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ABSTRACT

Carbon capture and storage is part of the roadmap towards net zero for many countries around the
world, since emissions from existing infrastructure are close to estimated carbon budgets. To address
this problem, currently 87 carbon capture projects are proposed worldwide in the next 10 years.
A major class of commercial carbon capture technology involves capture systems using solvents.
Commonly carbon capture solvents feature blends of amines and water. Whilst these blends have
proved valuable there is an increasing need to identify new candidate molecules which are more
efficient and improve performance. Systematic approaches to improve on the current technology
are now needed with increasing urgency to expedite the introduction of cutting edge carbon capture
methods. Here, we present a chemical space analysis of amines and carbon capture usage. We
proceed to show a framework for computational screening relevant to carbon capture solvents. We
demonstrate the use of cloud computing, novel molecular representations and machine learning to
screen potential candidates. We show the utility of machine learning in this field for high throughput
virtual screening with an exemplar application to absorption capacity classification. Additionally, we
highlight the need for improved data awareness and accessibility to enable this field to advance at
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a pace commensurate to its global importance. Our research brings together multiple methods and
domains of expertise to accelerate the discovery of carbon capture solvents.

Keywords carbon capture · chemical informatics · machine learning · amines · computational chemistry

1 Introduction

Climate change driven by emissions from human activities now poses the greatest environmental concern of this
century.[1] Emissions of greenhouse gases such as CO2, methane and nitrous oxides (NOx) are the primary drivers of
global warming. CO2 is the largest fraction of greenhouse gases emitted. [2] Electricity generation from fossil fuel
burning is the largest point source of CO2 emissions around the world. Yet, fossil fuel burning infrastructure is still
being built.[1] Due to this trend, committed emissions from existing energy generation infrastructure jeopardise climate
targets.[3]

Modelling suggested that Carbon Capture, Utilization and Storage (CCUS) for CO2 emissions is a necessary part of the
technological solutions required to meet the Paris climate accord.[1, 4] CCUS is the only technology that can be used to
help decarbonise existing energy infrastructure without decommissioning. CCUS is also important for hard-to-abate
emissions, such as those in heavy industries.[5] There are approximately 87 planned CCUS plants between 2020–2030
according to the map of global CCUS projects by the International Association of Oil and Gas producers[6].

Of the currently available CCUS technologies, absorption using carbon capture solvents is the most mature, seeing
commercial usage with further plans for new developments.[7, 8] The technology is dominated by the use of amine
based solvents such as Monoethanolamine (MEA) or proprietary formulations of blends of amines. MEA has become
a defacto standard as it has shown good performance in terms of capture capability as well as being relatively cheap.
However, it has several drawbacks: high-energy penalty on regeneration, thermal degradation and corrosion.[7] As a
result, new solvent candidates and new solvent mixtures are being investigated in both academic and industrial research
laboratories.[9]

In this context, computational techniques can be used to screen, rank and predict new carbon capture solvents.[10, 11,
12, 13, 14] These computational techniques hold promise to improve the speed of discovery and innovation if paired
with suitable data sets of solvent performance. In particular, the field of Chemical Informatics has developed a multitude
of methods and practices, which can be used to address problems in the field of carbon capture[15]. Access to good
quality research data and methods is critical to the fast progress of a field, as demonstrated by examples such as those in
solid state materials design [16] that have benefited from open innovation.

To inform this study and demonstrate the usefulness of computational approaches to this field, we have identified 167
unique amine molecules which have been reported in the literature[17, 18, 19, 20, 21, 22, 23, 24, 25] in relation to
a range of carbon capture performance metrics. We have extracted string representations for these molecules from
PubChem[26] and ChemSpider[27] in order to perform an analysis of the chemical space of carbon capture amines. In
addition to this, we have created a new set of data for 98 amine molecules based on the absorption capacity of the
amine molecules as an aqueous solution of 30% w/w. We have used a consistent set of experimental measures, making
this dataset highly valuable for training Machine Learning (ML) models upon.

In this work, we use the dataset of 167 molecules to consider the chemical space of carbon capture amines. Additionally,
we build high throughput virtual screening (HTVS) methods to predict the absorption capacity over our own dataset of
98 amine molecules. Our results are our first step towards accelerating the discovery of CCUS solvents.

1.1 Methods

1.2 Data

Commonly applied data standards are yet to be widely established in the field of carbon capture solvents research.
Unlike counterparts in the solid state, such as Metal Organic Frameworks (MOFs), for which extensive crystal structure
databases have been provided, carbon capture solvents is a relatively data poor field. This in many ways is related to the
field’s success in being one of the first commercially applied carbon capture technologies. As a result, data is often
considered too sensitive to be released.

