⁺ [M+H]⁺: 206.1539, found: 206.1547.

Data for 5ua:

IR 2965, 2848, 1446, 1138, 1125, 1076 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.44-7.38 (2H, m, Ar**H**), 7.34-7.28 (2H, m, Ar**H**), 7.25-7.19 (1H, m, Ar**H**), 3.98 (1H, q, *J* = 6.8 Hz, ArC**H**), 3.75 (dd, *J* = 10.9, 3.0 Hz, 1H, CHC**H**_ACH_B), 3.60 (dt, *J* =

10.8, 4.4 Hz, 1H, CH₂CH_ACH_B), 3.52 (dd, J = 10.8, 5.2, 5.0 Hz, 1H, CH₂CH_ACH_B), 3.43 (dd, J = 10.9, 6.7 Hz, 1H, CHCH_ACH_B), 2.97 (1H, dqd, J = 6.7, 6.5, 3.0 Hz, NCHCH₃), 2.33-2.25 (2H, m, NCH₂), 1.29 (3H, d, J = 6.8 Hz, ArCHCH₃), 1.11 (3H, d, J = 6.5 Hz, CH₂CHCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 144.6 (C), 128.1 (2 x CH), 127.7 (2 x CH), 126.6 (CH), 73.3 (CH₂), 67.8 (CH₂), 56.9 (CH), 51.0 (CH), 44.3 (CH₂), 13.4 (CH₃), 12.0 (CH₃).

Data for 5ub:

HN

5v

IR 2965, 2848, 1452, 1136, 1125, 969 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37-7.20 (5H, m,), 3.97 (1H, q, *J* = 6.9 Hz, ArCH), 3.80-3.67 (2H, m, OCH₂), 3.61 (1H, dd, *J* = 10.9, 3.1 Hz, OCH_AH_BCH), 3.33 (1H, dd, *J* = 10.9, 6.5 Hz, OCH_AH_BCH), 2.82-2.72 (1H, m,), 2.50-2.37 (2H, m, NCH₂), 1.39 (3H, d, *J* = 6.9 Hz, ArCHCH₃), 1.04 (3H, d, *J* = 6.4 Hz, CH₂CHCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 141.4 (C), 128.1 (2 x CH), 128.0 (2 x CH), 126.9 (CH), 73.2 (CH₂), 67.8 (CH₂), 57.8 (CH), 51.2 (CH), 44.2 (CH₂), 19.9 (CH₃), 12.0 (CH₃).

(±)-Bis(1-phenylethyl)amine (mixture of diastereoisomers) (5v)

The title compound was prepared according to GP1 using boronic ester 1 (0.116 g, 0.500 mmol) and (*R*)-methylbenzylamine (212 mg, 1.75 mmol), heating for 18 h. Flash column chromatography (dichloromethane to 69% hexane/ 30% EtOAc/ 1% Et₃N) of the crude material gave amine 5v (63.6 mg, 56%, *dl/meso* = 1:0.98) as a yellow oil. The data were not with the literature ²⁶

consistent with the literature.²⁶

¹**H** NMR (400 MHz, CDCl₃) δ 7.42-7.22 (20H, m, Ar**H**, *dl* and *meso* isomers), 3.81 (2H, q, *J* = 6.5 Hz, C**H**, *dl* isomer), 3.55 (2H, q, *J* = 6.7 Hz, C**H**, *meso* isomer), 1.66 (2H, br s, N**H**, *dl* and *meso* isomers), 1.40 (6H, d, *J* = 6.6 Hz, C**H**₃, *dl* isomer), 1.32 (6H, d, *J* = 6.7 Hz, C**H**₃, *meso* isomer).

¹³C NMR (101 MHz, CDCl₃) δ 145.8 (4 × C, *dl* and *meso* isomers), 128.4 (8 × CH, *dl* and *meso* isomers), 126.8 (4 × CH, *dl* and *meso* isomers), 126.6 (4 × CH, *dl* and *meso* isomers), 126.5 (4 × CH, *dl* and *meso* isomers), 55.1 (2 × CH, *meso*), 54.8 (2 × CH, *dl*), 24.9 (2 × CH₃, *meso*), 23.1 (2 × CH₃, *dl*).

_OSiMe2tBu (±)-2-((tert-Butyldimethylsilyloxy)methyl)-1-(1-phenylethyl)pyrrolidine (5w)

The title compound was prepared according to **GP1** using boronic ester **1** (0.116 g, 0.501 mmol) and 2-((*tert*-butyldimethylsilyloxy)methyl)pyrrolidine (378 mg, 1.75 mmol), heating for 18 h. Flash column chromatography (100% CH₂Cl₂ \rightarrow 69% CH₂Cl₂/30% Et₂O/1% Et₃N) of the crude material gave *amine* **5w** (103 mg, 64%, dr: 1.03:1) as a yellow oil. Upon further purification one of the diastereoisomers (**5wa**) was isolated for further characterisation.

Mixture of diastereoisomers (5wa and 5wb):

IR 2928, 1453, 1252, 1092, 833, 774 cm⁻¹.

¹**H** NMR (400 MHz, CD₃CN) δ 7.39-7.34 (2H, m, Ar**H**, 5z**b**), 7.34-7.26 (m, 6H, Ar**H**, 5z**a** + 5z**b**), 7.25-7.19 (m, 2H, Ar**H**, 5z**a** + 5z**b**), 3.83-3.70 (m, 2H, ArC**H**, 5z**a** + 5z**b**), 3.60 (dd, *J* = 10.0, 4.4 Hz, 1H, OC**H**_AH_B, 5z**a**), 3.35 (dd, *J* = 10.0, 8.2 Hz, 1H, OCHA**H**_B, 5z**a**), 3.15 (1H, dd, J = 9.9, 4.8 Hz, OC**H**_AH_B, 5z**b**) 3.10 (1H, dd, *J* = 9.9, 8.3 Hz, OCHA**H**_B, 5z**b**), 2.93-2.78 (3H, m, CH₂C**H**, 5z**a** + 5z**b**), NC**H**_AH_B, 5z**b**), 2.77-2.69 (m, 1H, NC**H**_AH_B, 5z**a**), 2.50 (td, *J* = 9.1, 6.8 Hz, 1H, NCHA**H**_B, 5z**b**), 2.39-2.29 (1H, m, NCHA**H**_B, 5z**a**), 1.78-1.54 (m, 8H, CHC**H**₂C**H**₂, 5z**a** + 5z**b**), 1.36 (3H, d, *J* = 6.7 Hz, CHC**H**₃, 5z**b**), 0.07 (3H, s, SiC**H**₃, 5z**a**), 0.06 (3H, s, SiC**H**₃, 5z**a**), -0.11 (3H, s, SiC**H**₃, 5z**b**), -0.13 (3H, s, 5z**b**).

¹³C NMR (101 MHz, CD₃CN) δ 147.1 (C), 145.8 (C), 129.0 (4 × CH), 128.7 (2 × CH), 128.6 (2 × CH), 127.8 (CH), 127.6 (CH), 67.7 (CH₂), 67.0 (CH₂), 63.8 (CH), 63.2 (CH), 63.0 (CH), 62.1 (CH), 52.8 (CH₂), 51.9 (CH₂), 29.0 (CH₂), 28.6 (CH₂), 26.3 (3 × CH₃), 26.3 (3 × CH₃), 26.1 (CH₃), 24.3 (CH₂), 24.2 (CH₂), 23.2 (CH₃), 19.8 (CH), 18.9 (C), 18.8 (C), -5.0 (CH₃), -5.1 (CH₃), -5.1 (CH₃), -5.2 (CH₃).

