
Sella, an open-source automation-friendly

molecular saddle point optimizer

Eric D. Hermes, Khachik Sargsyan, Habib N. Najm, and Judit Zádor∗

Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969

USA

E-mail: jzador@sandia.gov

Abstract

We present a new algorithm for the optimization of molecular structures to saddle

points on the potential energy surface using a redundant internal coordinate system.

This algorithm automates the procedure of defining the internal coordinate system,

including the handling of linear bending angles, e.g. through the addition of dummy

atoms. Additionally, the algorithm supports constrained optimization using the null-

space sequential quadratic programming formalism. Our algorithm determines the

direction of the reaction coordinate through iterative diagonalization of the Hessian

matrix, and does not require evaluation of the full Hessian matrix. Geometry optimiza-

tion steps are chosen using the restricted step partitioned rational function optimization

method, and displacements are realized using a high-performance geodesic stepping al-

gorithm. This results in a robust and efficient optimization algorithm suitable for use

in automated frameworks. We have implemented our algorithm in Sella, an open source

software package designed to optimize atomic systems to saddle point structures. We

also introduce a new benchmark test comprising 500 molecular structures that approx-

imate saddle point geometries and show that our saddle point optimization algorithm
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outperforms the algorithms implemented in several leading electronic structure theory

packages.

1 Introduction

The recent and upcoming availability of exascale computational resources has created

renewed interest in high-performance automated software frameworks for the develop-

ment of molecular reaction networks. A crucial step in such frameworks is the de-

termination of saddle point geometries for the calculation of reaction rate coefficients

under transition state theory. Automation of saddle point optimization requires robust

optimization algorithms that converge quickly and reliably to saddle points. This has

typically been a source of difficulty in the development of automated frameworks due to

the computational expense involved and the rate of convergence failure many algorithms

exhibit. Researchers often have to adjust saddle point initial guess structures manually

to avoid pathological configurations and improve convergence of the optimization algo-

rithm. There is therefore great need for development of new saddle point optimization

algorithms whose reliability and performance is suitable for deployment in automated

frameworks.

We have previously developed a method for saddle point optimization of densely

connected systems (such as metals and their oxides in condensed phase) in Carte-

sian coordinates.1 Our method was shown to converge in less than half the number of

steps as compared to the next best performing code on one of the optbench.org sad-

dle point optimization benchmarks.2 This method was implemented in Sella,3 an open

source Python software package we have developed that has bindings to more than 20

popular electronic structure theory software packages due to its integration with the

ASE software package.4 However, Cartesian coordinates and the related algorithms are

not efficient for saddle point searches on the potential energy landscapes of sparsely

connected atomic systems, such as molecules, because of the strong coupling between

atomic degrees of freedom. Molecular optimization (both for minima and saddle points)
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is generally performed in a basis of internal coordinates, which typically comprise bond

stretch distances, bending angles, and dihedral angles, as internal coordinates are sig-

nificantly less energetically correlated than Cartesian coordinates.5–9 These chemically

relevant features provide a more effective coordinate system for optimization at the

cost of additional algorithmic complexity. We have recently developed a new method

for realizing displacements in a basis of redundant internal coordinates which dramat-

ically reduces the number of steps required to reach convergence on a minimization

benchmark.10 In this work, we extend this algorithm to optimization of saddle point

geometries.

Our optimization algorithm is designed to be used in automated frameworks without

the need for manual intervention. However, the complexity of optimization in a basis

of internal coordinates frequently frustrates attempts at automation. For example,

when a bending angle of a molecule becomes linear or nearly linear during the course

of optimization, displacement of the bending angle coordinate becomes ill-defined. To

solve this problem, it is necessary to redefine the internal coordinate system to replace

the linear bending angle with a different coordinate. Occasionally, this may require the

addition of fictional “dummy atoms” that act as scaffolding off of which the replacement

coordinate can be defined. The process of adding dummy atoms and dealing with the

additional degrees of freedom they bring to the optimization problem poses a difficulty

for automation efforts.

To address these issues and to enable efficient optimization of molecular saddle

points, our algorithm defines internal coordinates and replaces pathological linear bend-

ing angles with more well-defined coordinates. If necessary, our algorithm will add

dummy atoms to the system automatically at the beginning of the optimization for

the purpose of defining new coordinates to replace linear bending angles. Moreover, if

previously well-defined bending angles become linear mid-optimization, our algorithm

will automatically replace those coordinates without interrupting the optimization pro-

cedure. This resolves the common problem of initially well-defined coordinate systems

becoming invalid partway through optimization, resulting in a crash or other error.
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When adding dummy atoms to the optimization problem, our algorithm also adds con-

straints to counteract the added Cartesian degrees of freedom generated by the dummy

atoms. This enables the optimization of a wide range of molecular geometries in an

efficient redundant internal coordinate system. This capability renders our algorithm

a highly effective and robust geometry optimizer for automated workflows that explore

reactive potential energy surfaces, such as KinBot.11

Further, constrained optimizations, such as relaxed scans, are often used to explore

aspects of the potential energy surface and are thus also part of automated workflows.

Additionally, the presence of dummy atoms necessitates the addition of constraints,

as previously described. However, constrained calculations often fail to converge and

are an impediment to automation. To address this challenge, we have implemented

constrained saddle point optimization using sequential quadratic programming (SQP),

resulting in reliable and efficient constrained optimization trajectories.12,13

In the following, we present our methodology to largely overcome the problems

mentioned above. In section 2, we describe our saddle point optimization algorithm.

This algorithm features the ability to automatically construct a basis of redundant

internal coordinates from the Cartesian molecular structure, including the addition of

dummy atoms when necessary. Furthermore, we have extended several methods to

a basis of redundant internal coordinates, including iterative diagonalization of the

Hessian, SQP-based constrained optimization, and restricted-step partitioned rational

function optimization (RS-PRFO) for saddle point structures. In section 3 we introduce

a new benchmark, demonstrate the performance of our algorithm, and give guidance

about its use. We conclude in section 4.

2 The Optimization Algorithm

This section describes our redundant internal coordinate saddle point optimization

algorithm, illustrated in figure 1. Section 2.1 describes the novel aspects of our algorithm

for constructing internal coordinate system, in particular the addition of dummy atoms
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Figure 1: A diagram of our internal coordinate saddle point optimization algorithm as
implemented in Sella.
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and how their associated degrees of freedom are handled. Section 2.2 discusses the

construction and transformation of the various projected internal coordinate bases that

are used in this work, including the nonredundant internal coordinates, the constrained

internal coordinates, and the unconstrained nonredundant internal coordinates. Section

2.3 describes our iterative Hessian diagonalization algorithm, as well as the multi-secant

Hessian update formula that is used to construct and update the approximate Hessian

matrix. Section 2.4 describes how we have combined the null-space SQP constrained

optimization formalism with the RS-PRFO saddle point optimization procedure.