This situation is historically reminiscent of fields such as pharmaceuticals, which have seen benefits from opening
up some of the larger internal data sets from commercial organizations in recent years. [28] These benefits are both
scientific (faster development of new ideas) [29] and also economic [30]. Woelfe et al [31] provide a case study on how
a community accelerated the development of a route to enanitopure Praziquantel. The authors of this manuscript have
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demonstrated the use of open data sets towards predicting molecular and material properties such as water solubility
and partition coefficients.[32, 33, 34, 35]

Opening data in this field could enable a proliferation of data driven modelling and the establishment of common
standards upon which to fairly compare methods. These comparisons can drive rapid advancement of computational
screening in this area. Similar arguments have been proposed and discussed in other related fields for formulation
chemistry.[36]

We have collected a new set of data for 98 amine molecules based on the absorption capacity of the amine molecules
as an aqueous solution of 30% w/w. This was done using our in-house rapid testing laboratory, which measures the
extent of CO2 capture at 40◦C using a 200µL sample solution. The CO2 capture measurements are made using a
NonDispersive Infrared Sensor (NDIR) with a 4.3µm absorption band and a 3.9µm reference band. The experiments
take approximately 60 minutes to run and are run in duplicate. We have chosen to focus our HTVS efforts on binary
classification for this initial work. The aim therefore, is to provide HTVS models which can be applied to prioritise
molecules for more expensive exploration. The classes which we used as target data in this work are provided in the
supporting information Table 1. Below we describe our data curation and classifcation process in detail.

1.2.1 Data Collection and Curation

We reviewed the literature searching for experimental absorption capacity. It became clear that there were potentially
issues comparing data over multiple experimental techniques. This lead us to gather our own data on a consistent
experimental basis. We gathered 98 data points in total. These molecules where chosen based upon having been
previously reported or having a similarity to those which have been previously reported.

For each molecule we extracted the identifiers and structures of the molecules. We proceeded to search the PubChem[26]
and ChemSpider[27] databases for entries of these molecules and extracting further identifiers such that all molecules
were specified by: IUPAC name, InChI, InChIKey and SMILES. If an entry could not be found we manually generated
a SMILES string and applied methods in RDKit[37] to acquire InChI and InChIkeys. These representations are the most
commonly used and are easily parsed by standard chemical informatics tool kits such as RDKit and OpenBabel[38].
This information is provided in the supporting information.

A range of capacity units are used in the literature. The most common appeared to be: moles(CO2)
moles(N atoms) , moles(CO2)

moles(amine molecules)

and g(CO2)
g(amine molecule) . Another unit which we encountered several times was g(CO2)

L(solution) . This unit requires knowledge
of density to accurately convert, as the solution includes the solvent volume as well as the amine volume. We have
used the unit moles(CO2)

moles(N atoms) for our absorption capacities and provide conversion factors in the supporting information
equation 1.

1.3 Infrastructure

In this work we used cloud based computing as this offers us flexibility to scale the resources to our needs. This
cluster consisted of eight nodes, each with 8 virtual CPUs and 32GB of RAM. This allowed us to quickly provision
infrastructure to run our modeling.[36, 39]

1.4 Computational Modelling

In this work we have applied a range of methods to explore the properties of the proposed solvents. These methods
broadly fall into the category of data driven chemical informatics, including chemical graph analysis, sub-structure
searching and machine learning.[15] To our knowledge, the application of chemical space analysis and the subsequent
bespoke fingerprinting is a novel contribution to this field and present a new analysis of the molecules most commonly
used for carbon capture solvents.

1.4.1 Substructure searching and Topological Data Analysis

In the first part of this work, we analyze the structures of the molecules which have been considered as possible carbon
capture solvents. We then compared these molecules with a set of 20, 938 commercially available amines taken from
the ZINC database [40].

The purpose of this analysis is to identify chemical functionality strongly associated with carbon capture performance
and to highlight potentially under-explored, yet synthetically accessible, regions of the amine chemical space. To achieve
this, we used sub-structure searching over 3D molecular graphs which were generated from SMILES strings using RDKit.
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We extend this analysis with Topological Data Analysis (TDA) applied on the chemical space to produce a skeletonized
representation of the high-dimensional molecular data set via Mapper TDA [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52].

Mapper TDA is a technique to visualise the topology of high-dimensional data, such as point clouds. The construction
is related to the concepts of a Reeb graph and pullback covers [43, 50]. Mapper TDA tracks the evolution of the level
sets of a real-valued function associated with the data points, known as the filter function. The filter function can be
selected to reflect some geometric properties of the points in the dataset, such as eccentricity (position relative to the
center of the data) or local density. The range of filter function values is split into overlapping intervals, also referred to
as level sets. Mapper TDA tracks evolution of these level sets. For each interval, the corresponding subset of the data
points is clustered. Finally, a graph is constructed where each node represents a cluster and two nodes are linked if the
corresponding clusters overlap. Two Mapper TDA clusters can overlap because the filter function intervals are allowed
to overlap. Further, it is customary to associate some attributes, such as filter function values or some scalar properties,
with the nodes and visualize them as colors. The number of data points in the cluster is often visualized as the node
size. The output of Mapper TDA is highly dependent on the choice of hyper-parameters. A comprehensive analysis of
Mapper TDA parameters can be quite involved and equivalent to a standalone computational task [46].

1.4.2 Machine learning and Model Evaluation

In the second part of this work we describe a workflow for the classification of carbon capture molecules using several
learning algorithms. The machine learning models include the Extra Trees Classifier [53], Ada Boost Classifier [54, 55]
and Gaussian Process classifier [56] as implemented in Scikit-learn [57] version 1.1.1. We envision the classifiers as a
first step towards high throughput virtual screening of carbon capture molecules. In many cases classification may be
sufficient in order to prioritise and decide upon whether a molecule will go on to further more elaborate screening. The
classification methods have been widely used for chemical property predictions previously.[34, 58, 32, 59, 60]

Gaussian Processes have been used in chemical modelling in many instances.[61, 62, 63, 64] These are a stochastic
process, which perform Bayesian inference over a space of functions that map a representation to a probability space,
for the class of a molecule. A prior is used to define a probability distribution over functions. As data is provided to
train the model, the functions which most suitably represent the data are selected leading to the posterior probability
distribution. For classification, a logit function is used to output class probabilities. More details are give in chapter 3 of
Williams et al [56].

