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ABSTRACT: Reversed conductance decay describes increasing conductance of a molecular chain 

series with increasing chain length. Realizing reversed conductance decay is an important step 

towards making long and highly conducting molecular wires. Recent work has shown that one-

dimensional topological insulators (1D TIs) can exhibit reversed conductance decay due to their 

non-trivial edge states. The Su-Schrieffer-Heeger (SSH) model for 1D TIs relates to the electronic 

structure of these isolated molecules but not their electron transport properties as single-molecule 

junctions. Herein, we use a tight-binding approach to demonstrate that polyacetylene and other 

diradicaloid 1D TIs show a reversed conductance decay at the short chain limit. We explain these 

conductance trends by analyzing the impact of the edge states in these 1D systems on the single-

molecule junction transmission. Additionally, we discuss how the self-energy from the electrode-

molecule coupling and the on-site energy of the edge sites can be tuned to create longer wires with 

reversed conductance decays. 
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Most molecular wires conducting through an off-resonant transport mechanism exhibit an 

exponentially decreasing conductance (𝐺) with increasing molecular length (𝐿),1-5 showing 

𝐺 = 𝐺𝐶𝑒−𝛽𝐿    (𝛽 > 0) (1) 

where 𝛽  is the exponential decay factor, and 𝐺𝐶  is the contact conductance, which depends 

primarily on the electrode-molecule coupling. According to equation (1), the molecular 

conductance for a long molecule is inevitably lower than its shorter analogs. This makes it 

challenging to build long and highly conducting molecular wires. However, researchers have 

proposed6-11 and experimentally realized12-16 a reversed conductance-length decay in mixed-

valence or diradical molecular systems, where the conductance increases exponentially with 

molecular length. Diradical molecules have also been identified as one-dimensional analogs of 

topological insulators17, which suggests that this anomalous conductance-length relationship for 

diradicals is a consequence of their nontrivial topology.18, 19 By defying exponential decay 

(equation 1), these molecular systems could inspire the design of long, highly conducting 

molecular wires. 

Interest in diradicals as conductive molecular wires has been motivated by theoretical tight-

binding models of polyacetylene in its diradical form. The anomalous conductance-length 

relationship of diradical polyacetylene was first noted by Hush20 in the context donor-bridge-

acceptor systems and has been popularized more recently by Hoffmann and coworkers9 in the 

context of molecular junctions. In these works, the molecule-electrode coupling is neglected, and 

the conductance of diradical polyacetylene is predicted to increase exponentially with length (i.e., 

𝛽 < 0).  However, since the conductance through a single channel cannot exceed 1 G0 (2e2/h, the 

conductance quantum), the conductance cannot exponentially increase indefinitely. As the chain 

length grows, the molecule-electrode coupling becomes increasingly important. Eventually a long-

chain regime is reached where the conductance-length relationship reverts to exponential decay 

(equation 1), as indicated by the complex band theory21-23. This transition between the two 

conductance-length regimes has recently been shown in experiments13, 24. Here, we examine 

systems of molecular wires terminated by radicals in molecular junctions and use a tight-binding 

approach25 to investigate the full evolution of the conductance with length. We further explain how 

the molecule-electrode coupling and the on-site energy of the edge sites affect the conductance 

trends, to highlight the role of the electrode-molecule interaction on electron transmission. 
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Figure 1. (A) Pictorial depiction of 𝐇4, which describes a chain of 8 carbon atoms with alternating 

coupling (𝑡1 , green; 𝑡2 , purple). Alternating coupling is parameterized by 𝛿 . (B) Chemical 

interpretation of 𝛿 in terms of carbon-carbon bond order. For 𝛿 < 0, 𝑡1 represents a double bond 

and 𝑡2 a single bond; whereas, for 𝛿 > 0, 𝑡1 represents a single bond and 𝑡2 a double bond. (C) 

Energy spectrum of 𝐇4 as functions of 𝛿. The energy bands of the corresponding infinite chain are 

shaded gray. When 𝛿 > 0 , two edge states (red) exist within the band gap. (D) Schematic 

molecular orbitals of the left (L) and right (R) edge states for 𝑚 = 4 and 𝛿 = 0.5.  