HRMS (QTOF) Exact mass calcd for [C₁₉H₃₄NOSi]⁺ [M+H]⁺: 320.2404, found: 320.2414.

Diastereoisomer 5wa:

¹**H** NMR (400 MHz, CD₃CN) δ 7.37-7.26 (4H, m, Ar**H**), 7.25-7.19 (1H, m, Ar**H**), 3.81 (1H q, J = 6.7 Hz, ArC**H**), 3.60 (1H, dd, J = 10.0, 4.4 Hz, OC**H**_AH_B), 3.35 (1H, dd, J = 10.0, 8.1 Hz, OCH_A**H**_B), 2.88 (1H, tt, J = 8.1, 4.5 Hz, N**H**CH₂), 2.77-2.69 (1H, m, NC**H**_AH_B), 2.39-2.29 (1H, m, NCH_A**H**_B), 1.77-1.51 (4H, m, CHC**H**₂C**H**₂), 1.37 (3H, d, J = 6.7 Hz, CHC**H**₃), 0.90 (9H, s, 3 × CC**H**₃), 0.07 (3H, s, SiC**H**₃), 0.06 (3H, s, SiC**H**₃).

¹³C NMR (101 MHz, CD₃CN) δ 145.4 (C), 129.1 (2 × CH), 128.7 (2 × CH), 127.7 (CH), 67.6 (CH₂), 63.1 (CH), 62.3 (CH), 52.8 (CH₂), 29.0 (CH₂), 26.3 (3 × CH₃), 24.1 (CH₂), 23.1 (CH₃), 18.9 (C), -5.0 (CH₃), -5.1 (CH₃).

3.7. Coupling of Benzylic Boronic Esters

(±)-*N*-[1-(4-Methoxylphenyl)ethyl]morpholine (10a)

The title compound was prepared according to **GP1** using boronic ester **9a** (0.131 g, 0.500 mmol) and morpholine (0.152 g, 1.75 mmol), heating for 18 h. Flash column chromatography (99% hexane/1% Et₃N \rightarrow 49.5% hexane/49.5% Et₂O/1% Et₃N) of the

crude material gave amine **10a** (72.7 mg, 66%) as a colourless oil. The data were consistent with the literature.¹⁴

¹**H** NMR (400 MHz, CDCl₃) δ 7.22 (2H, d, J = 8.7 Hz, Ar**H**), 6.85 (2H, d, J = 8.7 Hz, Ar**H**), 3.80 (3H, s, OCH₃), 3.69-3.67 (4H, m, 2 × OCH₂), 3.26 (1H, q, J = 6.7 Hz, CH), 2.49-2.44 (2H, m, NCH₂), 2.37-2.32 (2H, m, NCH₂), 1.33 (3H, d, J = 6.7 Hz, CHCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 158.6 (C), 135.8 (C), 128.6 (2 × CH), 113.6 (2 × CH), 67.2 (2 × CH₂), 64.6 (CH), 55.2 (CH₃), 51.2 (2 × CH₂), 19.7 (CH₃).

(±)-*N*-[1-(4-Methylphenyl)ethyl]morpholine (10b)

The title compound was prepared according to **GP1** using boronic ester **9b** (0.124 g, 0.504 mmol) and morpholine (0.153 g, 1.76 mmol), heating for 18 h. Flash column chromatography (70% hexane/30% EtOAc) of the crude material gave amine **10b** (75.0 mg, 73%) as a colourless oil. The data were consistent with the literature.²⁷

¹**H** NMR (400 MHz, CDCl₃) δ 7.20 (2H, d, *J* = 7.9 Hz, Ar**H**), 7.13 (2H, d, *J* = 7.9 Hz, Ar**H**), 3.72-3.64 (4H, m, 2 × OC**H**₂), 3.27 (1H, q, *J* = 6.5 Hz, C**H**), 2.47 (2H, br s, NC**H**₂), 2.39-2.34 (2H, m, NC**H**₂), 2.33 (3H, s, ArC**H**₃), 1.35 (3H, d, *J* = 6.5 Hz, CHC**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 140.7 (C), 136.6 (C), 129.0 (2 × CH), 127.6 (2 × CH), 67.2 (2 × CH₂), 65.1 (CH), 51.3 (2 × CH₂), 21.0 (CH₃), 19.8 (CH₃).

(±)-*N*-[(1-([1,1'-Biphenyl]-4-yl)ethyl)morpholine (10c)

The title compound was prepared according to **GP1** using boronic ester **9c** (0.155 g, 0.503 mmol) and morpholine (0.156 g, 1.79 mmol), heating for 18 h. Flash column chromatography (59% hexane/40% EtOAc/1% Et₃N) of the crude material gave amine **10c** (99.6 mg, 74%) as a colourless oil. The data were consistent with the literature.²⁷

¹**H NMR** (400 MHz, CDCl₃) δ 7.64-7.53 (4H, m, Ar**H**), 7.48-7.37 (4H, m, Ar**H**), 7.37-7.29 (1H, m, Ar**H**), 3.76-3.66 (4H, m, 2 × OC**H**₂), 3.37 (1H, q, *J* = 6.6 Hz, C**H**), 2.60-2.49 (2H, m, NC**H**₂), 2.47-2.36 (2H, m, NC**H**₂), 1.40 (3H, d, *J* = 6.6 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 143.0 (C), 140.9 (C), 139.9 (C), 128.7 (2 × CH), 128.0 (2 × CH), 127.1 (CH), 127.0 (4 × CH), 67.2 (2 × CH), 65.1 (CH), 51.3 (2 × CH), 19.7 (CH₃).

(±)-4-(1-(4-Fluorophenyl)ethyl)morpholine (10d)

The title compound was prepared according to **GP1** using boronic ester **9d** (0.126 g, 0.504 mmol) and morpholine (153 μ L, 1.75 mmol), heating for 18 h. Flash column chromatography (79% hexane/20% EtOAc/1% Et₃N to 99% EtOAc/1% Et₃N) of the crude material gave amine **10d** (76.9 mg, 73%) as a colourless oil. The data were consistent with the literature.²⁸

¹**H** NMR (400 MHz, CDCl₃) δ 7.30-7.23 (2H, m, Ar**H**), 7.02-6.94 (2H, m, Ar**H**), 3.74-3.60 (4H, m, 2 × OC**H**₂), 3.28 (1H, q, *J* = 6.7 Hz, C**H**), 2.55-2.40 (2H, m, 2 × NC**H**_AH_B), 2.37-2.27 (2H, m, 2 × NCH_AH_B), 1.31 (3H, d, *J* = 6.7 Hz, C**H**₃).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.8 (d, $J_{C-F} = 244.7$ Hz, C), 139.7 (d, $J_{C-F} = 3.2$ Hz, C), 128.9 (d, $J_{C-F} = 7.8$ Hz, 2 × CH), 115.0 (d, $J_{C-F} = 21.0$ Hz, 2 × CH), 67.1 (2 × CH₂), 64.5 (CH), 51.1 (2 × CH₂), 19.8 (CH₃).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -116.0.