Ada Boost, as implied by the name, is a boosting algorithm that combines multiple weak classifiers to increase the
accuracy. In our case we use decision trees as our weak learners. The Ada Boost method works by initializing all
training data with equal weights. After the first classifier is trained, examples which are incorrectly classified by the
first classifier are given a higher weighting. The process is repeated for N weak learners.

Extra Trees classifier is an ensemble learner similar to Random forest except that Extra Trees sub-samples without
replacement. Extra Trees fits a number of decision trees on various sub-samples of a data set and uses the principle
of “wisdom of crowds" to predict the classes through a majority vote. This method has shown improved predictive
accuracy and control of over-fitting compared to a single decision tree.

All models are assessed in terms of multiple performance metrics: accuracy, sensitivity, specificity, Receiver Operating
Characteristics (ROC) curves and [65] Matthews Correlation Coefficient (MCC) [66, 67]. These metrics can all be
formulated mathematically from a confusion matrix, which identifies the correct predictions, True Positives (TP) and
True Negatives (TN), along its main diagonal and the two types of error associated with binary classification, False
Positive (FP) and False Negative (FN), in the off diagonal elements. The equations used for these metrics are given in
the supporting information equations 2 - 7.

Briefly, these metrics comprise the most commonly applied metrics for classification problems and well characterise the
performance of our methods. Accuracy is likely the most common classification metric.[67] It is a ratio of the number
of correct predictions over the total number of predictions. This leads to a ratio describing the fraction of predictions
which are correctly classified in the set. This simple metric is a valuable high level overview of the performance of a
classifier. The sensitivity and specificity each focus on the models ability to correctly predict the positive or negative
class respectively. These metrics provide a greater insight into the potential errors and biases of the models. The ROC
curves describe the model performance over decision thresholds with a FN rate on the x axis and TP rate on the y
axis. These thresholds can be considered as balancing the positive an negative predictions, i.e. lowering the threshold
will increase the number of positive predictions, which is the sum of true positive and false positive predictions. The
Area Under the Curve (AUC) for a ROC curve is the integral of the area under the ROC curve and provides a single
value metric for this trade off. The MCC metric is a powerful summary metric which ranges from -1 to +1 describing
the skill of the classifier to predict positive cases as positive and negative cases as negative even when the classes are
imbalanced.[67].
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1.4.3 Computational workflow

The workflow to generate these models is given in Figure 1. The workflow contains two K-fold Cross Validations
(CV) one nested within the other. The external CV holds a portion of the data set out as a validation set whilst
providing all other points as training data. The internal CV uses the training points from the external CV to optimize
the hyper-parameters and train a classifier for each external k-fold.[32] This means that the predictions are made for all
98 molecules over our external K-fold without biasing the models. Additionally, we can make an assessment of the
models robustness to training set changes. We have chosen this method as it enables us to optimally use the small data
set we have been able to gather from the literature.[32]

Figure 1: Workflow to make classification predictions of each molecules in our data set.

To describe these molecules, we used three methods. The first are standard chemical informatics descriptors, generated
through the Mordred descriptor calculator, [68] which produces over 1800 features of molecular characteristics. From
the 1800 descriptors calculated, we identified the ones that correlate significantly with the properties of interest using
the Spearman correlation coefficient between each Mordred descriptor and the respective property of interest.

Another way to describe molecules is via molecular fingerprints. Molecular fingerprints are vectors that encode
structural information about a molecule. Commonly, this information is stored as binary digits representing presence
and absence of a structural feature. There are different types of fingerprints available such as Morgan fingerprints [69],
MACCS fingerprints [70] or MinHashed Atom Pair (MAP) fingerprints [71]. In this work we have used the commonly
applied MACCS fingerprints.

Additionally, we have defined our own structure based fingerprint (CCS fingerprint) following consideration of the
literature and our own chemical space analysis. This fingerprint is a fixed length (64 bits) with each bit representing a
chemical group or groups. These chemical groups comprise those commonly seen in carbon capture solvents and those
found more broadly across amine chemical space. Each bit is defined by a SMARTS string and substructure searching
is carried out in parallel using DASK[72] and RDKit[37] to generate the fingerprint vector.
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2 Results and discussion

In this section we outline our chemical space analysis, models and property predictions. We begin exploring the
molecular data set, seeking trends across the data in terms of the chemical structures. We proceed with using the
learning models discussed previously to predict absorption capacity. We complete this work by evaluating our models
and considering the impact of our predictions.

2.1 Chemical Space Analysis of Carbon Capture Amine Molecules

First, we explore and compare the structures of the amine molecules we extracted from carbon capture literature with
those we extracted from the ZINC database[40] which are commercially available.