We first consider the tight-binding model of polyene (i.e., the Su-Schrieffer-Heeger (SSH) 

model26, 27 in physics parlance, see SI section 1), and we provide a complete, analytical analysis of 

the conductance-length relationship. Polyacetylene comprises a chain of sp2-hybridized carbon 

atoms that are bonded together by alternating single and double bonds. A simple tight binding 

model of polyacetylene utilizes two nearest-neighbor coupling parameters, 𝑡1 and 𝑡2, to model the 

alternating bond orders in the chain. Without loss of generality, the coupling parameters can be 

expressed by 𝑡1 = 𝑡0𝑒−𝛿  and 𝑡2 = 𝑡0𝑒𝛿 , where 𝑡0  is the geometric mean of 𝑡1  and 𝑡2 , and 𝛿 

parametrizes the bond order alternation. With this parameterization, the Hamiltonian for the SSH 

model (𝐇𝑚) is given by equation (2), where 𝑚 denotes the number of C-C unit cells (Figure 1A). 

Here we assume 𝑡1, 𝑡2 > 0 and a minus sign is included in equation (2) so that the nearest-neighbor 

coupling is negative. Additionally, we have assigned the on-site energy of the carbon atoms (𝜀𝐶) a 

value of zero. In matrix form, 𝐇𝑚 forms a tridiagonal matrix. 

𝐇𝑚 = ∑ −𝑡0𝑒(−1)𝑘𝛿|𝑘⟩⟨𝑘 + 1|

2𝑚−1

𝑘=1

+ 𝐻. 𝑐. (2) 
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The influence of bond order alternation (𝛿) on the electronic structure of polyacetylene molecules 

can be understood from simple Kekulé structures (Figure 1B). When 𝛿 < 0, then 𝑡1 > 𝑡2 and the 

molecule assumes the form of a polyene, whereas when 𝛿 > 0 then 𝑡1 < 𝑡2 and the molecule is a 

diradical. These two regimes are separated by the condition 𝛿 = 0 which describes a chain with 

uniform bond order (𝑡1 = 𝑡2).  

The energy spectrum of 𝐇4 is shown in Figure 1C as a function of 𝛿. It has been shown 

that 𝛿 < 0 and 𝛿 > 0 represent two distinct topological classes with trivial and nontrivial topology, 

respectively. Transitioning from the trivial to the topological regimes requires passing through a 

gapless metallic state (𝛿 = 0), which demarcates the two topological classes. In the trivial regime 

(𝛿 < 0), all the energy levels fall within the energy bands of the bulk chain (gray shaded region). 

In the topological regime (𝛿 > 0), two energy levels (highlighted in red) fall within the band gap. 

These are edge states that are not accounted for in the bulk band structure. When 𝛿 ≫ 1/𝑚, the 

edge states are nearly degenerate with energy 𝜀C. As expected from the simple diradical structure 

(Figure 1B), the edge states are localized on the left and right edges of the chain (Figure 1D), given 

by equation (3) and (4), respectively. They decay exponentially into the bulk with alternating 

orbital phase on every other site. 𝐶𝑚 represents the MO coefficient of the first site and is set by 

unit normalization to be 𝐶𝑚 = √ 1−𝑒−4𝛿

1−𝑒−4𝛿𝑚. 

|𝐿⟩ = 𝐶𝑚 ∑ cos[(𝑘 − 1)𝜋 2⁄ ] 𝑒−𝛿(𝑘−1)

2𝑚

𝑘=1

|𝑘⟩ (3) 

|𝑅⟩ = 𝐶𝑚 ∑ cos[(𝑘 − 2𝑚)𝜋 2⁄ ] 𝑒𝛿(𝑘−2𝑚)

2𝑚

𝑘=1

|𝑘⟩ (4) 