(±)-*N*-[1-(4-Chlorophenyl)ethyl]morpholine (10e)

The title compound was prepared according to **GP1** using boronic ester **9e** (0.134 g, 0.504 mmol) and morpholine (0.154 g, 1.77 mmol), heating for 19 h. Flash column close thromatography (59% hexane/40% EtOAc/1% Et₃N) of the crude material gave *amine* **10e** (88.0 mg, 78%) as a colourless oil.

IR 2960, 2854, 2907, 1490, 1272, 1116 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32-7.22 (4H, m, Ar**H**), 3.73-3.62 (4H, m, 2 × OC**H**₂), 3.28 (1H, q, J = 6.7 Hz, C**H**), 2.52-2.42 (2H, m, NC**H**₂), 2.38-2.29 (2H, m, NC**H**₂), 1.31 (3H, d, J = 6.7 Hz, C**H**₃). ¹³C **NMR** (101 MHz, CDCl₃) δ 142.7 (C), 132.5 (C), 128.9 (2 × CH), 128.5 (2 × CH), 67.2 (2 × CH₂), 64.7 (CH), 51.2 (2 × CH₂), 19.8 (CH₃).

HRMS (Q-TOF) Exact mass calcd for [C₁₂H₁₆³⁵ClNO]⁺ [M+H]⁺: 226.0993, found: 226.1004.

(±)-*N*-[1-[4-(Trifluoromethyl)phenyl]ethyl]morpholine (10f)

The title compound was prepared according to **GP1** using boronic ester **9f** (0.154 g, 0.514 mmol) and morpholine (159 μ L, 1.82 mmol), heating for 18 h. Flash column chromatography (89% hexane/10% EtOAc/1% Et₃N \rightarrow 79% hexane/20% EtOAc/1% Et₃N) of the crude material gave amine **10f** (82.5 mg, 62%) as a colourless oil. The data were consistent with the literature.¹⁴

¹**H** NMR (400 MHz, CDCl₃) δ 7.61-7.54 (2H, m, Ar**H**), 7.51-7.40 (2H, m, Ar**H**), 3.69 (4H, br s, 2 × OC**H**₂), 3.42-3.29 (1H, m, C**H**), 2.58-2.43 (2H, m, 2 × NC**H**_AH_B), 2.40-2.27 (2H, m, 2 × NCH_A**H**_B), 1.34 (3H, d, *J* = 4.0 Hz, C**H**₃).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.4 (C), 129.3 (C, q, $J_{C-F} = 31.7$ Hz), 127.9 (2 × CH), 125.3 (2 × CH, q, $J_{C-F} = 4.4$ Hz), 124.4 (C, q, $J_{C-F} = 271.0$ Hz), 67.1 (2 × CH₂), 65.1 (CH), 51.2 (2 × CH₂), 19.7 (CH₃).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.4.

(±)-*N*-[1-(3-Methoxylphenyl)ethyl]morpholine (10g)

The title compound was prepared according to **GP1** using boronic ester **9g** (0.131 g, 0.500 mmol) and morpholine (0.154 g, 1.77 mmol), heating for 18 h. Flash column chromatography (69% hexane/30% EtOAc/1% Et₃N) of the crude material gave *amine* **10g** (88.0 mg, 80%) as a colourless oil.

IR 2958, 2853, 1585, 1264, 1116 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.25-7.20 (1H, m, Ar**H**), 6.93-6.87 (2H, m, Ar**H**), 6.78 (1H, dd, *J* = 7.8, 2.1 Hz, Ar**H**), 3.81 (3H, s, OC**H**₃), 3.74-3.64 (4H, m, 2 × OC**H**₂), 3.31-3.21 (1H, m, C**H**), 2.56-2.43 (2H, m, NC**H**₂), 2.42-2.32 (2H, m, NC**H**₂), 1.34 (3H, d, *J* = 6.4 Hz, CHC**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 159.6 (C), 145.8 (C), 129.2 (CH), 120.0 (CH), 113.3 (CH), 112.1 (CH), 67.2 (2 × CH₂), 65.4 (CH), 55.2 (2 × CH₂), 51.3 (CH₃), 19.9 (CH₃).

HRMS (QTOF) Exact mass calcd for [C₁₃H₁₉NO₂]⁺ [M]⁺: 221.1410, found: 221.1417.

(±)-N-[1-(3-Chlorophenyl)ethyl]morpholine (10h)

The title compound was prepared according to GP1 using boronic ester 9h (0.135 g, 0.509 mmol) and morpholine (158 μL, 1.81 mmol), heating for 18 h. Flash column chromatography (59% hexane/40% EtOAc/1% Et₃N) of the crude material gave amine 10h
 ^{10h} (79.4 mg, 69%) as a pale-yellow oil. The data were consistent with the literature.¹⁷

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (1H, t, *J* = 1.8 Hz, Ar**H**), 7.26-7.15 (3H, m, Ar**H**), 3.73-3.62 (4H, m, 2 × OC**H**₂), 3.27 (1H, q, *J* = 6.7 Hz, C**H**), 2.53-2.42 (2H, m, 2 × NC**H**_AH_B), 2.39-2.29 (2H, m, 2 × NCH_A**H**_B), 1.31 (3H, d, *J* = 6.7 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 146.3 (C), 134.2 (C), 129.5 (CH), 127.5 (CH), 127.1 (CH), 125.7 (CH), 67.1 (2 × CH₂), 64.9 (CH), 51.1 (2 × CH₂), 19.7 (CH₃).

$^{\circ}$ (±)-4-(1-(3-Bromophenyl)ethyl)morpholine (10i)

The title compound was prepared according to **GP1** using boronic ester **9i** (0.156 g, 0.502 mmol) and morpholine (155 μ L, 1.77 mmol), heating for 18 h. Flash column chromatography (90% hexane/ 10% EtOAc to 100% EtOAc) of the material gave amine **10i** (88.2 mg, 65%) as a colourless oil. The data were consistent with the literature.²⁷

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (1H, t, J = 1.8 Hz, Ar**H**), 7.39-7.33 (1H, m, Ar**H**), 7.25-7.21 (1H, m, Ar**H**), 7.17 (1H, t, J = 7.7 Hz, Ar**H**), 3.74-3.62 (4H, m, 2 × OCH₂), 3.26 (1H, q, J = 6.7 Hz, C**H**), 2.52-2.42 (2H, m, 2 × NCH_AH_B), 2.39-2.30 (2H, m, 2 × NCH_AH_B), 1.31 (3H, d, J = 6.7 Hz, C**H**₃). ¹³C **NMR** (101 MHz, CDCl₃) δ 146.6 (C), 130.4 (CH), 130.0 (CH), 129.9 (CH), 126.2 (CH), 122.5 (C), 67.1 (CH₂), 64.9 (CH), 51.2 (CH₂), 19.7 (CH₃).

$^{\circ}$ (±)-*N*-[1-(2-Methylphenyl)ethyl]morpholine (10j)

The title compound was prepared according to **GP1** using boronic ester **9j** (0.124 g, 0.505 mmol) and morpholine (0.153 g, 1.76 mmol), heating for 19 h. Flash column chromatography (69% hexane/30% EtOAc/1% Et₃N) of the crude material gave *amine* **10j** (87.7 mg, 85%) as a colourless oil.