Several authors have reported chemical sub-structures which influence carbon capture capabilities.[18, 19, 10, 17] In
particular, Singh et al[18, 19] developed structure activity relationships based on chemical functionalities. Their work
studies the effects of many chemical functionalities on carbon capture loading and develops design considerations for
carbon capture amines. These included alkyl chain length and functional group separation measured in number of
carbon atoms. Additionally, consideration of ring substituent and their positions was provided in a later publication.[19]
Work by Papadopoulos et al[10] provided a computational design system. This work also identified a small number of
chemical structures which were useful as descriptors for their models. Work by Puxty et al[17] reports the position
of OH moieties relative to the amine nitrogen to be important. Steric hindrance around the amine nitrogen is another
chemical feature reported to be of importance. It has been shown that steric hindrance can change the reaction route of
primary and secondary amines towards that of tertiary amines. This is an important observation owing to the differing
atom efficiency between the two routes. Primary and secondary amines have been shown to react with CO2 through a
pathway requiring a second molecule to complete the reaction, see figure 2. The second molecule may be water in some
cases or a second primary or secondary amine. Tertiary amines have been shown to react in a one to one fashion with
CO2 effectively acting as a catalyst see figure 3.[73, 17, 74, 12]

2 HNR1R2 + CO2 R1R2NCO
⊖
O + H2

⊕
NR1R2

H2O HOOC
⊖
O + H2

⊕
NR1R2 + HNR1R2

Figure 2: Primary and secondary amine general reaction scheme.

2 NR1R2R3 + CO2 + H2O HOOC
⊖
O + H2

⊕
NR1R2

Figure 3: Tertiary amine general reaction scheme.

We have taken these considerations a step further, defining the CCS chemical fingerprint based upon these observations
and our own analysis of commercial amines. Our analysis identified common functionalities in commercial amines
such as benzene rings, five member carbon rings, nitrogen containing hetrocycles and halogen groups some of which
are not commonly found among amines tested for carbon capture. The CCS fingerprint we define combines the
SMARTS definitions for common chemical sub-structures in molecules tested for carbon capture and wider commercial
amines. We apply this tool here in consideration of the relative abundance of these sub-structures in carbon capture and
commercial amines.

The inclusion of both chemical functionalities common in carbon capture amines and those more broadly in synthetic
amines was done to enable the fingerprint to capture the differentiation between the two groups. We use sub-structure
searching over a fixed order of chemical sub-structures, defined by SMARTS, in order to produce the CCS fingerprint.
The fingerprint definition in terms of the order and SMARTS patterns used for substructure matching are included
in the supporting information. Each of the SMARTS patterns defines one bit in our fingerprint. In total there are 64
bits and hence 64 sub-structure searches per molecule. In order to make this computationally reasonable we apply
sub-structure searching through RDKit and parallelize over batches of 1000 molecules using DASK[75, 72]. With this
implementation we are able to produce the fingerprint in approximately 5 minutes on a laptop for the set of 20, 938
molecules compared to several hours when run in serial.

Considering these points Figure 4 displays a fingerprint based comparison of the 167 amines trialled for carbon capture
compared to the 20, 938 amines collected from ZINC which are commercially available.
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The list of carbon capture molecules collected in this work is not exhaustive, but is a representative sample of the
published amine solvent molecules which have been openly reported. As a result the aim here is to provide an analysis
which highlights the most explored regions of the amine chemical space and point out synthetically accessible areas
of amine chemical space which may be under explored in terms of carbon capture. Figure 4 displays a histogram
with the normalized count of occurrences of the given sub-structures across molecules in both sets (blue is the carbon
capture trialled data set of 167 molecules, red is the commercial amines data set of 20, 938 amines). Clearly there is a
substantial difference in the size of these data sets, hence the normalization allows one to consider relative abundance
rather than absolute counts.

Figure 4: Fingerprint comparison over two data sets of amines, 20, 938 commercially available amines and 167 amines
tested for carbon capture abilities. All bits are found in the larger data set at least once except ammonia, however
their occurrence may be rare enough that it is not clearly visible on the normalized x-axis. Where this occurs we have
decided to include the bit as it has been noted in other literature sources as potentially important.
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From Figure 4 it is clear that the carbon capture data set includes molecules which contain a sub-set of chemical moieties
more commonly compared to the commercial amine data set. For example, in the alkanolamines substructures in the
centre of the y-axis. This subset may be somewhat expected given the wide spread use of MEA and related molecules.
It is also clear that structures such as carbonyls, halo-carbons and aromatic groups are relatively less common in the
carbon capture data set compared with commercially available amines. We note that substances such as benzylamine
have been used as promoters within formulated blends rather than capture solvents themselves. Such molecules are not
captured in this analysis.[76, 77] This analysis suggests there is likely a defined sub-space of the amine chemical space,
which is more likely to be associated with amines suitable for carbon capture.

Figure 5 displays the chemical space graphically. In this figure each molecule is represented as a node in the graph and
the most similar (Tanimoto similarity scores of ≥ 0.7 using Morgan fingerprints) are connected. The graph topology is
generated through the Fruchterman-Reingold force-directed algorithm[78] using Python’s NetworkX package (v.2.6.3).
This algorithm treats the nodes as a set of spring connected particles and simulates the graphs topology to a quasi-
equilibrium state. In this case the springs were weighted by the Tanimoto similarity score, making those more similar
node relatively more attractive to one another. The highlighted nodes are molecules which have been reported in the
literature as trialled for carbon capture capability previously.