To investigate the electron transmission behavior of polyacetylene, we couple the molecule 

to electrodes to determine the transmission through the resulting molecular junctions28-31 (see SI 

section 2). The molecular junction can be modelled by considering the matrix, 

𝐇̃𝑚 = 𝐇𝑚 −
𝑖

2
(𝚪L + 𝚪R), (5) 

where 𝚪L = 𝛤L|1⟩⟨1| and 𝚪R = 𝛤R|2𝑚⟩⟨2𝑚| are coupling matrices that describe the left and right 

electrodes, which couple to the first and last site on the chain, respectively (Figure 2A). In a 
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symmetrically coupled junction, 𝛤𝐿 = 𝛤𝑅 ≡ 𝛤. Here we assume the wide-band limit, where the 

coupling strength, 𝛤, is independent of energy. From equation (5), the transmission function can 

be calculated by 𝑇(𝐸) = Tr[𝚪𝐿𝐆(𝐸)𝚪𝑅𝐆†(𝐸)] , where 𝐆(𝐸) = [𝐸𝐈 − 𝐇̃𝑛]
−1

 is the Green’s 

function and 𝐈 is the identity matrix. At low bias, the conductance of a molecular junction is 

directly proportional to the transmission at the Fermi energy (𝐸𝐹): 𝐺 = 𝐺0𝑇(𝐸𝐹) Therefore, we 

are primarily interested in 𝑇(𝐸𝐹), and for convenience we will assume that 𝐸𝐹 = 𝜀C  (i.e., the 

carbon on-site energy). 

 

Figure 2. (A) Transmission spectrum for m = 4, δ = 0.2, and Γ = 0.1t0. The energy bands of an 

infinite chain are shaded gray. Two resonance peaks exist within the band gap due to the edge 

states. (B) Transmission spectrum, plotted within the band gap region, for m = 1-5 with δ = 0.5, 

and Γ = 0.1t0, Fermi level (𝐸𝐹) is indicated by the dashed line. (C) Transmission at 𝐸𝐹  as a 

function of length from panel B for Γ = 0.1t0, 0.01t0, and 0.001t0. Short and long chains exhibit 

exponentially increasing and decreasing transmission, respectively. Grey data points mark the 

transmission at integer m values. 

The transmission function for a representative molecule in the topological regime (𝛿 > 0) 

is presented in Figure 2A. The transmission function reveals two resonance peaks within the band 

gap that arise from the edge states. The resonance peaks result in a high transmission at 𝐸𝐹. This 

suggests that diradical molecules, if chemically stable, serve as good conductors in molecular 

junctions. The length-dependence of the chain is especially interesting. In Figure 2B, we show the 

length-dependent transmission near 𝐸𝐹  for a chain with 𝛿 = 0.5 and 𝛤 = 0.1𝑡0 . Increasing the 

length of the chain from 𝑚 = 1 to 𝑚 = 3 causes the edge state-derived resonances to converge to 

𝐸𝐹 resulting in an increase in 𝑇(𝐸𝐹). This increase in conductance with length is the opposite of 
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conventional molecular junctions where the conductance decreases exponentially with length 

(equation (1)). When 𝑚 = 4, for the parameters chosen, the resonance peaks are nearly degenerate 

and 𝑇(𝐸𝐹) ≈ 1. However, increasing the length beyond 𝑚 = 4 results in a decrease in 𝑇(𝐸𝐹). 

In Figure 2C, 𝑇(𝐸𝐹)  is plotted as a function of length (𝑚 ), using a constant length-

independent bond alternation (𝛿). 𝑇(𝐸𝐹) obeys a simple expression12 (see SI section 4), 

𝑇𝑚(𝐸𝐹) = sech2 [(2𝑚 − 1)𝛿 + ln (
𝛤

2𝑡0
)] (6) 

The sech2(𝑥) function describes a peak that ranges from zero to one (similar to a Gaussian 

function). Since 𝛿 is the coefficient of 𝑚 it will primarily affect the width of the peak, while 𝛤 is 

part of an additive constant that will shift the peak left or right. Restricting our attention to 𝛿 > 0 

as in the diradical case, since 𝛤 ≪ 𝑡0 in the weak coupling regime, the peak will be centered at 

some positive 𝑚 (Figure 2C). However, it should be noted that 𝑇𝑚(𝐸𝐹) is only meaningful for 

integer m (grey data points), and the peak position of the function will generally not coincide with 

an integer value. For this reason, the peak conductance of a diradical polyacetylene series will not 

perfectly reach 1G0. Away from the peak center, the transmission exhibits an exponential 

dependence on length, i.e., 𝑇𝑚(𝐸𝐹) ~ 𝑒−𝛽𝑚. For short chain lengths 𝛽 = −4𝛿 and for long chain 

lengths 𝛽 = 4𝛿 (see SI section 4). Therefore, although these wires are one-dimensional analogs to 