IR 2958, 2852, 1454, 1261, 1116 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (1H, d, J = 7.5 Hz, Ar**H**), 7.21-7.14 (1H, m, Ar**H**), 7.12 (2H, d, J = 3.9 Hz, Ar**H**), 3.74-3.63 (4H, m, 2 × OCH₂), 3.53 (1H, q, J = 6.6 Hz, C**H**), 2.56-2.45 (2H, m, NCH₂), 2.42-2.36 (2H, m, NCH₂), 2.36 (3H, s, ArCH₃), 1.28 (3H, d, J = 6.6 Hz, CHCH₃). ¹³C **NMR** (101 MHz, CDCl₃) δ 142.6 (C), 135.8 (C), 130.4 (CH), 126.8 (CH), 126.4 (CH), 126.0 (CH), 67.3 (2 × CH₂), 60.8 (CH), 51.3 (2 × CH₂), 19.5 (CH₃), 18.6 (CH₃). **HRMS** (Q-TOF) Exact mass calcd for [C₁₃H₁₉NO]⁺ [M+H]⁺: 206.1539, found: 206.1549.

(±)-N-[1-(2-Naphthalenyl)ethyl]morpholine (10k)

The title compound was prepared according to **GP1** using boronic ester **9k** (0.142 g, 0.503 mmol) and morpholine (0.155 mg, 1.78 mmol), for 18 h. Flash column chromatography (69% hexane/30% EtOAc/1% Et₃N) of the crude material gave amine **10k** (86.3 mg, 71%) as a colourless oil. The data were consistent with the literature.¹⁴

¹**H NMR** (400 MHz, CDCl₃) δ 7.85-7.78 (3H, m, Ar**H**), 7.72 (1H, s, Ar**H**), 7.55-7.42 (3H, m, Ar**H**), 3.76-3.65 (4H, m, 2 × OC**H**₂), 3.46 (1H, q, *J* = 6.5 Hz, C**H**), 2.60-2.51 (2H, m, NC**H**₂), 2.45-2.35 (2H, m, NC**H**₂), 1.44 (3H, d, *J* = 6.5 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 141.7 (C), 133.3 (C), 132.8 (C), 128.1 (CH), 127.7 (CH), 127.6 (CH), 126.2 (CH), 126.0 (CH), 125.8 (CH), 125.6 (CH), 67.2 (2 × CH₂), 65.6 (CH), 51.5 (2 × CH₂), 19.8 (CH₃).

(±)-4-(1,2,3,4-Tetrahydro-1-naphthalenyl)morpholine (10l)

The title compound was prepared according to modification of **GP1** using boronic ester **91** (0.134 g, 0.519 mmol) and morpholine (158 μ L, 1.81 mmol), heating for 18 h. The crude was concentrated under vacuo, dissolved in EtOAc (5 mL) and extracted with aqueous HCl (1 M, 3 × 3 mL). The aqueous phases were combined, basified to pH > 10 with saturated aqueous Na₂CO₃, and extracted with EtOAc (3 × 10 mL). The combined organic phases were dried (MgSO₄), and concentrated *in vacuo*. Flash column chromatography (90% hexane/ 10% Et₂O \rightarrow 100% Et₂O) of the crude material gave amine **101** (77.5 mg, 69%) as a colourless oil. The data were consistent with the literature.²⁹

¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (1H, dd, J = 7.1, 1.3 Hz, Ar**H**), 7.23-7.11 (2H, m, Ar**H**), 7.11-7.05 (1H, m, Ar**H**), 3.86-3.67 (5H, m, C**H** and 2 × OC**H**₂), 2.89-2.69 (2H, m, ArC**H**₂), 2.69-2.59 (2H, m, 2 × NCH_AH_B), 2.56-2.45 (2H, m, 2 × NCH_A**H**_B), 2.08-1.91 (2H, m, CHC**H**_AH_B and ArCH₂C**H**_AH_B), 1.82-1.63 (2H, m, CHCH_A**H**_B and ArCH₂CH_A**H**_B).

¹³C NMR (101 MHz, CDCl₃) δ 138.3 (C), 137.6 (C), 128.8 (CH), 128.1 (CH), 126.3 (CH), 125.6 (CH), 67.6 (2 × CH₂), 63.0 (CH), 48.9 (2 × CH₂), 29.6 (CH₂), 21.5 (CH₂), 21.5 (CH₂).

(±)-4-(4-Azido-1-phenylbutyl)morpholine (10m)

The title compound was prepared according to **GP1** using boronic ester **9m** (154 mg, 0.514 mmol) and morpholine (87.0 mg, 0.99 mmol), for 18 h. Flash column chromatography (69% hexane/30% EtOAc/1% Et₃N) of the crude material gave *amine* **10m** (94.9 mg, 71%) as a colourless oil.

IR 2954, 2853, 2092, 1450, 1731, 1116.

¹**H** NMR (400 MHz, CDCl₃) δ 7.39-7.19 (5H, m, Ar**H**), 3.68 (4H, t, *J* = 4.7 Hz, 2 × OCH₂), 3.26 (1H, dd, *J* = 8.9, 5.2 Hz, C**H**), 3.21 (2H, t, *J* = 6.8 Hz, CH₂N₃), 2.52-2.33 (4H, m, 2 × CH₂CH₂O), 2.06-1.94 (1H, m, CHCH_AH_b), 1.85-1.70 (1H, m, CHCH_AH_b), 1.55-1.31 (2H, m, CH₂CH₂N₃). ¹³C NMR (101 MHz, CDCl₃) δ 139.6 (C), 128.4 (2 × CH), 128.2 (2 × CH), 127.3 (CH), 69.9 (CH), 67.0 (2 × CH₂), 51.4 (CH₂), 50.9 (2 × CH₂), 29.4 (CH₂), 25.5 (CH₂).

HRMS (Q-TOF) Exact mass calcd for [C₁₄H₂₁N₄O]⁺ [M+H]⁺: 261.1715, found: 261.1722.

(±)-N-(6-Chloro-1-phenylhexyl)morpholine (10n)

The title compound was prepared according to **GP1** using boronic ester **9n** CI (89.8 mg, 0.28 mmol) and morpholine (87.0 mg, 0.99 mmol), for 18 h. Flash column chromatography (69% hexane/30% EtOAc/1% Et₃N) of the crude material gave *amine* **10n** (31.5 mg, 40%, ~90% purity) as a colourless oil.

IR 2935, 2856, 1450, 1683, 1273, 1116.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36-7.30 (2H, m, Ar**H**), 7.28-7.21 (3H, m, Ar**H**), 3.72-3.65 (4H, m, 2 × OC**H**₂), 3.46 (2H, t, *J* = 6.7 Hz, C**H**₂Cl), 3.24-3.20 (1H, m, C**H**), 50-2.32 (4H, m, 2 × NC**H**₂), 1.96-1.87 (1H, m, C**H**_ACH_B), 1.76-1.64 (3H, m, CH_AC**H**_B and C**H**₂), 1.44-1.34 (2H, m, C**H**₂), 1.20-1.02 (2H, m, C**H**₂).

¹³C NMR (101 MHz, CDCl₃) δ 145.7 (C), 128.6 (2 × CH), 128.1 (2 × CH), 127.2 (CH), 70.5 (CH), 67.2 (2 × CH₂), 51.1 (2 × CH₂), 45.0 (CH₂), 32.4 (2 × CH₂), 26.9 (CH₂), 25.4 (CH₂).

HRMS (Q-TOF) Exact mass calcd for $[C_{16}H_{24}{}^{35}CINO]^+$ $[M+H]^+$: 282.1619 found: 282.1631.