Figure 5: Force directed graph of the amine chemical space. The highlighted nodes are molecules which have been
reported in the literature as trialled for carbon capture capability previously. The cyan nodes are commercially available
amines which to the best of our knowledge have not been tested for carbon capture capability.

We can see that molecules which have reported carbon capture properties are not evenly distributed. The nodes tend
to be away from the centre and distributed throughout the shell of the graph. The graph is generated based upon
molecular similarity such that those with more connections remain closer to the centre of the graph. As the carbon
capture molecules tend to exist in the shell they can be considered relatively dissimilar to the commercial amines which
remain in the centre. Still most of the carbon capture amines posses at least one connection, suggesting they are not
special isolated cases. Generally the carbon capture amines appear to inhabit sub-sections of the amine chemical space
based upon molecular similarity.

To elucidate this sub-space more clearly we have applied TDA. A skeletonized representation of the set of the topological
data associated with both sets of amines described above is shown in Figure 6. Mapper TDA is applied to the molecular
point cloud in the space of the CCS structural fingerprints equipped with pair-wise dice distances. During Mapper
construction, we chose eccentricity of the molecules in the point cloud as the filter function. Here, eccentricity refers to
the position of the molecule relative to the “center" of the point cloud; it increases further from the center towards the
outskirts. The range of the eccentricity values was split into 40 intervals with 50% overlap between intervals. This
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produced 40 level sets of amines which were clustered with Agglomerative Clustering on the pre-computed matrix of
dice distances.

Figure 6A shows the produced Mapper graph where nodes represent clusters within level sets, nodes are linked if
respective clusters have common members, color encodes the filter function (eccentricity), and the node size encodes
the number of amines in the respective cluster. Figures 6B and C maintain the layout of the graph in Figure 6A and the
encoding of the number of amines in a cluster by the node size. Figure 6B shows the anomaly scores of the molecules
in the dataset evaluated using the Isolation Forest algorithm, averaged over clusters, and encoded as the node color.
High positive values of the anomaly score indicate inliers, decreasing values indicate higher level of abnormality, and
negative values indicate outliers. Figure 6C uses color to encode the fraction of the carbon capture amines in each
cluster. We note that the highest content of carbon capture amines in the Mapper clusters does not exceed 20%.

Comparison of Figures 6A and C suggests that carbon capture amines live primarily on the outskirts of the data set.
This finding can be interpreted as a sign of under-utilization of the space of amines in the studies of utility for carbon
capture. One possible reason could be a bias of the majority of amines towards biochemical/medicinal applications
leading to unnecessarily complex and/or expensive structures. Comparison of Figures 6B and C shows that carbon
capture amines are not outliers, as the only cluster with the average anomaly score characteristic of outliers has zero
fraction of carbon capture amines. Carbon capture amines are not the most “normal" amines either, the average anomaly
scores of the clusters rich in carbon capture amines are shifted towards zero.

Figure 6: Mapper graph of the combined dataset of amines. Eccentricity of amines in the combined dataset is used
as the filter during Mapper construction. Node size is proportional to the number of amines associated with the node.
Thickness of a link between two nodes is proportional to the number of amines that are associated with both nodes.
Panel A: color encodes mean eccentricity of the molecules associated with the node. Panel B: color encodes mean
anomaly score (Isolation Forest) of the molecules associated with the node. Panel C: fraction of amines from CCS
dataset among molecules associated with the node.

Considering all aspects of this analysis it appears that the carbon capture amines considered here are representatives of a
sub-space in amine chemistry. Many of the commerical amines are likely to have been developed for diverse industrial
applications and as such many will be unsuitable (too costly, over complex or only available in small quantities) for
carbon capture. The analysis does suggest though that there is considerable unexplored, or at least unreported, areas of
amine chemical space which may hold novel candidates for carbon capture.

2.2 Carbon Capture Absorption Capacity Classification

In this section we outline our absorption capacity classifications. We begin generating QSAR models for the classification
of molecules based on absorption capacity. We complete this work by evaluating our models and considering the impact
of our predictions.

Here, we report the results for the classification models generated with MACCS fingerprints, CCS fingerprints and
Mordred descriptors against absorption capacity in units of (molCO2

/molN ).

There are 98 molecules in our absorption capacity data set, classified to binary classes. Class 1 represents higher
values and class 0 represents lower values of absorption capacity. The molecules are classified based upon the amine
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functionalities they contain. Both primary and secondary amines are thought to react with CO2 through a mechanism
requiring two amine molecules to complete the reaction. Therefore, a primary or secondary amine has a theoretical
absorption capacity of 0.5 per primary or secondary amine group. Tertiary amines are thought to react in a one to one
mechanism therefore have a theoretical absorption capacity of 1.0 per tertiary amine group. We classify molecules by
summing up these expected contributions per amine group and applying a weighting based upon the number of groups.
If this value is below the experimental absorption capacity then class 0 is assigned to the molecule; if the experimental
absorption capacity is greater than or equal to the value then class 1 is assigned to the molecule. From this dataset, 71
molecules are class 0, and 27 molecules are class 1.