2.1 Handling linear angles using dummy atoms

An internal coordinate system describes the geometry of a molecule using the relative

positions and orientations of atoms within the molecule, in contrast to the Cartesian

coordinate system which describes the geometry using the absolute positions of each

atom. The most common types of internal coordinates are the two-atom bond distances,

three-atom bending angles, and four-atom dihedral angles.5,8 A sufficiently large set of

these three types of internal coordinates can fully represent all internal degrees of free-

dom of a molecule. To facilitate automation, our algorithm is capable of automatically

determining an appropriate set of internal coordinates. Notably, the algorithm handles

systems with linear bending angles by replacing those coordinates with alternate coordi-

nates, adding dummy atoms where necessary. Without this functionality, optimization

algorithms in internal coordinates will often crash due to derivative discontinuities in

bending angle degrees of freedom.

There are many ways to construct an internal coordinate system for a molecule.

Perhaps the simplest approach is the Z-matrix representation, which defines a mini-

mal internal coordinate system. However, the Z-matrix representation necessarily omits

chemically relevant features for non-trivial molecules, particularly molecules with rings.

This has a deleterious effect on performance, as the excluded chemically relevant fea-

tures may change drastically after even a small displacement in the Z-matrix coordinate

space.6
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For this reason, our algorithm uses a redundant internal coordinate system that in-

cludes all chemically relevant bond stretch, angle bend, and dihedral angle coordinates.

Redundant internal coordinate systems increase the complexity of the optimization

problem, as the coordinate system is by construction of a higher dimensionality than

the space of all possible molecular configurations. We have described these problems and

the methods we developed and implemented in Sella to ameliorate them in a previous

work.10 Our algorithm constructs a complete set of internal coordinates by mapping all

possible pairs, triplets, and quadruplets of sequentially-bonded atoms from a molecular

graph to bond distance, bending angle, and dihedral angle coordinates, respectively.

This procedure is described in detail in appendix A.

One problem that is frequently encountered when constructing internal coordinate

systems is bending angles may become nearly or completely linear. This is a problem

because linear bending angles do not have a well-defined Cartesian derivative, and di-

hedral angle coordinates which contain a linear angle are undefined. This problem is

typically solved by manually replacing the pathological angle with one or more new

coordinates, usually an improper dihedral or in- and out-of-plane bending angles.8,14

However, if the central atom of the pathological angle is only bonded to two other

atoms, then it is not possible to define a chemically meaningful improper dihedral to

replace the angle. In that case, it is necessary to define a new, so-called “dummy” atom,

which is used to help define the improper dihedral. For this scenario, we have developed

an algorithm for automatically adding dummy atoms to a molecule, potentially even

mid-optimization. This is a key aspect of our method, as without automatic reconstruc-

tion of internal coordinates, some molecular saddle point optimizations will fail due to

the coordinate system becoming ill-defined. To the best of our knowledge, no other

optimizer automatically reconstructs the internal coordinate system mid-optimization

when the initially constructed internal coordinate system becomes ill-defined.

As dummy atoms are fictitious, the energy of the molecule does not depend on their

position, and, therefore, the gradient of the potential energy with respect to the position

of dummy atoms is always zero. Because of this, it is possible for the position of the
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dummy atoms to drift during the course of optimization, reducing the effectiveness of

the improper dihedral for which it was added. Our algorithm counteracts this problem

by automatically applying three constraints to the position of the dummy atom to

ensure it remains in a position that is useful for the optimization. The addition of these

constraints also serves to avoid an increase in the dimensionality of the optimization

problem upon addition of dummy atoms, though at the cost of turning an otherwise

unconstrained optimization into a constrained optimization problem.

Figure 2: A schematic of how dummy atoms are added to near-linear angles. An angle αabc

is considered near-linear when it is above 165°. So long as αabc is not perfectly linear, the
dummy atom (x) is added in a direction perpendicular to the plane defined by the angle’s
three atoms. The bond stretch coordinate δbx is constrained to 1Å and the two bending
angles αabx and αcbx are constrained to 90°. The nearly-linear angle is replaced by the
improper dihedral τabxc.

Our algorithm automatically places dummy atoms following a precise set of rules

that are designed to ensure consistent performance even when a molecule is translated,

rotated, or if the atom order is permuted. If a proposed angle αabc is found to be within

15° of linear (0° or 180°) during the construction of the internal coordinate system, then

the angle is not added and an improper dihedral is added instead. If atom b is bonded

to at least three atoms, then the improper dihedral τabdc is added to the coordinate

system, where d is chosen to be the bonded atom closest to b excluding a and c. If

atom b is bonded only to a and c, a dummy atom is added to the coordinate system,

as illustrated in figure 2. The dummy atom x is placed 1Å away from atom b in the

direction of δ̂ba× δ̂bc, where δ̂ is the unit bond vector. To counteract the dummy atom’s

additional Cartesian degrees of freedom, the δbx bond stretch coordinate is constrained
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to 1Å and the αabx and αcbx bending angles are constrained to 90°. The nearly-linear

angle αabc is then replaced with the improper dihedral angle τabxc.

However, if the αabc angle is already too close to linear when the algorithm detects

the need for the dummy atom, then this procedure for determining the orientation of the

dummy atom will become numerically unstable. For this reason, if ‖δ̂ba× δ̂bc‖2 < 10−4,

an alternate procedure is used instead. This procedure places the dummy atom in

the direction
(
I− δ̂acδ̂

T

ac

)
ŵ, where ŵ is the unit vector of the Cartesian axis that is

nearest to being orthogonal with the vector δ̂ac. While this approach loses rotational

invariance of the dummy atom positioning, the positioning does maintain translational

and permutational invariance.

During the course of an optimization trajectory, if a previously-defined bending angle

is found to be within 15° of linear, then the internal coordinate system is discarded and

subsequently regenerated by re-running the molecular graph algorithm described in this

section.

2.2 Definition and conversion of delocalized coordinate sys-

tems

In this work, we extend a method that we have previously developed for saddle point

optimization in a Cartesian coordinate basis to a basis of redundant internal coordi-

nates.1 When using redundant internal coordinates or when optimizing a system with

constraints, our algorithm uses a variety of projected internal coordinate bases as well.

This section outlines how these projected bases are constructed and the relationships

between them.

The Cartesian coordinate vector of a molecule is represented by the 3n-dimensional

vector x, where n is the number of atoms in the molecule. The redundant internal

coordinate vector is represented by the m-dimensional vector q, where m ≥ 3n − 6.

Each element of q corresponds to one of the internal coordinates determined by the

algorithm described in appendix A, and m is the total number of internal coordinates

9



that have been determined. In practice, only the Cartesian coordinate vector x behaves

as an independent variable for the optimization algorithm, and the internal coordinate

vector q is calculated from x. Therefore, all changes to the internal coordinate vector q

are realized as changes to x; this has important implications for the iterative diagonal-

ization algorithm described in section 2.3 and the constrained saddle point optimization

algorithm described in section 2.4 below. In this work, all undecorated vector and ma-

trix quantities are defined to be in a basis of redundant internal coordinates with the

exception of the Cartesian coordinate vector x. Quantities in other coordinate systems

will be decorated with an accent character, as described below.