(±)-3-[3-Methoxy-1-(moprholinyl)propyl]--1*H*-1-methyl-indole (100)

The title compound was prepared according to **GP1** using boronic ester **90** (0.165 g, 0.501 mmol) and morpholine (155 µL, 1.75 mmol), heating for 18 h. Flash column chromatography (1: 95% CH₂Cl₂/5% MeOH; 2: 50% Hexane/50% isopropanol) gave *amine* **100** (80.1 mg, 55%) as a brown oil.

IR 2924 (CH), 1447, 1115 cm⁻¹.

10p

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (1H, s, Ar**H**), 7.28 (1H, d, *J* = 8.5 Hz, Ar**H**), 7.14 (1H, dd, *J* = 8.5, 1.3 Hz, Ar**H**), 7.05 (1H, d, *J* = 3.1 Hz, Ar**H**), 6.46 (1H, d, *J* = 3.1 Hz, Ar**H**), 3.79 (3H, s, NC**H**₃), 3.67 (4H, t, *J* = 4.7 Hz, (C**H**₂)₂O), 3.45 (1H, dd, *J* = 9.9, 4.9 Hz, NC**H**), 3.27-3.19 (4H, m, OC**H**₃ and C**H**_aH_BOCH₃), 3.14 (1H, dt, *J* = 9.3, 7.3 Hz, CH_aH_BOCH₃), 2.57-2.44 (2H, m, 2 × NCH_AH_B), 2.44-2.36 (2H, m, 2 × NCH_AH_B), 2.36-2.26 (1H, m, CHCH_ACH_B), 2.03-1.89 (1H, m, CHCH_AH_B).

¹³C NMR (101 MHz, CDCl₃) δ 136.2 (C), 130.8 (C), 129.0 (CH), 128.2 (C), 122.2 (CH), 120.8 (CH), 108.9 (CH), 100.8 (CH), 70.3 (CH₂), 67.8 (CH), 67.3 (2 × CH₂), 58.6 (CH₃), 51.3 (2 × CH₂), 32.9 (CH₂), 32.9 (CH₃).

HRMS (Q-TOF) Exact mass calcd for $[C_{17}H_{25}N_2O_2]^+$ [MH]⁺ calcd. 289.1922, found 289.1927.

(±)-4-(2-Phenylbutan-2-yl)morpholine (10p)

The title compound was prepared according to **GP1** using boronic ester 9p (0.137 g, 0.501 mmol) and morpholine (153 mg, 1.76 mmol), for 18 h. Flash column

chromatography (79% hexane/20% EtOAc/1% Et₃N) of the crude material gave *amine* **10p** (19.8 mg, 17%) as a colourless oil.

IR 2955, 2854, 1451, 1270, 1117 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35-7.27 (2H, m, Ar**H**), 7.27-7.19 (3H, m, Ar**H**), 3.71-3.59 (4H, m, 2 × OC**H**₂), 3.32 (1H, dd, *J* = 9.4, 5.6 Hz, ArC**H**), 2.48-2.39 (2H, m, NC**H**₂), 2.39-2.30 (2H, m, NC**H**₂), 1.77-1.62 (2H, m, CHC**H**₂), 1.32-1.25 (1H, m, C**H**CH₃), 0.86 (3H, d, *J* = 6.6 Hz, C**H**₃), 0.83 (3H, d, *J* = 6.6 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 140.1 (C), 128.7 (2 × CH), 128.0 (2 × CH), 127.1 (CH), 68.5 (CH), 67.3 (2 × CH₂), 50.9 (2 × CH₂), 41.3 (CH₂), 25.0 (CH₃), 23.7 (CH), 21.9 (CH₃).

HRMS (Q-TOF) Exact mass calcd for [C₁₅H₂₄NO]⁺ [M+H]⁺: 234.1852 found: 234.1862.

∧_N ∧ N-Benzylmorpholine (10q)

¹⁰ The title compound was prepared according to **GP1** using boronic ester **9q** (0.109 g, 0.500 mmol) and morpholine (0.152 mg, 1.74 mmol), for 18 h. Flash column chromatography (99% hexane/1% Et₃N to 99% Et₂O/1% Et₃N) of the crude material gave amine **10q** (66.3 mg, 75%) as a colourless oil. The data were consistent with the literature.²²

¹**H NMR** (400 MHz, CDCl₃) δ 7.34-7.29 (4H, m, Ar**H**), 7.27-7.23 (1H, m, Ar**H**), 3.72-3.70 (4H, m, 2 × OC**H**₂), 3.50 (2H, s, ArC**H**₂), 2.46-2.43 (4H, m, 2 × NC**H**₂CH₂).

¹³C NMR (101 MHz, CDCl₃) δ 137.8 (C), 129.2 (2 × CH), 128.2 (2 × CH), 127.1 (CH), 67.0 (2 × CH₂), 63.5 (CH₂), 53.6 (2 × CH₂).

3.8. Coupling of Aliphatic Boronic Esters

2-Butyl-1,2,3,4-tetrahydroisoquinoline (10r)

The title compound was prepared according to **GP1** using *n*-butyl pinacol boronic ester (0.103 g, 0.560 mmol) and 1,2,3,4-tetrahydroisoquinoline (253 μ L, 2.02 mmol), heating for 18 h. Flash column chromatography (70% hexane/ 29% EtOAc/ 1% Et₃N) of the material gave amine **10r** (36.6 mg, 35%) as an orange oil. The data were consistent with the ature ³⁰

literature.30

¹**H NMR** (400 MHz, CDCl₃) δ 7.15-7.06 (3H, m, Ar**H**), 7.05-6.98 (1H, m, Ar**H**), 3.63 (2H, s, NC**H**₂Ar), 2.92 (2H, t, *J* = 5.9 Hz, NC**H**₂CH₂Ar), 2.74 (2H, t, *J* = 5.9 Hz, ArC**H**₂CH₂), 2.55-2.46 (2H, m, NC**H**₂CH₂CH₂), 1.65-1.54 (2H, m, C**H**₂CH₂CH₃), 1.46-1.32 (2H, m, C**H**₂CH₃), 0.96 (3H, t, *J* = 7.3 Hz, C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 134.9 (C), 134.3 (C), 128.6 (CH), 126.6 (CH), 126.0 (CH), 125.5 (CH), 58.3 (CH₂), 56.2 (CH₂), 51.0 (CH₂), 29.3 (CH₂), 29.21(CH₂), 20.8 (CH₂), 14.1 (CH₃).

Ph 1-(3-Azidopropyl)-4-phenylpiperidine (10s)

N₃ N 10s

The title compound was prepared according to **GP1** using boronic ester **9s** (0.106 g, 0.502 mmol) and 4-phenylpiperidine (0.282 g, 1.75 mmol), heating for 18 h.

Flash column chromatography (59% hexane/40% $Et_2O/1\% Et_3N$) of the material gave *amine* **10s** (74.8 mg, 61%) as a colourless oil.

IR 2932, 2093, 1452, 1253, 1131 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 (2H, dd, J = 8.0, 7.7 Hz, Ar**H**), 7.23 (2H, d, J = 7.7 Hz, Ar**H**), 7.21 (1H, t, J = 8.0 Hz, Ar**H**), 3.38 (2H, t, J = 6.7 Hz, C**H**₂N₃), 3.08 (2H, d, J = 11.9 Hz, 2 × NC**H**_AH_BCH₂CH), 2.56-2.48 (3H, m, NC**H**₂CH₂CH₂ + C**H**), 2.15-2.09 (2H, m, C**H**₂CH₂N₃), 1.89-1.82 (6H, m, NCH_A**H**_BCH₂CH + 2 × C**H**₂CH).