2D and 3D TIs, in that conduction occurs through boundary states, unlike 2D and 3D TI materials, 

a long chain, which would constitute a 1D material, is conductive at the edge points but not through 

the entire chain. Only short chains, i.e., small molecules, are conductive via the edge states. 

Figure 2C also shows how decreasing 𝛤 affects 𝑇𝑚(𝐸𝐹). When 𝛤 becomes smaller, 𝑇1(𝐸𝐹) 

becomes lower for small m and the peak of 𝑇𝑚(𝐸𝐹) shifts to longer chain lengths since the 

ln(𝛤 2𝑡0⁄ ) term becomes more negative. Going from 𝛤 = 0.1𝑡0 to 𝛤 = 0.01𝑡0 and 0.001𝑡0, the 

chain length with peak transmission increases from m = 3 to m = 6 and m = 8.32 Accordingly, to 

extend the range of m where we have a negative decay to create longer highly conducting wires, it 

is necessary to efficiently decouple the polyacetylene chain from the electrodes. 

 To gain greater intuition on how the edge states mediate transmission it is instructive to 

consider an explicit two-level model. The left and right edge states presented in equation (3) and 

(4) are exact eigenstates for infinite chains with energy 𝜀C = 0. However, for finite chains, |𝐿⟩ and 
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|𝑅⟩ are no longer eigenstates, but they serve as an effective basis to approximate the HOMO and 

LUMO of 𝐇𝑚. Applying equation (3) and (4) to equation (2), the coupling between |𝐿⟩ and |𝑅⟩ 

can be calculated to be: 

𝜀 = ⟨𝐿|𝐇𝑚|𝑅⟩ = (−1)𝑚|𝐶𝑚|2𝑡0𝑒−𝛿(2𝑚−1) (7) 

The coupling between |𝐿⟩ and |𝑅⟩ results in eigenstates that are the symmetric and antisymmetric 

linear combinations of |𝐿⟩ and |𝑅⟩ with energies +𝜀 and −𝜀, respectively. When m = odd, since 

𝜀 < 0 (equation (7)), the symmetric combination will be lower in energy and become HOMO (i.e., 

|𝜓HOMO⟩) and the antisymmetric linear combination will be higher in energy (i.e., |𝜓LUMO⟩). When 

m = even, since 𝜀 > 0 (equation (7)), the HOMO and LUMO become reversed:  

|𝜓HOMO⟩ =
1

√2
(|𝐿⟩ − (−1)𝑚|𝑅⟩), 𝐸HOMO = −|𝜀| (8) 

|𝜓LUMO⟩ =
1

√2
(|𝐿⟩ + (−1)𝑚|𝑅⟩), 𝐸LUMO = |𝜀| (9) 

The electrode coupling is given by the atomic orbital-electrode coupling (𝛤) times the magnitude 

squared of the MO coefficient at the contact site. The MO coefficient of the electrode contact site 

for both the HOMO and LUMO is 𝐶𝑚 √2⁄  (equation (8) and equation (9)). Therefore, the electrode 

coupling for both the HOMO and the LUMO is the same and is given by, 

𝛾 =
1

2
|𝐶𝑚|2𝛤 (10) 

With the energy levels (±𝜀) and the electrode coupling (𝛾), the transmission coefficients for the 

HOMO and LUMO are given by the Breit-Wigner formula33-35 (see SI section 3), 

𝑡HOMO =
(−1)𝑚−1𝛾

𝐸 + 𝜀 + 𝑖𝛾
(11) 

𝑡LUMO =
(−1)𝑚𝛾

𝐸 − 𝜀 + 𝑖𝛾
(12) 

According to equation (11) and (12), the phase of HOMO (or LUMO) alternates from 0 (or π) to 