In addition to the Cartesian and redundant internal coordinate bases, our algorithm

also uses a nonredundant basis which is a linear combination of the redundant internal

coordinates.7 We define the nonredundant internal coordinate basis using the singular

vectors of the m × 3n internal–Cartesian Jacobian matrix J (sometimes called the

Wilson B-matrix15) as projection matrices,

J =
dq

dx
=

[
N R

]T 0

0 0


ZT

Z′T

 , (1)

where T is the (3n−6)× (3n−6) diagonal matrix of non-zero singular values, N is the

m× (3n− 6) orthonormal matrix whose columns span the nonredundant space of q, R

is the m× (m− 3n+ 6) orthonormal matrix whose columns span the redundant space

of q, and Z and Z′ are the 3n × (3n − 6) and 3n × 6 matrices whose columns are the

right singular vectors corresponding to N and R respectively. We treat singular values

of J below 10−6 as zero and assign the corresponding singular vectors to the redundant

space.

In this work, vectors and matrices in the nonredundant internal coordinate space

will be decorated with a check accent (e.g. v̌). Using our definition of the nonredundant

internal coordinate system, vectors v and matrices M can be transformed between the
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redundant and nonredundant internal coordinate systems through the relations

v̌ = NTv and v = Nv̌ (2)

M̌ = NTMN and M = NM̌NT . (3)

The nonredundant internal coordinate system is used primarily in the iterative Hessian

diagonalization algorithm described in section 2.3 below.

For constrained optimizations using SQP, our algorithm further subdivides the

nonredundant coordinate system into an unconstrained nonredundant internal coordi-

nate system and a constrained internal coordinate system. Constraints are represented

by the equation

c(q) = 0, (4)

where each element of the l-dimensional vector c corresponds to an individual constraint

expression. The constraints, which may have redundancy, reduce the dimensionality of

the optimization problem to 3n − 6 − p, where p ≤ l indicates the number of linearly

independent constraints. We define the unconstrained and constrained subspaces using

the right singular vectors of the l× (3n− 6) constraint–nonredundant Jacobian matrix

as projection matrices,

dc

dq̌
=

[
Ǔ Ǔ

′
]W̌ 0

0 0


P̌T

Q̌
T

 , (5)

where W̌ is the p× p diagonal matrix of non-zero singular values, P̌ is the (3n− 6)× p

orthonormal matrix whose columns span the constrained subspace of q̌, Q̌ is the (3n−

6)×(3n−6−p) orthonormal matrix whose columns span the unconstrained subspace of

q̌, and Ǔ and Ǔ
′ are the l×p and l×(l−p) matrices whose columns are the left-singular

vectors corresponding to P̌ and Q̌ respectively. The constraint–nonredundant Jacobian

can be calculated from the constraint–Cartesian Jacobian and the singular values and
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right singular vectors of the redundant–Cartesian Jacobian from equation 1,

dc

dq̌
=
dc

dx

(
dq̌

dx

)+

=
dc

dx

(
dq

dx

)+

N =
dc

dx
ZT−1NTN =

dc

dx
ZT−1, (6)

where a superscript plus symbol indicates the Moore–Penrose pseudoinverse.16,17 As

before, we treat singular values below 10−6 as zero and assign the corresponding singular

vectors to the unconstrained space. Using the projection matrices defined in equations

1 and 5 above, we define the m × p matrix P and the m × (3n − 6 − p) matrix Q for

projection directly from the redundant internal coordinate system to the constrained

and unconstrained nonredundant internal coordinate spaces respectively as

P = NP̌ (7)

Q = NQ̌. (8)

The projection matrix N projects from the redundant internal coordinates to the nonre-

dundant internal coordinates, and P̌ and Q̌ project from the nonredundant internal

coordinates to the constrained and unconstrained coordinates, respectively.

In this work, vectors and matrices in unconstrained internal coordinates will be

decorated with a tilde accent (e.g. ṽ). Using our definition of the unconstrained internal

coordinate system, vectors v and matrices M can be converted between redundant

internal coordinates and unconstrained internal coordinates through the relations

ṽ = QTv and v = Qṽ (9)

M̃ = QTMQ and M = QM̃QT . (10)

The unconstrained internal coordinate system is used primarily in the geometry opti-

mization algorithm described in section 2.4 below.

A summary of the relationships between the various internal coordinate systems is

illustrated in figure 3, where the length of the bars correlates with the dimensionality

of the coordinate space. As the name implies, the nonredundant internal coordinate
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Figure 3: A graphical representation of the relationship between the different internal co-
ordinate systems in this work. The full redundant internal coordinate space q (dark blue)
is projected into the smaller nonredundant space q̌ (green) with the projection matrix N.
This space is further split into the constrained space (yellow) and the unconstrained space
q̃ (red), which are obtained from q with the projection matrices P and Q, respectively.

space spans only the nonredundant part of the redundant internal coordinates. The

constrained and unconstrained nonredundant spaces together also span the nonredun-

dant space. The redundant internal coordinates can be projected into the nonredundant

space, the constrained space, and the unconstrained space with the N, P, and Q ma-

trices respectively. The nonredundant internal coordinates can be projected into the

constrained and unconstrained nonredundant space with the P̌ and Q̌ matrices respec-

tively. Note that when performing an unconstrained optimization, the nonredundant

and unconstrained nonredundant spaces are identical and the constrained space is zero-

dimensional.

2.3 Iterative Hessian diagonalization in nonredundant in-

ternal coordinates

To optimize the geometry of a molecule to a first order saddle point, some information

about the curvature of the potential energy surface is required. This information is

contained within the Hessian matrix, some (or all) of which must be known to step

towards a saddle point. Optimization to a first order saddle point requires stepping

uphill on the potential energy surface in the direction of the reaction coordinate and
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downhill in all other directions. We define the reaction coordinate as the direction in

which the curvature is smallest (most negative or least positive), which is by construc-

tion the leftmost eigenvector of the Hessian matrix. Therefore it is at least necessary

to know this eigenvector to step towards a first order saddle point.

For molecular saddle point optimization, it is common to evaluate the full Hessian

matrix at least once at the beginning of optimization. Many electronic structure theory

methods such as Hartree–Fock and DFT have efficient analytical Hessian implemen-

tations. Additionally, transformation of Cartesian Hessians into internal coordinates

is straightforward. When using a level of theory for which efficient analytical second

derivatives are not available, the Hessian matrix is usually evaluated in full using finite

difference. For computationally expensive levels of theory or for very large molecules,

the evaluation of the initial Hessian matrix may become more costly than all subsequent

geometry optimization steps. Even when using levels of theory with efficient analytical

second derivatives, evaluation of the Hessian matrix will eventually dominate the over-

all cost of optimization as system sizes grow larger due to the higher computational

scaling of Hessian evaluations relative to gradient evaluations. For this reason, saddle

point optimization methods which do not require full evaluation of the Hessian matrix

may be useful for expensive levels of theory and for large systems.