¹³C NMR (101 MHz, CDCl₃) δ 146.1 (C), 128.4 (2 × CH), 126.8 (2 × CH), 126.2 (CH), 55.7 (CH₂), 54.3 (2 × CH₂), 49.7 (2 × CH₂), 42.6 (CH), 33.3 (CH₂), 26.4 (CH₂).

HRMS (Q-TOF) Exact mass calcd for C₁₄H₂₁N₄]⁺ [M+H]⁺: 245.1761 found: 245.1764.

- 4-[3-(Phenylsulfanyl)propyl]morpholine (10t)

PhS _____N ___ The title compound was prepared according to GP1 using boronic ester 9t (0.139 g, 0.500 mmol) and morpholine (0.152 g, 1.74 mmol), heating for 18 h. Flash column chromatography (99% hexane/1% Et₃N → 49.5% hexane/49.5% Et₂O/1% Et₃N) of the material gave *amine* 10t (72.5 mg, 61%) as a colourless oil.
IR 2853, 1584, 1439, 1259, 1116 cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (2H, d, *J* = 8.1 Hz, Ar**H**), 7.27 (1H, dd, *J* = 8.1, 7.2 Hz, Ar**H**), 7.17 (1H, t, *J* = 7.2 Hz, Ar**H**), 3.71 (4H, t, *J* = 4.6 Hz, OC**H**₂), 2.97 (2H, t, *J* = 7.2 Hz, SC**H**₂), 2.58-2.25 (6H, m, CH₂CH₂C**H**₂N + 2 × OCH₂C**H**₂N), 1.83 (2H, p, *J* = 7.2 Hz, SCH₂C**H**₂).

¹³C NMR (101 MHz, CDCl₃) δ 136.5 (C), 129.1 (2 × CH), 128.9 (2 × CH), 125.9 (CH), 66.9 (CH₂), 57.5 (CH₂), 53.6 (2 × CH₂), 31.4 (2 × CH₂), 26.0 (CH₂).

HRMS (Q-TOF) Exact mass calcd for [C₁₃H₂₀NOS]⁺ [M+H]⁺: 238.1260 found: 238.1268.

3.9. Coupling of Tertiary Boronic Esters

4-[1-(4-Chlorophenyl)-1-phenylethyl]morpholine (10u)

The title compounds were prepared according to **GP1** using boronic ester **9u** (0.171 g, 0.502 mmol) and morpholine (0.153 g, 1.76 mmol). Flash chromatography (89% hexane/10% EtOAc/1% Et₃N) of the crude material gave and *amine* **10u** (8.0 mg, 5%) as a colourless oil and alkene **11** (68.5 mg, 64%) as a colourless oil.

4-[1-(4-Chlorophenyl)-1-phenylethyl]morpholine (10u)

IR 2958, 2851, 1488, 1267, 1114 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.47-7.39 (4H, m, ArH), 7.31-7.21 (4H, m, ArH),
[~]CI 7.21-7.14 (1H, m, ArH), 3.81-3.67 (4H, m, 2 × OCH₂), 2.47-2.32 (4H, m, 2 × NCH₂), 1.76 (3H, s, CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 144.8 (C), 144.2 (C), 132.0 (C), 128.9 (2 × CH), 128.1 (4 × CH),
127.4 (2 × CH), 126.5 (CH), 67.7 (2 × CH₂), 66.4 (C), 47.7 (2 × CH₂), 18.9 (CH₃).
HDMS (O TOF) Exact mass called for [Cycles³⁵C|NO|[±] [M][±], 201 1228 found, 201 1220.

HRMS (Q-TOF) Exact mass calcd for $[C_{18}H_{20}{}^{35}ClNO]^+$ [M]⁺: 301.1228 found: 301.1220.

The data were consistent with the literature.³¹

¹¹ ¹**H** NMR (400 MHz, CDCl₃) δ 7.37-7.25 (9H, m, Ar**H**), 5.48-5.44 (2H, m, C**H**₂) ¹³C NMR (101 MHz, CDCl₃) δ 149.0 (C), 141.0 (C), 139.9 (C), 133.6 (C), 129.5 (2 × CH), 128.3 (2 × CH), 128.3 (2 × CH), 128.2 (2 × CH), 127.9 (CH), 114.7 (CH₂).

(±)-4-(3-Methyl-1-phenylbutyl)morpholine (10v)

Morpholine (0.218 g, 2.5 mmol) was added to a flask containing boronic ester 9v (0.065 g, 0.25 mmol) and CuBr₂ (5.6 mg, 0.025 mmol), and the mixture was stirred under air at 80 °C for 18 h. The mixture was cooled to room temperature, passed through a plug of silica eluting with Et₂O, and

concentrated *in vacuo*. Flash chromatography (89% hexane/10% EtOAc/1% Et₃N) of the crude material gave and *amine* **10v** (5.8 mg, 11%) as a colourless oil.

IR 2966, 2851, 1493, 1446, 1273, 1118 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49-7.44 (2H, m, Ar**H**), 7.33-7.27 (2H, m, Ar**H**), 7.22-7.17 (1H, m, Ar**H**), 3.74-3.63 (4H, m, 2 × OC**H**₂), 2.59-2.50 (2H, m, 2 × NC**H**_AH_B), 2.43-2.36 (2H, m, 2 × NCH_A**H**_B), 1.81-1.71 (1H, m, CC**H**_AH_B), 1.66-1.56 (1H, m, CCH_A**H**_B), 1.33 (3H, s, CC**H**₃), 0.57 (3H, t, *J* = 7.4 Hz, CH₂C**H**₃).

¹³C NMR (101 MHz, CDCl₃) δ 145.8 (C), 127.7 (2 × CH), 127.3 (2 × CH), 126.1 (CH), 67.9 (2 × CH₂), 62.8 (C), 46.8 (2 × CH₂), 33.8 (CH₂), 15.7 (CH₃), 8.7 (CH₃).

HRMS (Q-TOF) Exact mass calcd for $[C_{14}H_{22}NO]^+$ $[M+H]^+$: 220.1696 found: 220.1703.

3.10. Synthesis of a TRVP 1 Inhibitor

(±)-3-[3-Methoxy-1-(moprholinyl)propyl]--1*H*-1-methyl-indole (13)

The title compound was prepared using a modification of the **GP1** using boronic ester **1** (0.117 g, 0.504 mmol), CuBr₂ (22.6 mg, 0.100 mmol) and amine **12** (0.324 g, 1.75 mmol) in DMSO (0.75 mL) heating for 18 h. The mixture was diluted in CH₂Cl₂, filtered, and the filtrate concentrated *in vacuo*. Flash column chromatography (100% EtOAc) of the crude

material gave amine 13 (88.4 mg, 37%) as an off-white solid. The data were consistent with the literature.⁴

m.p. 175-178 °C (DMSO). Literature 132-135 °C (Not reported).⁴

¹**H NMR** (400 MHz, DMSO-*d*⁶) δ 12.41 (1H, br s, N**H**), 8.05 (1H, s, Ar**H**), 7.84 (1H, dd, J = 7.9, 1.1 Hz, Ar**H**), 7.36-7.23 (6H, m, Ar**H**), 7.18 (1H, d, J = 7.9, 1.1 Hz, Ar**H**), 6.31 (1H, s, Ar**H**), 3.59-3.56 (4H, m, 2 × ArNC**H**₂), 3.45 (1H, q, J = 6.7 Hz, C**H**CH₃), 2.49-2.43 (2H, m, 2 × CHNC**H**_AH_B), 2.38-2.32 (2H, m, 2 × CHNCH_A**H**_B), 2.15 (3H, s, COC**H**₃), 1.32 (3H, d, J = 6.7 Hz, CHC**H**₃). ¹³C **NMR** (101 MHz, DMSO-*d*⁶) δ 169.9 (C), 169.5 (C), 163.6 (C), 158.0 (C), 157.3 (CH), 144.2 (C), 143.1 (C), 141.8 (C), 133.4 (C), 128.2 (2 × CH), 127.5 (2 × CH), 127.0 (CH), 124.0 (CH), 119.2 (CH), 118.9 (CH), 85.7 (CH), 63.7 (CH), 49.5 (2 × CH₂), 43.9 (2 × CH₂), 22.6 (CH₃), 19.3 (CH₃).