π (or 0) for odd and even m. The transmission function for the two-level model is given as the 

magnitude squared of the sum of transmission coefficients, 
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𝑇𝑚
(2)(𝐸) = |𝑡HOMO + 𝑡LUMO|2 (13) 

The two-level transmission function for a representative molecule (𝑚 = 4, 𝛿 = 0.2, and 𝛤 =

0.1𝑡0) is presented in Figure 3A. Due to quantum interference the transmission function (solid) is 

not a simple sum of the single level Lorentzians (dashed) (see SI section 3). The energy splitting 

between the resonance peaks is Δ𝐸 = 2𝜀 and the full width at half maximum (FWHM) for each 

resonance is 2𝛾. 

Figure 3. (A) Transmission function for two-level model of edge states (black) along with 

hypothetical transmission for the individual levels (dashed). The energy splitting and the FWHM 

of the HOMO/LUMO are indicated by blue and red arrows, respectively. (B) Comparison of the 

length dependence of transmission (left axis) to the energy splitting (right axis, red) and the FWHM 

(right axis, blue). The peak in the transmission versus m occurs when the energy splitting equals 

the FWHM (vertical dashed line). There is good agreement between the full model (𝐇̃𝑚) and the 

two-level model. (C) Transmission from panel B, now plotted on a linear scale, along with the 

interfering (orange) and noninterfering (blue) terms. The peak transmission occurs when QI is 

zero. 

The transmission at 𝐸𝐹 for the two-level model is given by equation (14). Remarkably, 

equation (14) is equivalent to equation (6), which was derived from the full Hamiltonian, i.e.,  

𝑇𝑚
(2)(𝐸𝐹) = 𝑇𝑚(𝐸𝐹). This equivalence with the full model underscores the validity of the two-level 

approximation. In Figure 3B, 𝑇𝑚
(2)(𝐸𝐹) (black line) is compared with the length dependence of the 

level splitting (Δ𝐸 = 2𝜀, red line) and the FWHM (2𝛾, blue line), with 𝛿 = 0.2, and 𝛤 = 0.1𝑡0. 

The level splitting and FWHM from the full model are included as markers. For the full model, 

the splitting and FWHM are extracted from real and imaginary parts of the eigenvalues of 𝐇̃𝑚 
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(equation (5)), which take the form of 𝜀 − 𝑖𝛾. There is very good agreement between the full model 

and the two-level model. Importantly, Figure 3B demonstrates that peak transmission at 𝐸𝐹 occurs 

when the splitting equals the FWHM (Δ𝐸 = 2𝛾). This condition is analogous to the Rayleigh 

criterion from optics. Hence, for Δ𝐸 ≫ 2𝛾  transmission increases exponentially with length, 

whereas, for Δ𝐸 ≪ 2𝛾 transmission decreases exponentially with length. 

𝑇𝑚
(2)(𝐸𝐹) = |

(−1)𝑚−1 𝛤 2⁄

𝑡0𝑒−(2𝑚−1)𝛿 + 𝑖 𝛤 2⁄
+

(−1)𝑚 𝛤 2⁄

−𝑡0𝑒−(2𝑚−1)𝛿 + 𝑖 𝛤 2⁄
|

2

(14) 

The condition that 𝑇𝑚(𝐸𝐹) = 1 when Δ𝐸 = 2𝛾 is an intuitive result. Each Lorentzian peak 

contributes 0.5 to transmission resulting a total transmission of 1. However, this argument is only 

true if the quantum interference (QI) is zero.36 𝑇𝑚
(2)(𝐸𝐹) can be expanded into a noninterfering 

term (|𝑡HOMO|2 + |𝑡LUMO|2) and an interfering term (2Re[𝑡HOMO𝑡LUMO
∗ ]). These terms are plotted 

alongside the transmission function in Figure 3C. When transmission is peaked at 1, indeed QI is 

zero. For shorter chains, when Δ𝐸 ≫ 2𝛾, there is constructive interference between the HOMO 

and LUMO, as expected from the Yoshizawa rules37. For longer chains, when Δ𝐸 ≪ 2𝛾, there is 

destructive interference, and in the infinite chain limit the HOMO and LUMO coincide in energy 

and have opposite phase, resulting in complete destructive interference. Equivalently, instead of 

considering QI between MOs, for long chains one can consider that the basis states, |𝐿⟩ and |𝑅⟩, 

are too weakly coupled (equation (7)) to facilitate transmission. 