We have previously developed a saddle point optimization algorithm that efficiently

identifies the leftmost eigenvector of the Hessian matrix using iterative diagonalization.1

Furthermore, this algorithm uses the information obtained by the iterative diagonal-

ization procedure to construct an approximate Hessian that is exact in the subspace

searched by the eigensolver. Our method can be compared to that of Sharada, Bell, and

Head-Gordon,18 with the key difference being that all curvature information obtained

by the eigensolver is incorporated into the approximate Hessian, not just the lowest

curvature mode. This results in a much more accurate approximate Hessian matrix,

and therefore a substantially more efficient optimization algorithm. However, as our

method was originally designed only for optimization in a Cartesian coordinate basis,

it was not suitable for optimization of molecular saddle point geometries. In this work,
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we extend our iterative diagonalization and approximate Hessian construction methods

to optimization in a basis of redundant internal coordinates, potentially with added

constraints. Our new method diagonalizes the Hessian and constructs the approximate

Hessian directly in an internal coordinate basis. This is in contrast to the method

of Sharada et al.,18 which diagonalizes the Hessian and constructs the approximate

Hessian in a Cartesian basis before transforming it into an internal coordinate basis.

Our optimization algorithm enforces constraints using the SQP formalism, which is

based on the method of Lagrange multipliers. The Lagrangian L is defined as

L (q,w) = E (q)−wT c (q) , (11)

where E is the potential energy, c is the vector of constraints, and w are the corre-

sponding Lagrange multipliers.19,20

The goal of the iterative diagonalization procedure for saddle point optimization,

outlined in algorithm 1, is to find the leftmost eigenvector of the Hessian of the potential

energy H. For constrained optimization, the goal is instead to find the leftmost eigen-

vector of the Hessian of the Lagrangian HL, as this is the Hessian (or approximation

thereof) that is used in the optimization procedure (see section 2.4). When performing

an optimization in an internal coordinate basis, our algorithm iteratively diagonalizes

the Hessian in the nonredundant internal coordinate basis q̌. One could alternately

perform iterative diagonalization of the Hessian in the unconstrained nonredundant

space q̃. However, it is useful to know the energetic coupling between the constrained

and unconstrained degrees of freedom, particularly for extrapolation of the gradient as

in equation 26 below. For this reason, we include constrained degrees of freedom in the

iterative Hessian diagonalization procedure.

The iterative diagonalization procedure works by generating an orthonormal matrix

Ši column-by-column using the Olsen method,21 which is described below. The columns

of the matrix Ši are used to define a projected coordinate system, and in this section

vectors and matrices in this space are decorated with a grave accent (e.g. v̀). The
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Algorithm 1 Iterative diagonalization algorithm
1: procedure RayleighRitz
2: input: q, g, Bk

3: output: Bk+1

4: if first diagonalization then
5: š1 ← ǧ

‖ǧ‖2
6: else
7: š1 ← leftmost eigenvector of B̌L
8: Š1 ←

[
š1

]
9: Y̌0 ← []

10: i← 1
11: loop
12: evaluate y̌i = ȞLši through forward finite difference (see equation 12)
13: Y̌i ←

[
Y̌i−1 y̌i

]
14: diagonalize Y̌

T

i Ši to obtain leftmost eigenpair θi and z̀i
15: ži ← Šiz̀i
16: ři ← Y̌iz̀i − θiži
17: if ‖ři‖2 < γ|θi| or i = 3n− 6 then
18: exit and calculate Bk+1 using equations 17 through 20
19: Solve equation 14 for ťi
20: ť

′
i ←

(
Ǐ− ŠiŠ

T

i

)
ťi (in practice, use modified Gram-Schmidt)

21: ši+1 ← ť
′
i

‖ť′i‖2
22: Ši+1 ←

[
Ši ši+1

]
23: i← i+ 1
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Hessian of the Lagrangian ȞL is evaluated in this space using forward finite difference

for the energy term, while the constraint term is evaluated analytically,

ȞLš ≈
ǧ(q̌ + ηš)− ǧ(q̌)

η
−
∑
i

wi
∂2ci
∂q̌2 š, (12)

where š is one column of Ši, ǧ is the gradient of the potential energy, η is a small

number that controls the magnitude of the displacement, and the Lagrange multipliers

w are chosen to be the least-squares solution to the first-order optimality condition,

∂L
∂q

= g −wT ∂c

∂q
= 0. (13)

Note that least-squares solutions to equation 13 will generally have non-zero residual

at all points except the final converged geometry. The Hessian-matrix products from

equation 12 are stored in the matrix Y̌i = ȞLŠi. Additionally, to update the ap-

proximate potential energy Hessian matrix B after the diagonalization algorithm has

converged, the potential energy Hessian-vector products ȞŠi are stored separately in

the matrix Y̌E . The iterative diagonalization procedure is considered converged once

the space spanned by the columns of Ši is found to contain the leftmost eigenvector of

ȞL.

As mentioned in section 2.2, displacements in the internal coordinate space must

be realized as changes to the Cartesian coordinates x, as these are the independent

coordinate variables. In our algorithm, these displacements are realized using a geodesic

internal coordinate stepping approach we have previously developed for minimization

in a redundant internal coordinate basis.10

At each iteration of the diagonalization algorithm, the part of the Hessian which

has already been evaluated H̀i = Y̌
T
i Ši is exactly diagonalized to find the leftmost

eigenvalue θi and eigenvector z̀i. This eigenvector, when projected into the larger

nonredundant internal coordinate space through the relation ži = Šiz̀i, approximates

the leftmost eigenvector of ȞL. The diagonalization procedure is repeated until the

convergence criterion ‖ři‖2 < γ|θi| is met, where ři = Y̌iz̀i− θiži is the residual vector
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and γ is a unitless convergence parameter which defaults to 0.1 in Sella. This procedure

is a particular implementation of the Rayleigh-Ritz method.22

Implementations of the Rayleigh-Ritz method differ in how the matrix Ši is con-

structed. Our implementation uses the Olsen method,21 a method related to the gen-

eralized Davidson23,24 and Jacobi-Davidson25–27 diagonalization algorithms. Olsen’s

method extends the matrix Ši with the vector obtained by orthonormalizing the vector

ťi against Ši, where ťi is the solution to the equation

(
Ǐ− žiž

T
i

) (
B̌L − θiǏ

) (
Ǐ− žiž

T
i

)
ťi = −ři, (14)

where Ǐ is the identity matrix and B̌L is the current approximate Hessian of the La-

grangian,

BL = B−
∑
i

wi
∂2ci
∂q2

, (15)

where B is the approximate Hessian of the potential energy used in the optimization

algorithm. In our implementation, the Hessians of the constraints are evaluated in a