The two classes are highly imbalanced. To achieve better performance in the models, we generate additional sampling
points for the minority class using the Synthetic Minority Over-Sampling Technique (SMOTE) [79] for non-categorical
features and Synthetic Minority Over-sampling Technique for Nominal (SMOTEN)[79] for categorical features. In
both cases, these methods select the five nearest minority class neighbours in feature space to the kth example minority
point, choose at random one of the five and generate a synthetic sample point along the connecting line between the
example point and the random neighbour. Note that the methods have no information about the majority class.

These techniques provide a better balance between the classes and hence improve the learning of a decision boundary.
After the synthetic data points are added, there are in total 142 data points meaning there are 44 synthetic samples in
total. Here we present how Extra Trees and Ada Boost perform on the balanced data set.

2.2.1 Mordred descriptors as features

For each molecule, we generate over 1500 descriptors using Mordred.[68] The list of Mordred descriptors can be found
at reference [80]. From these descriptors, we are only interested in those that have a notable correlation with absorption
capacity. We thus set a Spearman correlation cutoff of 0.5 and further analysed these features for significance using
a two-tailed p-test[81] over 5000 random sample permutations using the Spearman correlation coefficient as the test
statistic, which leaves us with 35 features which have a significant p-value at 95%. The list of features which correlate
are given in the supporting information. Following feature generation, we apply one-hot encoding for categorical
features and min-max scaling for continuous features. There were 6 features considered as categorical out of the 35
(nBondsM, nBondsKD, C1SP2, HybRatio, FCSP3, ETA_beta_ns). Categorical in this case includes features with
specific increments such as counts. Following one hot encoding the feature set extends to 84 as every unique value of
the categorical features becomes a binary feature array. Scikit-learn[82] was employed to perform one hot encoding and
min-max scaling.[57]

2.2.2 Molecular fingerprints as features

As discussed above we have developed a new fingerprint, CCS fingerprint, for carbon capture solvents based upon
the chemical space analysis and the presence or absence of substructure searches using SMARTS strings. They are
composed of 64 binary features. The features are not pre-processed in any other way. The SMARTS definitions are
provided in supporting information. The use of such fingerprints can enhance the interpretability of models in terms of
the chemical structures and their correlation with the properties of interest.

Additionally, we compared our CCUS fingerprint with the well established MACCS keys [83, 84]. The MACCS keys
are composed of 166 binary bits which also represent the presence and absence of chemical features. MACCS keys
have been widely used, especially in the pharmaceutical industry. The bits represent a wide sub-set of chemical space.

2.2.3 Results for Mordred Descriptors

We begin our modelling of absorption capacity using the Mordred descriptors as features to represent the molecules.
Figure 7 and table 1 provide a summary of the performance of the three models generated from Extra Trees, Ada Boost
and Gaussian Process classification methods.
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Figure 7: Confusion matrices and ROC Curves for the balanced data against absorption capacity classification using the
Mordred chemical features.

Table 1: Classifier metrics for balanced data for absorption capacity with models built from Mordred features. MCC is
the Matthew’s correlation coefficient.

Algorithm Accuracy Sensitivity Specificity MCC
Extra Trees 0.87 0.90 0.83 0.73
Adaboost 0.80 0.85 0.76 0.61
Gaussian Process 0.88 0.97 0.79 0.77

From the results in figure 7 and table 1 overall all models have made a good prediction with accuracies between 0.8 and
0.88. The Gaussian Process and Extra Trees methods have broadly performed similarly in terms of accuracy, however,
there are notable differences in the sensitivity and specificity where the Extra Trees method has good performance
for both and the Gaussian Process has excellent performance for sensitivity and fair performance for specificity. The
sensitivity (TP rate) is a measure of how well the models can predict the positive class whilst specificity (TN rate) is a
measure of how well the model can predict the negative class. We see that the Gaussian Process classifier makes the
largest number of true positive predictions and Extra Trees makes the largest number of true negative predictions. The
Ada Boost method, whilst still performing well, struggles compared to the other models on all metrics making it the
weakest of the three classifiers here. The MCC values show that all models perform better than random (values above 0).
Turning to the confusion matrices we see a general bias to fewer false negative predictions compared to false positive
predictions. This suggests that for all models the positive class is more often predicted correctly than the negative. This
is confirmed by the sensitivity and specificity showing the same pattern.

2.2.4 Results for MACCS fingerprints

Turning to the MACCS fingerprint representation of the molecules; figure 8 and table 2 provide a summary of the
models performance.
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Figure 8: Confusion matrices and ROC Curves for the balanced data against absorption capacity classification using the
MACCS keys as features.

Table 2: Classifier metrics for balanced data for absorption capacity with models built from fingerprint features. MCC
is the Matthew’s correlation coefficient.

Algorithm Accuracy Sensitivity Specificity MCC
Extra Trees 0.87 0.89 0.85 0.73
Adaboost 0.84 0.86 0.82 0.68
Gaussian Process 0.87 0.89 0.85 0.73

Using the MACCS fingerprints, and considering the metrics in figure 8 and table 2 all three models now make a
reasonable prediction of the molecules class. At a high level the accuracy for these three models ranges between 0.84
and 0.87. The Extra Trees and Gaussian Process models both perform equally well, whilst the Ada Boost method
performs slightly poorer. This follows the trend across the model performance using the Mordred features. The MCC
values show promising values showing a much better than random prediction. Looking at the confusion matrices,
alongside the sensitivity and specificity, we see a fairly even number of false positive and false negative predictions
with broadly similar performance. This shows the models are able to predict each class with a similar accuracy. We
see a small decline in positive class prediction accuracy with a modest improvement in the negative prediction class
compared to the mordred features in figure 7 and table 1.