We next consider a related system in which the polyacetylene backbone is terminated by 

two non-carbon atoms, X, as such systems better model real molecular systems that can be probed 

experimentally through single molecule measurements. For example, X could be a terminal linker 

such as –NH2 or –SCH3.
38 The onsite energy for X, 𝜀X, will be different from that of carbon and 

hence non-zero (Figure 4A). This energy offset, as well as its magnitude relative to 𝛤L/R, influences 

the transmission function.  

In the new system including a non-carbon terminal group, the Hamiltonian becomes 

𝐇̃𝑚
′ = (𝜀X −

𝑖𝛤𝐿

2
) |1⟩⟨1| + (𝜀X −

𝑖𝛤𝑅

2
) |2𝑚⟩⟨2𝑚| + 𝐇𝑚 (15) 

With 𝛤𝐿 = 𝛤𝑅 ≡ 𝛤, and 𝐸𝐹 = 𝜀C = 0, we can derive the transmission at Fermi, 𝑇𝑚
′ (𝐸𝐹) as was 

done above for the simple polyacetylene (see SI Section 5). Since 𝑇𝑚
′ (𝐸𝐹) is an even function with 
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respect to 𝜀X  (SI Figure S3), in the discussion below 𝜀X  is set to be positive without loss of 

generality. Similar to equation (14), we can also consider contributions to transmission from just 

the two edge states and rewrite 𝑇𝑚
′ (𝐸𝐹) as: 

𝑇𝑚
′(2)(𝐸𝐹) = |

(−1)𝑚−1 𝛤 2⁄

−𝜀X + 𝑡0𝑒(𝑁−1)𝛿 + 𝑖 𝛤 2⁄
+

(−1)𝑚 𝛤 2⁄

−𝜀X − 𝑡0𝑒(𝑁−1)𝛿 + 𝑖 𝛤 2⁄
|

2

(16) 

Compared with the all-carbon polyacetylene model (or equivalently when 𝜀X = 0), the energies of 

the HOMO and LUMO resonances are shifted up by 𝜀X while the coupling between the electrode 

and the HOMO and LUMO levels is still 𝛤/2.  

 

Figure 4. (A) Pictorial depiction of isolated 𝐇4
′ , and 𝐇̃4

′  with terminal non-carbon atoms X which 

have on-site energy 𝜀X ≠ 0. All the other parameters are the same as those of the all-carbon 

polyacetylene model. (B) Plots of the transmission at 𝐸𝐹  as functions of length m, with 𝜀X 

increasing from 0 to 0.5t0, while fixing 𝛤 = 0.1t0 and δ = 0.5. (C) Plots of the transmission at 𝐸𝐹 

as functions of length m fixing 𝜀X = 0.02t0 and δ = 0.5, with 𝛤 = 0.001t0, 0.01t0, and 0.1t0. (D) 

Transmission functions of m = 1-5 for 𝛤 = 0.1t0, 𝜀X = 0.2t0 and δ = 0.5. 
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We plot 𝑇𝑚
′ (𝐸𝐹) as a function of m for different values of 𝜀X in Figure 4B. We can see that 

the maxima in 𝑇𝑚
′ (𝐸𝐹) shift to smaller m as 𝜀X increases. Since only integer m values are allowed 

(grey dots in Figure 4B), a reversed conductance decay requires that |𝜀X| < 0.2𝑡0. We show in 

Figure 4C the impact of the electrode coupling 𝛤 on 𝑇𝑚
′ (𝐸𝐹). In the polyacetylene case, smaller 𝛤 

shifts the peak of 𝑇𝑚(𝐸𝐹) to longer chains without changing the peak shape (Figure 2C). However, 

with non-zero 𝜀X, the relative energies of 𝜀X and 𝛤 are important. If 𝜀X ≪ 𝛤 (dark blue), the peak 

shape is not affected. If 𝜀X ≈ 𝛤 (medium blue) or 𝜀X ≫ 𝛤 (light blue), the peak becomes sharper 

with the peak position remaining the same, indicating that 𝜀X becomes the determining factor in 

the trends of 𝑇𝑚
′ (𝐸𝐹) with m while 𝛤 only affects the peak width. As a result, unlike the all-carbon 

model, there is a limit in decreasing 𝛤 to extend the wire length over which a negative conductance 

decay will be observed. If 𝛤 approaches 𝜀X, this will no longer hold.  