Cartesian coordinate basis using automatic differentiation and then converted to an

internal coordinate basis through the chain rule relation

∂2ci
∂q2

= J+T

∂2ci
∂x2

−
∑
j

[
∂ci
∂x

J+

]
j

∂2qj
∂x2

J+. (16)

Once the iterative diagonalization algorithm has converged, the matrix of displace-

ment vectors S and the corresponding potential energy Hessian-vector products YE

are projected into the full redundant internal coordinate basis and used to update the

approximate potential energy Hessian B. This is done with the multi-secant TS-BFGS
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Hessian update formula,1,28–31

Bk+1 = Bk + U (YE −BkS)T + (YE −BkS)UT −U (YE −BkS)T SUT (17)

U = MS
[
STMS

]−1 (18)

M = YEY
T
E + |Bk|SST |Bk| (19)

|Bk| =
∑
i

|λ(i)
k |v

(i)
k v

(i)T
k , (20)

where λ(i)
k and v

(i)
k are respectively the ith eigenvalue and eigenvector of Bk. At the

beginning of optimization, the approximate potential energy Hessian B is initialized as

a diagonal matrix using the method of Fischer and Almlof.32

2.4 Constrained optimization to a saddle point with SQP

and RS-PRFO

Constrained optimization of molecular geometries is commonly used in computational

chemistry, for example to scan along specific internal coordinates. There are several al-

gorithms for the enforcement of constraints on molecular geometry optimization. RAT-

TLE and SHAKE are two well-known algorithms that rigorously enforce c(xk) = 0 for

all geometries xk visited during the course of the optimization trajectory.33,34 This is

important for molecular dynamics simulations, where conservation of energy requires

that all structures of the trajectory lay on the constraint manifold. In contrast, op-

timization trajectories do not need to conserve energy, and, therefore, only the final

converged structure must lie on the constraint manifold. For this reason, we have

chosen not to use RATTLE or SHAKE for constrained optimization in our frame-

work. Instead, our algorithm performs constrained optimization using null-space SQP,

a method of Lagrange multipliers in which a linear step towards the constraint manifold

is made at every iteration of the optimization. Using this approach, intermediate steps

of optimization may not rigorously satisfy the constraint, though the constraint will be

satisfied at convergence.
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In principle, our algorithm is capable of enforcing any function of the molecular

structure as a constraint on the optimization. Sella natively supports the fixing of

arbitrary atomic distances, bending angles, dihedral angles, and one or more Cartesian

components of the barycenter of a cluster of atoms. When applied to a single atom, this

last constraint fixes the atom in space. Recently, Sella has also implemented the ability

to define custom constraint expressions, as well as the ability to enforce inequality

constraints.

Algorithm 2 Optimization algorithm
1: procedure Optimize
2: input: q0

3: output: qfinal, the saddle point geometry
4: calculate E0,g0 and c0

5: diagonalize ȞL using algorithm 1 to construct B0

6: k ← 0
7: repeat
8: calculate sP by solving equation 24
9: if ‖sP‖∞ ≥ εk then

10: sk ← εk
sP
‖sP ‖∞

11: else
12: calculate s̃Q using equations 29, 30, and 31 with α = 1
13: if ‖sP + sQ‖∞ ≤ εk then
14: sk ← sP + sQ
15: else
16: find α such that ‖sP + sQ(α)‖∞ = εk
17: sk ← sP + sQ(α)

18: obtain qk+1 from qk and sk using geodesic scheme described in reference 10
19: calculate Ek+1,gk+1 and ck+1

20: update εk to obtain εk+1 using scheme described in reference 1
21: obtain Bk+1 using geodesic Hessian update scheme described in reference 10
22: if Bk+1 has no negative eigenvalues then
23: diagonalize HL using algorithm 1 to update Bk+1

24: k ← k + 1
25: until convergence criterion is met, see appendix B

At each iteration of SQP minimization algorithms, the coordinates are updated with

a vector s chosen to minimize the quadratic expression13,35

sTg +
1

2
sTBLs (21)
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Figure 4: An illustration of the null-space SQP method. The initial point q has gradient
g (red) and does not lie on the constraint manifold (green). The constraint-correction dis-
placement vector sP leads to the closest point on the constraint manifold. The extrapolated
gradient gex (orange) is the sum of the original gradient g and the approximate gradient BsP
(yellow) created by the displacement assuming constant curvature of the potential energy
surface. The optimization displacement sQ is calculated with this extrapolated gradient in
the space tangent to the constraint manifold and orthogonal to sP . These two displacement
vectors are combined into the overall displacement vector s.

subject to the linearized constraint

c (q) +

(
∂c

∂q

)
s = 0, (22)

where BL is the approximate Hessian of the Lagrangian defined in equation 15. This

minimization problem can be solved in a variety of ways. Our algorithm uses the null-

space SQP method,13,35 illustrated in figure 4, which splits the displacement vector s

into two components,

s = sP + sQ, (23)

where sP is the constraint correction displacement vector and sQ is the optimization

step displacement vector, and sP ⊥ sQ. This method was chosen as it reduces the

dimensionality of the optimization problem by the size of the space spanned by the

constraint equations. The vector sP is defined as the least-squares solution to equation
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22, (
∂c

∂q

)
sP = −c(q). (24)

In null-space SQP minimization algorithms, the vector sQ is found by minimizing the

projected quadratic approximation

s̃TQg̃ex +
1

2
s̃TQB̃Ls̃Q, (25)

where

g̃ex = g̃ + QTBsP (26)

is the gradient which has been first approximately extrapolated to the point q+sP and

then projected into the unconstrained nonredundant space.

Note that equation 25 is the traditional quadratic approximation to the potential

energy surface, but with the gradient g̃ replaced by the extrapolated gradient g̃ex and

the approximate Hessian of the potential energy B̃ replaced by the approximate Hes-

sian of the Lagrangian B̃L. Therefore, the procedure for obtaining sQ described above

is equivalent to standard quasi-Newton minimization with some modifications to the

gradient and approximate Hessian. It is possible to perform a constrained minimization

using an alternative approach such as the restricted step rational function optimization

(RS-RFO) method by making these same substitutions.36–38 This is useful, as unlike

quasi-Newton, RS-RFO guarantees a downhill step even when the approximate Hessian

B̃L is indefinite. Furthermore, making these substitutions in the restricted step parti-

tioned rational function optimization (RS-PRFO) method will result in a constrained

saddle point optimization step.36–38 Our algorithm implements constrained saddle point

optimization by combining null-space SQP with RS-PRFO in this way.