2.2.5 Results for CCS fingerprints

The last representation is that of our CCS fingerprint; figure 9 and table 3 provide the summary results for the three
models trained on this representation.
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Figure 9: Confusion matrices and ROC Curves for the balanced data against absorption capacity using CCS fingerprints
as features.

Table 3: Classifier metrics for balanced data for absorption capacity with models built from CCS fingerprint features.
MCC is the Matthew’s correlation coefficient.

Algorithm Accuracy Sensitivity Specificity MCC
Extra Trees 0.85 0.92 0.77 0.70
Adaboost 0.87 0.92 0.83 0.75
Gaussian Process 0.87 0.87 0.87 0.75

From figure 9 and table 3 it appears that all three models make good predictions of the molecules classes. The accuracy
of all models is greater than 0.8, with the accuracy range of 0.85 - 0.87. In the Extra Trees and Ada Boost models we
see a bias when measuring the sensitivity and specificity. The sensitivity is considerably better for these two models
compared to specificity. This represents a strong ability to predict the positive case with sensitivity metric > 0.9.
We see this in the confusion matrices, where both models have the joint second lowest number of FN (6 each) and a
high number of TP predictions. The Gaussian Process model performs equally well on both classes with 0.87 correct
classifications for the positive and negative class. This is the only balanced model over all of the models. The MCC
suggests that all models make strong predictions notably better than random.

Comparing the models on their summary metrics we see that in general figures 7 - 9 and tables 1 - 3 suggest that
classification of molecules using shallow learning algorithms for absorption capacity can be achieved. Across the
models presented we have used several molecular representations. The Mordred descriptors are composed of a range
of well known 2D molecular descriptors encoding information of electronic state, graph topologies and molecular
properties. We found 35 had a notable correlation with absorption capacity but this vector extended to 84 when one-hot
encoding was applied. This means a notable part of the representation contains a null representation. It is possible that
with a larger data set the most explanatory features could be more readily identified and the models improved.

The MACCS fingerprints are a standard fingerprint representation which has been employed many times in materials
modelling. To our knowledge, it has not been applied previously to predicting absorption capacity. In this work we see
that the MACCS fingerprint perform well as a representation and achieve a good balance in predicting correctly both
classes. This is given by the closer sensitivity and specificity values compared to Mordred descriptors and most of the
CCS fingerprint models. The MACCS fingerprints are the largest representation used in this work at 164 elements each,
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with every element requiring a sub-structure match to build the representation. This can be a relatively computationally
expensive task.

Having considered these two standard representation methods, we developed our own fingerprint, inspired by the
MACCS scheme, which encoded the sub-structures noted by the carbon capture community to correlate with carbon
capture performance. We also wished to generate a more condensed representation which with equivalent software
implementation could reasonably be expected to be generated with fewer sub-structure matches. From this we developed
the CCS fingerprint. The models generated above show the result is promising. All of the models built using the CCS
fingerprint perform with an accuracy approximately equivalent to the standard features together with the best Extra
Trees and Ada Boost models with 92% accuracy for the positive class. Additionally, we find that the Gaussian Process
model using the CCS representation provides a very balanced predictor with 87% for both classes correctly predicted.
This model has the best negative class prediction accuracy over all models.

The best overall positive class predictor comes from the Mordred features using the Gaussian Process classifier with
97% promising class correctly predicted. The use of the MACCS keys shows fairly balanced prediction performance
for both classes over all algorithms tested here. The use of the standard Mordred descriptors and MACCS keys in
classification of absorption capacity for carbon capture shows promise. The headline accuracy is typically 80 + % over
all of the data points.

With the exception of the CCS Gaussian Process model all other models show a bias to more accurately predicting the
positive class of molecules. This suggests there is room for improvement in these models to improve the prediction of
the negative class generally. From a screening perspective, this is an error type which maybe preferred, within reason, as
it simply leads to a few more candidates continuing to the next stage of the design or screening process, but minimizes
the number of missed promising candidates.

2.2.6 SHAP analysis

We calculate feature importance using Shapely values. Shapely values are a concept from game theory, where they are
used to rank the importance of each player in a cooperative game. In machine learning, they have been the inspiration
for a method known as SHAP [85], which is a method to explain the output of a machine learning model. The methods
works by generating shapley importance values over all permutations of features thus providing an interpretable impact
of that feature.

Figure 10 shows the Shapely values calculated for the Extra Trees model using the Tree Explainer[86]. The Shapely
values are calculated based on class ‘1’, which represents good capture performance. Each training point is plotted
for every feature. Points in red have high value of the feature and points in blue have low value of the feature. The
Shapely values for each point are on the x axis. Positive Shapely values mean that this feature contributed positively to
predicting this particular point is in class one, and the opposite for negative values.

We will focus here on the CCS fingerprint, as the feature names are the ones which are most relevant to the problem of
carbon capture. The two methods for feature importance produce the same top 5 features.

In the case of this fingerprint, when poly-primary-and-or-secondary-and-or-tertiary-amine feature is low (meaning
0, as we are dealing with features that are either 0 or 1 here) the model is more likely to predict class 1 than class 0.
Thus, we can interpret that, the more amine groups there are in the amine, the lower the chance of having a high carbon
capture capacity measured in moles of carbon dioxide per moles of amine. Or in other words, the model indicates that
capacity scales sub-linearly with number of nitrogen atoms.