3.11. Mechanistic Studies

Reaction With Enantiomerically Enriched Boronic Ester

IPA (0.38 mL) and toluene (0.38 mL) were added to a flask containing boronic ester (*S*)-1 (0.117 g, 0.503 mmol), morpholine (0.155 μ l, 1.75 mmol) and CuBr₂ (11.3 mg, 0.05 mmol), and the mixture was stirred under air at 80 °C for 1.5 h. The mixture was cooled to room temperature, passed through a plug of silica eluting with Et₂O, and concentrated *in vacuo*. The crude material was purified by column chromatography (5% EtOAc/95% hexane then 1% Et₃N/30% EtOAc/69% hexane) to give amine 2 (53.2 mg, 55%), boronic ester 1 (31 mg, 27%), and acetophenone (2.0 mg, 3%).

Racemate

Reaction:

Bpin (S)-4,4,5,5-Tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane ((S)-1)

See above for data.

Ph (S)-1

^{96% e.e} *e.r.* = 2:98, measured through chiral HPLC analysis of the corresponding alcohol obtained after oxidation. Chiralpak ID column (250 × 4.6 mm), IPA:hexane = 1:99, 0.7 mL/min, column temperature = 22 °C, (*R*)- isomer $t_r = 19.0$ min and (*S*)-isomer $t_r = 19.8$ min.

(±)-N-[Cyclopropyl(phenyl)methyl]morpholine

and (\pm) -N-[(3E)-4-Phenylbut-3-en-1-

yl]morpholine (8)

(6)

The title compounds were prepared according to **GP1** using boronic ester **6** (0.129 g, 0.501 mmol) and morpholine (0.154 mg, 1.78 mmol), heating for 18 h. Flash column chromatography (69% hexane/30% EtOAc/1% Et₃N) of the crude material gave *amine* **7** (39.6 mg, 36%, ~94% purity) as a colourless oil and *amine* **8** (40.3 mg, 37%) as a pale yellow oil.

$(\pm)-N-[Cyclopropyl(phenyl)methyl]morpholine (7)$ IR 2959, 2804, 1451, 1278, 1117 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.28 (4H, m, ArH), 7.27-7.22 (1H, m, ArH), 3.77-3.63 (4H, m, 2 × OCH₂), 2.81-2.64 (2H, m, NCH₂), 2.41-2.30 (2H, m, NCH₂), 2.23 (1H, d, *J* = 9.2 Hz, NCH), 1.09-0.94 (1H, m, CHCH₂), 0.80-0.70 (1H, m, CHCH_AH_B), 0.47-0.39 (1H. m, CHCH_AH_B), 0.39-0.30 (1H, m, CHCH_CH_D), 0.06--0.03 (1H, m, CHCH_CH_D). ¹³C NMR (101 MHz, CDCl₃) δ 143.3 (C), 128.2 (2 × CH), 127.9 (2 × CH), 126.9 (CH), 76.6 (CH),

67.2 (2 × CH₂), 52.4 (2 × CH₂), 15.5 (CH), 8.6 (CH₂), 2.00 (CH₂).

HRMS (Q-TOF) Exact mass calcd for [C₁₄H₂₀NO]⁺ [M+H]⁺: 218.1539 found: 218.1549.

 $\sim_{\circ} N$ -[(3*E*)-4-Phenylbut-3-en-1-yl]morpholine (8)

✓ **IR** 2956, 2854, 2806, 1698, 1447, 1271, 1116 cm⁻¹.

⁸ ¹**H NMR** (400 MHz, CDCl₃) δ 7.38-7.28 (4H, m, Ar**H**), 7.24-7.18 (1H, m, Ar**H**), 6.45 (1H, d, *J* = 15.9 Hz, C**H**), 6.22 (1H, dt, *J* = 15.9, 6.1 Hz, C**H**CH₂), 3.79-3.71 (4H, m, 2 × OC**H**₂), 2.59-2.48 (6H, m, 3 × NC**H**₂), 2.47-2.39 (2H, m, C=CC**H**₂).

¹³C NMR (101 MHz, CDCl₃) δ 137.5 (C), 131.1 (CH), 128.5 (2 × CH), 128.0 (CH), 127.0 (CH), 126.0 (2 × CH), 66.9 (2 × CH₂), 58.6 (CH₂), 53.6 (2 × CH₂), 30.3 (CH₂).

HRMS (Q-TOF) Exact mass calcd for [C₁₄H₂₀NO]⁺ [M+H]⁺: 218.1539 found: 218.1541.

NMR studies: Boronic ester 1 in the presence of morpholine

An NMR tube was charged with **1** (34.8 g, 0.150 mmol) dissolved in CD₃CN (0.7 mL) and ¹H NMR and ¹¹B NMR spectra were recorded. Morpholine (53 μ L, 0.60 mmol) was added by microsyringe and ¹H NMR and ¹¹B NMR spectra were recorded after homogenization.

^{B(pin)} ¹**H** NMR (400 MHz, CD₃CN) δ 7.29-7.10 (5H, m, Ar**H**), 2.38 (1H, q, *J* = 7.6 Hz, C**H**), 1.27 (3H, d, *J* = 7.6 Hz, CHC**H**₃), 1.19 (6H, s, 2 × CC**H**₃), 1.18 (6H, s, 2 × CC**H**₃). 1 ¹¹**B** NMR (128 MHz, CD₃CN) δ 33.6.

Figure S1: ¹H NMR spectra of boronic ester 1 in CD₃CN the absence and presence of morpholine.

Figure S2: ¹¹B NMR spectra of boronic ester 1 in CD₃CN in the absence and presence of morpholine.

NMR studies: Boronic ester 1 in the presence of IPA and morpholine

An NMR tube was charged with a solution of boronicester **1** (0.023 g, 0.10 mmol) in 0.5 mL CD₃CN and an ¹¹B NMR spectrum was recorded. Isopropanol (0.5 mL) was added, and an ¹¹B NMR spectrum was recorded after homogenization. Morpholine (44 μ L, 0.50 mmol,) was added, and an ¹¹B NMR spectrum was recorded after homogenization.

Figure S3: ¹¹B NMR spectra of 1 in in CD₃CN in the absence and presence of IPA, and IPA and morpholine.