It is illustrative to explain how null-space SQP can be implemented into RS-RFO

before explaining how to implement it in the RS-PRFO. In RS-RFO, the vector sQ is
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chosen to be the minimizer of the rational function

µ =
s̃TQg̃ex + 1

2 s̃
T
QB̃Ls̃Q

1 + α−2s̃TQs̃Q
, (27)

where α is a parameter that controls the magnitude of the displacement. The value of

α is chosen to satisfy our trust region condition, which we describe below. Note that

as with the standard SQP minimization method described above, we have replaced

the gradient g̃ with the extrapolated gradient g̃ex and the approximate Hessian of the

potential energy B̃ with the approximate Hessian of the Lagrangian B̃L. This will

result in a displacement vector sQ which is suitable for use in the null-space SQP

minimization formalism. The right-hand side of equation 27 can be minimized by

solving an eigenvalue problem,36

α2B̃L αg̃ex

αg̃T
ex 0


α−1s̃Q

1

 = 2µ

α−1s̃Q

1

 , (28)

where a minimization step is obtained from the leftmost solution to equation 28. In

theory, choosing to define sQ using the jth eigenvector of equation 28 will result in

a step towards an order-j saddle point, but in practice this approach often fails to

converge.

In the RS-PRFO method,36–38 the unconstrained space q̃ is split into maximization

and minimization subspaces which are defined using the eigenvectors of B̃L. The goal

of RS-PRFO is to find a step that maximizes the energy in the maximization subspace

while minimizing the energy in the minimization subspace. To optimize to an order-j

saddle point, the j leftmost eigenvectors of B̃L are assigned to the columns of Ṽ
(max)
L

and the remaining eigenvectors are assigned to the columns of Ṽ
(min)
L . In particular,

optimization to a first-order saddle point will assign only the leftmost eigenvector of B̃L

to Ṽ
(max)
L . Ṽ

(max)
L and Ṽ

(min)
L behave as projection matrices from the unconstrained

space to the maximization and minimization subspaces, respectively. The displacement

in the maximization subspace is found by calculating the rightmost eigenvector of the
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eigenvalue problem

α2B̃
(max)
L αg̃

(max)
ex

αg̃
(max)T
ex 0


α−1s̃

(max)
Q

1

 = 2µ(max)

α−1s̃
(max)
Q

1

 , (29)

where B̃
(max)
L = Ṽ

(max)T
L B̃LṼ

(max)
L and g̃

(max)
ex = Ṽ

(max)T
L g̃ex are the approximate Hes-

sian and extrapolated gradient projected into the maximization subspace, respectively.

The step in the minimization subspace is found by calculating the leftmost eigenvector

of the eigenvalue problem

α2B̃
(min)
L αg̃

(min)
ex

αg̃
(min)T
ex 0


α−1s̃

(min)
Q

1

 = 2µ(min)

α−1s̃
(min)
Q

1

 , (30)

where B̃
(min)
L = Ṽ

(min)T
L B̃LṼ

(min)
L and g̃

(min)
ex = Ṽ

(min)T
L g̃ex are the approximate Hessian

and extrapolated gradient projected into the minimization subspace, respectively. The

final unconstrained displacement vector is calculated as

s̃Q = Ṽ
(max)
L s̃

(max)
Q + Ṽ

(min)
L s̃

(min)
Q , (31)

and the overall displacement vector is obtained according to equation 23.

Once a displacement vector s has been chosen, either for a geometry optimization

step or for the iterative Hessian diagonalization scheme described in section 2.3, the

molecular geometry must be updated. This process is trivial when using Cartesian

coordinates, as the displacement vector can simply be added to the current Cartesian

coordinate vector x to update the molecular geometry. In redundant internal coordi-

nates, however, the point in coordinate space specified by q+ s may not correspond to

a physically possible combination of internal coordinates. This is because the set of all

physically possible coordinate vectors forms a (3n−6)-dimensional manifold embedded

in the larger m-dimensional redundant internal coordinate space. Moreover, this man-

ifold has curvature that arises from the coupling between the internal coordinates. As
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a result, even if the starting point q lies on the manifold and the displacement vector s

lies tangent to the manifold at q, the point q+ s will generally not lie on the manifold

of physically allowed configurations.

In practice, this problem is usually solved by finding the point x′ in Cartesian space

which corresponds to the valid coordinate q′ that is closest to q + s in redundant

internal coordinate space. This can be accomplished by iterating the Newton-Raphson

root-finding algorithm until convergence,

xk+1 = xk + J+
k (q + s− qk) , (32)

where qk and Jk are the internal coordinate vector and internal–Cartesian Jacobian

matrix corresponding to xk, respectively. While this approach is computationally facile

and generally converges in only a few iterations, it does not account for the curvature of

the space of valid internal coordinates, which results in poor quality displacements when

using highly redundant coordinate systems, for example for molecules with rings. We

have previously developed an alternate approach for realizing displacements in redun-

dant internal coordinate systems based on geodesics of the curved internal coordinate

manifold.10 This geodesic approach accounts for the correlation between internal coor-

dinates not only at the endpoints of the displacement, but also throughout the entire

displacement trajectory. We have shown that this geodesic displacement strategy dra-

matically reduces the number of steps required to reach convergence in a minimization

algorithm as compared to the traditional Newton displacement method. Following each

geometry optimization step, the approximate Hessian is updated using the geodesic se-

cant update, which is also described in our previous work.10

As mentioned previously, the parameter α in equation 28 (for minimization) and

equations 29 and 30 (for saddle point optimization) is chosen to satisfy a trust region

condition. In our trust region algorithm, a displacement vector sk is accepted only if it
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satisfies the trust region condition,

‖sk‖∞ ≤ εk, (33)

where εk is the size of the trust region at iteration k of the optimization. Note that

this differs from our previous work in that the infinity-norm is used in the trust region

condition, rather than the 2-norm.1 This is important for optimization in a redundant

internal coordinate basis, as using the 2-norm would result in smaller displacements

upon addition of new redundant coordinates to the coordinate system. This would

unnecessarily slow optimization in systems with a high degree of redundancy in their

internal coordinate system, as these redundant coordinates will result in larger displace-

ment vectors in the 2-norm sense, but not necessarily in the infinity-norm sense.

The means by which equation 33 is enforced depends on the relative magnitudes of

sP and sQ. If ‖sP ‖∞ ≥ εk, then the constraint correction step by itself is too large to

fit within the trust region, and thus the displacement step is chosen to be

sk =
εk

‖sP ‖∞
sP , (34)

meaning that no optimization step is taken in the unconstrained space. In this scenario,

sQ is not used or even calculated at this iteration of the optimization algorithm. If

‖sP ‖∞ < εk, then sQ is calculated with an initial value of α = 1. If ‖sP + sQ‖∞ ≤ εk,

then the overall displacement sk = sP + sQ is accepted. Otherwise, a value of α is

determined for which ‖sP + sQ(α)‖∞ = εk using the Newton-Raphson root-finding

algorithm.