We then plot the transmission functions, 𝑇𝑚
′ (𝐸), in Figure 4D for a fixed 𝜀X and 𝛤. We see 

that 𝐸𝐹 = 0  is not centered between the two resonance peaks derived from the edge states. 

However, 𝐸𝐹 is in the middle of the bulk state-derived resonance peaks since 𝜀C = 0. Similar to 

the all-carbon model, as the chain length increases, these edge-state derived resonances get closer 

and merge into one peak. After the two resonance peaks coalesce, the transmission peak falls below 

1 (for m = 5 in Figure 4D) and the system reverts to a conventional wire with exponentially 

decreasing conductance again because of destructive QI.  

We next expand our model to capture a poly-p-phenylene wire terminated with non-carbon 

atoms (X) to explore whether reversed conductance decay can be achieved in synthetically 

accessible structures.24 A diradical character emerges when polyphenylene is oxidized to the 

quinone that can support edge states (Figure 5B). In this system, a single parameter δ is insufficient 

to probe the structural transition between the quinone form and diradical form because there are 

effectively three types of C-C bonds as illustrated in Figure 5A and 5B. Thus, we use constants 

𝑡1 = 𝑒−0.5𝑡0, 𝑡2 = 𝑒0.5𝑡0, and 𝑡 = 1𝑡0 to describe the two resonance structures separately. The 

Hamiltonians 𝐇̃𝑚,𝑞 for the quinoidal structure and 𝐇̃𝑚,𝑟 for the radical structure using m as the 

number of phenylene units in the chain and 𝜀X as the on-site energy of the terminal atom are: 

𝐇̃𝑚,𝑞 = (𝜀X −
𝑖𝛤L

2
) |1⟩⟨1| + (𝜀X −

𝑖𝛤R

2
) |6𝑚 + 2⟩⟨6𝑚 + 2| − 𝑡1 ∑|𝑗⟩⟨𝑘|

C−C

𝑗,𝑘

− 𝑡2 ∑|𝑝⟩⟨𝑞|

C=C

𝑝,𝑞

+ 𝐻. 𝑐. (17) 
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𝐇̃𝑚,𝑟 = (𝜀X −
𝑖𝛤L

2
) |1⟩⟨1| + (𝜀X −

𝑖𝛤R

2
) |6𝑚 + 2⟩⟨6𝑚 + 2| − 𝑡1 ∑|𝑗′⟩⟨𝑘′|

C−C

𝑗′,𝑘′

− 𝑡 ∑ |𝑝′⟩⟨𝑞′|

C−⃛C

𝑝′,𝑞′

+ 𝐻. 𝑐. (18) 

 

Figure 5. (A) Pictorial depiction of an oxidized poly-p-phenylene chain in the quinoidal form. (B) 

Pictorial depiction of the same oxidized poly-p-phenylene chain in the diradical form. (C) The 

calculated transmission function for m = 1-4 for the quinoidal form. (D) The calculated 

transmission function for m = 1-4 for the diradical form. (E) The evolution of the two edge-state-

derived resonance peaks of the diradical poly-p-phenylene with m = 1 and 𝜀X increasing from 0 

to 0.4t0. For Figures (C)-(E), the Fermi level (𝐸𝐹, dashed lines) is in the middle of the bulk state-

derived resonance peaks.   

For 𝐇̃𝑚,𝑞  (equation (17)), we have a sum over the single-bond sites (j,k) that have a 

coupling 𝑡1 and double-bond sites (p,q) that have a coupling 𝑡2. For 𝐇̃𝑚,𝑟 (equation (17)), we have 

a sum over the inter-phenylene single-bond sites (j´,k´) with a coupling 𝑡1 and the intra-phenylene 
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bond sites (p´,q´) with a coupling t. With 𝛤L = 𝛤R ≡ 𝛤 , the calculated transmissions at 𝐸𝐹 , 

𝑇𝑚,𝑞(𝐸𝐹) and 𝑇𝑚,𝑟(𝐸𝐹) are derived in SI section 6. Similar to the X-terminated polyacetylene 

system, we only consider the cases in which 𝜀X is positive. 