The rest of the features, the model uses to predict good performance. Molecules with secondary-amine, primary-
alcohol, butyl-chain and aliphatic-primary-amino-alcohol-two-carbon-separation are more likely to be classified as
good performers.

For Mordred, the most important feature is nBondsM_0, which is a one hot encoded column defining that the nBondsM
descriptor has a value of zero. This descriptor is a count of multiple bonds in a non-kekulized structure. This means,
number of multiple bonds outside aromatic rings. Therefore, molecules without double and triple bonds outside of an
aromatic ring are correlated with better performance. The next feature in importance is PEOE_VSA2 which relates to
surface charges in the molecule. The higher the feature, the less likely the classifier will predict good performance.
The next three features (AETA_eta_F, AETA_beat and ETA_epsilon_1) are based on the Extended Topological Atom
(ETA)[87]. These features related to average values over the molecules for functionality, valence electron mobility and
ϵ score respectively.

In the case of MACCS, the y axis labels are designed to be pseudo-SMARTS, which help to explain what the feature is.
These labels refer directly to SMARTS patterns which each bit of the MACCS fingerpint represents presence or absence
of. The first descriptor, N> 1 which means more than one nitrogen atom, is the most important feature. When the
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feature is present, the classifier is less likely to predict good carbon capture performance, indicating a similar sub-linear
scaling of carbon capture capacity with number of nitrogen atoms. The second key relates to the presence of a group
corresponding to a CH2 group bound to an oxygen atom by any bonding motif. The presence of this group contributes
to a positive class most of the time and likely relates to alcohol groups. The third feature relates to a chain of where two
carbon atoms are separated by a non-carbon atom. Generally this feature corresponds to a negative class but there are
some points where this is not the case. The last two features also correspond to chain configurations with two nitrogen
atoms separated by any two and any three atoms in any bonding configuration respectively. These groups correspond to
the negative class.

Figure 10: Shapely values calculated using SHAP for the top 5 features that explain the model outputs of the Extra
Trees classifier using the Mordred, MACCS and CCS Fingerprint features.

One should be careful not to over interpret the importance of these features, as they lack any physical theory determina-
tion. The models here only learn on statistical grounds from vectors of data and have no knowledge of the underlying
chemistry and physics. However, the feature importance presented here can be used as a check whether the models
learn chemically and physically intuitive correlations and these can be used to further tune the parameters or provide
guidance to screening. It is interesting to note that of the structural features considered as important path lengths, the
number of nitrogen atoms and nitrogen atom environment have been found across multiple representations.

3 Conclusions

This work displays an analysis of the chemical space of carbon capture amines against a background of commercially
available amines. This analysis shows that carbon capture amines inhabit an edge region of the chemical space, but
are not outliers in their structure compared to the wide set of commercially available amines. This is promising as it
suggests that there may be other commercially available amines which will be suitable for carbon capture with out
expensive new synthesis pathways being required. It also highlights chemical functional groups which are relatively
less common in carbon capture amines. It remains unclear whether these are less common due to a lack of reporting on
carbon capture capabilities for molecules containing these functionalities or due to these chemical functionalities having
a consistent detrimental impact on carbon capture performance. This is an area for further exploration which could have
a notable impact on the field by improving knowledge, data availability and thus modelling validation capabilities.
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We used this chemical space analysis to define a novel fingerprint for the modelling of amine molecules used in carbon
capture. This fingerprint has been shown to be an effective featurization method for QSAR modelling and a way
to analyze the chemical space. We have also tested the use of commonly applied featurization methods through the
Mordred engine and MACCS fingerprints. The models built here show promise for HTVS of carbon capture amines
for all of the featureization methods used. The use of the CCS fingerprint and Mordred descriptors showed the most
accurate classification models for each class. The CCS fingerprint also showed the most balenced model in terms
of predictive accuracy for each class. The MACCS keys showed consistently slightly poorer accuracy for each class
but consistently showed closely balanced prediction accuracy for each class. We have explored the importance of the
features and explanation of our models which highlight the importance of the nitrogen environment.

One of the biggest challenges to this work is relative lack of open available data in this field. This leads to small-data
issues and limits the potential use of more complex modelling. We have used our own data for our HTVS models in this
work. We will be publishing this data in due course. Opening data in machine readable formats (such as csv, json and
HDF5 files for example) will enable computational scientist to better explore this area.

As policy shifts towards a net zero carbon world and carbon capture, usage and storage is deployed, the release of
more data in the open literature related to these technologies will become more vital. This data can be enhanced with
computation to help in the search for more efficient solvents, and carbon capture materials more generally, as we have
demonstrated in this work. Further, the overlap of computational and experimental work is a powerful combination.
Computation can rapidly screen and rank materials. Discovering more efficient materials for carbon capture is a goal
that is required to avoid the more catastrophic effects of climate. Additionally, these tools can help to mitigate against
potential future environmental threats from the use of carbon capture technology using predictive models for a wide
range of properties. To mitigate the effects of climate change is likely to require great urgency in collaborating at scale
across the world to accelerate the development and understanding of the most promising net zero technologies.
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