After every optimization step, our algorithm checks to see whether the trust region

size εk needs to be updated. This is accomplished using a scheme we have previously

developed for saddle point optimization in a Cartesian coordinate basis.1
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3 Results

3.1 Sella benchmark

To measure the performance of our internal coordinate saddle point optimization al-

gorithm, we have created a benchmark test set consisting of 500 molecular geometries

generated by KinBot.11 This test set consists of small organic molecules with between

7 and 25 atoms in configurations that approximate saddle points for a set of reaction

families. Each molecular geometry in the test set was optimized to a saddle point

structure in a basis of internal coordinates which were determined automatically by

Sella. Calculations were performed with NWChem at the Hartree–Fock level of the-

ory with the 3-21G basis.39,40 Open-shell molecules were calculated at the unrestricted

Hartree–Fock level of theory instead. This level of theory was chosen for computational

expedience and to ensure broad compatibility with the widest range of molecular elec-

tronic structure theory packages possible. The molecular geometry optimization was

considered converged once the maximum atomic force in Cartesian coordinates dropped

below 0.01 eVÅ−1 (see appendix B). The initial molecular geometries and a Python

script for performing the optimizations are available in the supplementary material.

The overall performance of our optimization algorithm on the 500-molecule bench-

mark is summarized in figure 5. The left half of this figure is a scatter plot that

represents the total number of gradient evaluations required to converge to a first order

saddle point plotted against the number of atoms in each molecule of the 500-molecule

test set. The right half of figure 5 is a histogram of the number of gradient evaluations

across the entire test set. With our chosen optimization parameters, the molecules in

this test set require between 19 and 125 gradient evaluations to reach convergence, with

an average of 50 gradient evaluations.

The majority of molecules in our benchmark set (81.6 %, green) do not have any

linear bending angles at any point along the optimization trajectory. Of the remaining

molecules, most (9.6 %, yellow) have a linear bending angle in the initial geometry,

but do not require the addition of a dummy atom. Optimization performance for
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Figure 5: A scatter plot and histogram depicting the number of gradient evaluations required
to converge to a saddle point against the number of atoms in each molecule in the 500-
molecule benchmark set. Green dots correspond to molecules with no linear bending angles,
yellow to molecules with at least one linear angle at the beginning of optimization but without
the need for dummy atoms, black dots correspond to molecules with at least one linear angle
at the beginning of optimization that required a dummy atom, and red dots correspond to
molecules that required a new set of internal coordinates be constructed during optimization
due to a previously valid angle becoming linear.

these molecules is approximately the same as molecules with no linear bending angles,

suggesting our algorithm’s approach of replacing linear bending angles with improper

dihedrals is highly efficient. Only four of the molecules in this test set (0.8 %, black)

required the addition of a dummy atom in their initial geometry. There is not enough

information available in this benchmark set to indicate how optimization performance

is affected by the addition of dummy atoms, but the four molecules with dummy atoms

in this test set are not outliers. The remaining molecules (8.0 %, red) acquired a lin-

ear bending angle partway through optimization, and therefore required the internal

coordinate system to be reconstructed from scratch. When our algorithm discards

and reconstructs the internal coordinate system, the Hessian matrix must also be re-

diagonalized. This results in an increase in the total number of gradient evaluations

required to reach convergence on average for these systems, which can be observed in

figure 5, though these points do not appear to be outliers.

It is clear from these data that there is no strong correlation between molecule
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size and the number of gradient evaluations required to reach convergence. This is

perhaps not surprising, considering the small range of molecule sizes included in this

study, though it is not at all a guaranteed property. For optimizations in a basis of

redundant internal coordinates, it is crucial to use a trust region condition that scales

appropriately with the system size, rather than the dimensionality of the basis. If one

were to use a 2-norm based trust region condition, the apparent magnitude of any

given displacement will increase if additional redundant coordinates are added to the

coordinate system. It is for this reason that we choose to use the infinity-norm for

the trust region condition, as displacements are limited by only the largest-changing

component, and thus the addition of more redundant coordinates will generally not

change the displacement magnitude.

To measure the relative performance of our algorithm, we have optimized the set

of 500 molecules using four alternative algorithms. The relative performance is sum-

marized in figure 6, which plots the number of effective gradient evaluations for the

alternative algorithms against our algorithm as implemented in Sella with its default

parameters. Figure 6a compares the performance of our algorithm using Sella’s default

parameters versus Sella with full calculation of the Hessian matrix, which is achieved

by setting the convergence criterion for the iterative diagonalization routine to be ex-

tremely tight. The majority of the structures require more gradient evaluations to

converge when the Hessian matrix is calculated in full as compared to the partial diag-

onalization that is performed using Sella’s default parameters. Notably, the red data

points, which represent structures for which the internal coordinate system is recon-

structed midway through optimization, experience a more significant increase in the

number of gradient evaluations compared to other structures. This is to be expected,

as the Hessian will be evaluated in full at least twice throughout the course of the

optimization. For the data points which lie below the line, full diagonalization actually

results in an overall reduction in the number of gradient evaluations required to reach

convergence. It is likely that for these structures, the initial Hessian diagonalization

failed to fully converge the true leftmost eigenvector of the Hessian matrix. This would
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(a) (b)

(c) (d)

Figure 6: A benchmark comparing the effective number of gradient evaluations of our saddle
point optimization algorithm as implemented in Sella using its default parameters against
a) Sella with full diagonalization of the Hessian, b) NWChem’s Z-matrix saddle point opti-
mization algorithm, c) Q-Chem’s redundant internal coordinates saddle point optimization
algorithm, and d) Psi4’s redundant internal coordinate saddle point optimization (optking).
The color scheme is identical to that of figure 5. For Sella, the effective number of gradient
evaluations is the number of geometry optimization steps plus the number of Hessian diag-
onalization iterations, while for NWChem, Q-Chem, and Psi4 it is the number of geometry
optimization steps plus a factor of 3n to account for analytical evaluation of the full Hessian.
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result in an optimization trajectory which initially moves away from the closest saddle

point, thereby slowing convergence and possibly resulting in convergence to a different

structure entirely.

Figures 6b, 6c, and 6d compare the performance of our algorithm that that of

NWChem,39,40 Q-Chem,41 and Psi442 respectively. Each of these programs implements

a saddle point optimization algorithm in a basis of internal coordinates that requires full

evaluations of the Hessian matrix, either analytically or through finite difference. For

these codes, the effective number of gradient evaluations is taken to be the number of

geometry optimization steps plus a factor of 3n to account for evaluation of the Hessian

matrix in full. We note that the cost of evaluating the Hessian matrix using analytical

methods – such as coupled-perturbed Hartree–Fock or density functional perturbation

theory – is generally lower than the cost of 3n gradient evaluations. However, when an-

alytical Hessians are not available, the actual cost of evaluating the full Hessian matrix

will be at least 3n, rising to 6n if central finite difference is used. Based on the result in

figure 6, NWChem, Q-Chem, and Psi4 all show comparable performance to Sella when

the Hessian is fully diagonalized. NWChem shows the overall worst performance, likely

due to its use of a minimal Z-matrix internal coordinate basis rather than a redundant

internal coordinate basis. Nonredundant internal coordinate systems such as the Z-

matrix approach necessarily omit some chemically relevant degrees of freedom from the

coordinate system, which can have a deleterious impact on optimization performance.