We plot the full transmission functions of the quinoidal junction in Figure 5C where we 

see that longer chains have smaller HOMO and LUMO gaps. However, as the orbitals get 

delocalized over longer lengths as the molecule gets longer, electron density decreases throughout 

molecular backbone which results in a weaker electrode-molecule coupling. By contrast, for the 

diradical junction (Figure 5D), we obtain two additional edge state-derived resonance peaks in the 

middle of the bulk resonance peaks. The transmission function can also be written in a two-level 

model expression: 

𝑇𝑚,𝑟
(2)(𝐸𝐹) = |

(−1)𝑚−1 𝛤 2⁄

−𝜀X + 𝜏 + 𝑖 𝛤 2⁄
+

(−1)𝑚 𝛤 2⁄

−𝜀X − 𝜏 + 𝑖 𝛤 2⁄
|

2

(19) 

where 𝜏 = 𝑡1
𝑚+1 (2𝑡)𝑚⁄ . Equation (19) shares the same form as equation (16) for the X-terminated 

polyacetylene system. The two resonance peaks are now separated by ∆𝐸 = 2𝜏 . The plotted 

transmission functions in Figure 5D are similar to Figure 4D for the X-terminated polyacetylene 

system. In Figure 5E, we plot the transmission function for m = 1, with increasing 𝜀X. We find that 

𝜀X does not affect the shape of the transmission function, but the position of the two resonance 

peaks relative to 𝐸𝐹. Due to the similarity between this system and the previous polyacetylene 

systems, the diradical structure of oxidized poly-p-phenylene wire can also be classified as a 1D 

TI. Therefore, this conclusion supports the design of reversed conductance decay in more realistic 

molecular wires, which has been confirmed in experiments.24 

 We note here that these models and derivations rely on a single-particle approach which 

does not include electron-electron interactions or the electron spin. In general, electron-electron 

interactions lead to Coulomb blockade which results in a splitting of the spin-up and spin-down 

density of states by a charging energy Δ𝑈 when one electron occupies a spin-degenerate two-

electron level. Δ𝑈 (equal to 𝑒2 𝐶junction⁄ ) is the single-electron charging energy, where 𝑒 is the 

charge of an electron and 𝐶junction is the capacitance of the junction39. At the short chain limit, 

𝐶junction is small and the Coulomb blockade effect is more significant. Furthermore, introducing 

non-carbon X atoms at the edges of the polyacetylene or polyphenylene chains could lead to 
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molecules with net charges. This can give rise to a larger Coulomb blockade effect where the 

energy for adding one more electron on the molecule is much larger than that indicated by these 

tight-binding results. Therefore this difference in the charging energy will lead to a larger edge-

state HOMO-LUMO gap and 𝐸𝐹 will locate between the two edge state resonances.40 As a result, 

for the systems with 𝜀X ≠ 0, the reversed conductance decay could extend to longer chains than is 

be predicted from a tight-binding model.  

 In conclusion, we incorporate the SSH model with tight-binding transmission calculations 

to show that 1D wires with topological edge states (topological insulators) can exhibit reversed 

conductance decay at the short chain limit. According to the two-level model, this reversed 

conductance decay results from electron transmission mainly through the two topological states 

which is distinct from the exponential conductance decay that would be obtained from the bulk 

states. Besides the regular polyacetylene system with an all-carbon backbone, we demonstrate that 

analogous systems terminated with other atoms also features reverse conductance decay. This 

work highlights the impact of the topological edge states on the electron transmission. Other 

factors, such as the electron withdrawing or donating nature of the terminal atoms (𝜀X), and the 

molecular backbone, as well as the molecule-electrodes coupling also affects the electron 

transmission supported by the edge states, which gives new insights in designing such molecular 

wires showing reversed conductance decay. 
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