Cyclic Voltametry Studies

All cyclic voltammetric measurements were performed at room temperature, using an Autolab® PGSTAT100 potentiostat in a conventional three-electrode cell configuration with a glassy carbon (GC) as working electrode (3 mm diameter), a platinum electrode (2 mm diameter) as counter electrode and Ag/AgCl (KCl 3M) as reference. The cell was purged with N₂ for 10 min before each measurement, and the GC working electrode was polished with alumina before each experiment. Redox potentials were calculated against the Fc^+/Fc^0 couple as an internal reference. All the experiments were carried out at 100 mV/s.

Figure S4. CV trace for MeCN (*n*Bu₄PF₆ 0.1 M), 100 mV/s.

Figure S5. CV trace for boronic ester 1 (3 mM) in MeCN (*n*Bu₄PF₆ 0.1 M), 100 mV/s.

Figure S6. CV trace for CuBr₂ (3 mM) in MeCN (*n*Bu₄PF₆ 0.1 M), 100 mV/s.

Figure S7. Individual traces of boronic ester **1** (3 mM), CuBr₂ (3 mM) and a mixture 1:1 of both (3 mM each) in MeCN (*n*Bu₄PF₆ 0.1 M), 100 mV/s.

Figure S8. CV trace for morpholine (3 mM) in MeCN (*n*Bu₄PF₆ 0.1 M), 100 mV/s.

Figure S9. Individual traces of boronic ester **1** (3 mM), morpholine (3 mM) and a mixture 1:1 (3 mM each) in MeCN (*n*Bu₄PF₆ 0.1 M), 100 mV/s.

4. NMR Spectra

f1 (ppm)

30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -f1 (ppm) 40 35

4.2. Coupling of Secondary Amines

110 100 f1 (ppm)

-70 -110 f1 (ppm) -75 -80 -85 -90 -95 -100 -105 -150 -115 -120 -125 -130 -135 -140 -145

110 100 f1 (ppm) Ċ

f1 (ppm) -:

4.3. Coupling of Primary Amines

110 100 f1 (ppm) o

110 100 f1 (ppm) ò

110 100 f1 (ppm) 210 200

4.4. Diastereomeric Compounds

110 100 f1 (ppm) ò

4.5. Coupling of Benzylic Boronic Esters

f1 (ppm)

f1 (ppm) -:

110 100 f1 (ppm) ò

110 100 f1 (ppm)

110 100 f1 (ppm)

4.6. Coupling of Aliphatic Boronic Esters

ı (ppm)

-10 210 200 160 150 ppm ò

4.7. Coupling of Tertiary Boronic Esters

4.8. Synthesis of a TRVP 1 Inhibitor

4.9. Mechanistic Studies

5. References

- 1 J. D. Grayson and B. M. Partridge, ACS Catal., 2019, 9, 4296–4301.
- J. D. Grayson, F. M. Dennis, C. C. Robertson and B. M. Partridge, J. Org. Chem., 2021, 86, 9883–9897.
- 3 C. Buathongjan, D. Beukeaw and S. Yotphan, *Eur. J. Org. Chem.*, 2015, **2015**, 1575–1582.
- H.-L. Wang, J. Katon, C. Balan, A. W. Bannon, C. Bernard, E. M. Doherty, C. Dominguez, N.
 R. Gavva, V. Gore, V. Ma, N. Nishimura, S. Surapaneni, P. Tang, R. Tamir, O. Thiel, J. J. S.
 Treanor and M. H. Norman, *J. Med. Chem.*, 2007, **50**, 3528–3539.
- 5 D. Noh, S. K. Yoon, J. Won, J. Y. Lee and J. Yun, *Chem. An Asian J.*, 2011, **6**, 1967–1969.
- 6 D. Noh, H. Chea, J. Ju and J. Yun, Angew. Chemie Int. Ed., 2009, 48, 6062–6064.
- 7 G. Vijaykumar, M. Bhunia and S. K. Mandal, *Dalt. Trans.*, 2019, **48**, 5779–5784.
- 8 J. Huang, W. Yan, C. Tan, W. Wu and H. Jiang, *Chem. Commun.*, 2018, 54, 1770–1773.
- 9 M. K. Armstrong and G. Lalic, J. Am. Chem. Soc., 2019, 141, 6173–6179.
- 10 V. Bagutski, A. Ros and V. K. Aggarwal, *Tetrahedron*, 2009, **65**, 9956–9960.
- J. D. Grayson, F. M. Dennis, C. C. Robertson and B. M. Partridge, J. Org. Chem., 2021, 86, 9883–9897.
- S. Aichhorn, R. Bigler, E. L. Myers and V. K. Aggarwal, J. Am. Chem. Soc., 2017, 139, 9519– 9522.
- 13 N. W. J. Ang and L. Ackermann, *Chem. A Eur. J.*, 2021, **27**, 4883–4887.
- 14 M. Utsunomiya and J. F. Hartwig, J. Am. Chem. Soc., 2003, 125, 14286–14287.
- 15 C. Wang, A. Pettman, J. Basca and J. Xiao, Angew. Chemie Int. Ed., 2010, 49, 7548–7552.
- 16 P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Fröhlich and G. Erker, Angew. Chemie -Int. Ed., 2008, 47, 7543–7546.
- 17 Y. Miki, K. Hirano, T. Satoh and M. Miura, *Angew. Chemie Int. Ed.*, 2013, **52**, 10830–10834.
- 18 J. L. Nallasivam and R. A. Fernandes, *Eur. J. Org. Chem.*, 2015, **2015**, 2012–2022.
- 19 J. D. Firth, P. O'Brien and L. Ferris, J. Am. Chem. Soc., 2016, 138, 651–659.
- 20 S. Zhu, N. Niljianskul and S. L. Buchwald, J. Am. Chem. Soc., 2013, 135, 15746–15749.
- Z. R. Valiullina, S. S. Gataullin, B. Y. Tsirel'son, R. F. Valeev and M. S. Miftakhov, *Russ. J. Org. Chem.*, 2012, 48, 439–441.
- 22 M. H. S. A. Hamid, C. L. Allen, G. W. Lamb, A. C. Maxwell, H. C. Maytum, A. J. A. Watson and J. M. J. Williams, *J. Am. Chem. Soc.*, 2009, **131**, 1766–1774.
- Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue and J. Xiao, *Chem. A Eur. J.*, 2013, 19, 4021–4029.
- 24 V. H. Vu, L. A. Jouanno, A. Cheignon, T. Roisnel, V. Dorcet, S. Sinbandhit and J. P. Hurvois, *Eur. J. Org. Chem.*, 2013, 5464–5474.

- 25 J. Choi, N. N. Yadav and H. J. Ha, Asian J. Org. Chem., 2017, 6, 1292–1307.
- 26 R. Kawahara, K. Fujita and R. Yamaguchi, J. Am. Chem. Soc., 2010, 132, 15108–15111.
- 27 T. Hou, P. Lu and P. Li, *Tetrahedron Lett.*, 2016, **57**, 2273–2276.
- 28 T. Jia, S. Fan, F. Li, X. Ye, W. Zhang, Z. Song and X. Shi, Org. Lett., 2021, 23, 6019–6023.
- 29 M. C. Willis and G. N. Brace, *Tetrahedron Lett.*, 2002, **43**, 9085–9088.
- 30 C. Xu, Z. Zhu, Y. Wang, Z. Jing, B. Gao, L. Zhao and W.-K. Dong, *J. Org. Chem.*, 2019, **84**, 2234–2242.
- Y. Zou, L. Qin, X. Ren, Y. Lu, Y. Li and J. (Steve) Zhou, *Chem. A Eur. J.*, 2013, **19**, 3504–3511.