As with figure 6a, several of the data points lie below the line, indicating that Sella

converges more slowly for these points. This is again likely due to a failure of the diag-

onalization algorithm to correctly identify the lowest curvature mode, a problem that

can be ameliorated by tightening the diagonalization convergence criterion γ.

When bending angles become linear mid-optimization, Q-Chem will by default au-

tomatically switch to a Cartesian coordinate optimization in order to avoid crashing.

We have disabled this feature in our calculations, as leaving it enabled would result in

longer optimization trajectories; instead, these calculations are allowed to crash and

are therefore omitted from figure 6c. While this feature improves the robustness of
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the optimization algorithm implemented in Q-Chem, it does so at the cost of longer

trajectories for these pathological systems. In this scenario, our optimization algorithm

will instead automatically reconstruct a new internal coordinate system, rather than

falling back on Cartesian optimization. This results in a robust optimization algorithm

similar to Q-Chem, without the additional cost of switching to a Cartesian optimization

scheme.

We note that while each of the four alternative algorithms resulted in some of the

structures failing to converge, we do not consider this to be an appropriate metric for

comparison, as the molecules in the test set were specifically chosen to be those that

converge in Sella with its default parameters. Consequently, any structures that would

fail to converge in Sella are excluded from the test set by construction, and so comparing

the number of structures that fail to converge would not be fair. The data points in

figure 6 are only those structures which converge in both of the codes that are being

compared.

(a) (b)

Figure 7: A relaxed dihedral angle scan for a transition state structure. (a) The electronic
potential energy of the transition state as a dihedral angle is scanned. A depiction of the
molecule is inset with the three bonds that make up the dihedral angle highlighted in orange.
(b) The total number of gradient evaluations (green) and the number of gradient evaluations
per scan steps (red) versus the number of scan steps. The red dashed line corresponds to
theoretical lower bound of 1 gradient evaluations per scan step.

It is common in computational studies of molecules to perform scans over specific
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internal coordinates. These scans are a series of constrained optimizations, which are

straightforward when the goal is to minimize the energy with respect to the uncon-

strained degrees of freedom, e.g., when the scan is done on a minimum energy structure.

However, special care must be taken for saddle point scans to ensure that the scan tra-

jectory preserves the structure of the reacting region of the molecule and does not fall

into a different saddle point geometry. Our algorithm’s implementation of null-space

SQP saddle point optimization provides an easy and effective way to scan coordinates.

Figure 7 depicts a full 360° scan of a dihedral angle of a 5-exo-tet cyclization reaction

saddle point. The geometry of the saddle point and relative potential energy of the

dihedral scan is shown in figure 7a. The orange-highlighted bonds in figure 7a indi-

cate the dihedral angle that is being scanned, which includes several atoms involved in

the reaction corresponding to this saddle point. This scan reveals that the structure

found by Sella (the structure at zero degrees) is not the lowest-energy conformer for

this reaction. This is not surprising, as our saddle point optimization algorithm tends

to converge to the saddle point that is geometrically closest to the initial structure, and

this may not be the lowest energy conformer.

Figure 7b shows how the total number of gradient evaluations required to perform

the entire scan (in green) and the number of gradient evaluations per scan step (in

red) scale as a function of the number of scan steps used. For this scan, between 12

and 360 steps were used, which corresponds to a dihedral angle step size of between

30° and 1°. Though the total number of gradient evaluations tends to increase with

the number of steps used in the scan, the relationship is not perfectly linear. One

possible explanation for this is that larger steps in the scan will tend to perturb the

unconstrained degrees of freedom more, therefore requiring more gradient evaluations

to converge. The upper limit of this plot indicates that when 360 1° steps are used, only

1.61 gradient evaluations are required per grid point. This is very close to the theoretical

lower limit of 1 gradient evaluation per step (the dashed red line), in which each step of

the scan converges in a single gradient evaluation. Such performance is only possible due

to our use of null-space SQP constrained optimization, which projects the gradient to
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Listing 1: A minimal Sella script for optimizing a molecule to a saddle point in internal
coordinates.

#!/usr/bin/env python3

from ase.io import read
from ase.calculators.nwchem import NWChem
from sella import Sella

atoms = read('input_structure.xyz')
atoms.calc = NWChem()
opt = Sella(atoms, internal=True)
opt.run(fmax=0.01)

constraint-corrected geometry before performing any gradient evaluations (see equation

26). The success of this projection approach depends entirely on the accuracy of the

approximate Hessian, and so the performance observed in this test system indicates

that the initial iterative Hessian diagonalization and TS-BFGS Hessian updates are

highly effective.

3.2 Using Sella

Sella is an open source Python software package that is available on both github.com3

and from the Python Package Index (PyPI). Additionally, the exact version of Sella

used to run these calculations is available from Zenodo.43

Listing 1 contains a minimal Python script that uses Sella to perform saddle point

optimization on a molecule in an internal coordinate basis. An initial geometry con-

tained in input_structure.xyz is read using ASE’s IO routines.4 An ASE calculator

for NWChem is attached to the resulting ASE Atoms object using all default settings,

which will perform a calculation at the HF/3-21G level of theory. This level of theory

can be changed by adding arguments to the NWChem calculator object constructor, and

the code used to perform the calculation can be altered by replacing the NWChem class

with a different calculator for an alternative code. A Sella optimizer object is then

created for the ASE Atoms object, with optimization in internal coordinates requested
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explicitly. Finally, the optimization to a saddle point is run with a convergence criteria

of a maximum atomic force of 0.01 eVÅ−1.

The optimization algorithm implemented in Sella has several user-tunable hyper-

parameters that may be passed to the Sella class. One important parameter is the

iterative diagonalization convergence criterion γ, which may be set with the keyword

argument gamma. By default, γ = 0.1, though tighter convergence may be requested by

reducing γ. Reducing γ will result in additional iterative Hessian diagonalization steps,

but will result in a more accurate approximate Hessian and therefore better subsequent

geometry optimization steps. The initial trust region size ε0 defaults to a value of 0.1

(with units of Å for bond stretch coordinates and radians for angle coordinates). This

parameter may be changed by using the keyword argument delta0. Increasing the

trust region size will result in larger step sizes, though at the cost of increasing the like-

lihood of a poor step. Sella is also capable of performing minimization or optimization

to higher-order saddle points. The desired saddle point order may be specified with the

order keyword argument. This defaults to 1, corresponding to optimization to a first

order saddle point. Minimization can be requrested by setting order to 0. Additional

keyword arguments are outlined in the Sella manual, available on github.3

Listing 2 contains a more complex example Python script that uses Sella to opti-

mize a molecule to a saddle point. First, this example uses the i-PI socket protocol to

communicate with the NWChem executable.44 This speeds up the overall calculation

time by reusing the same NWChem processes for all energy and gradient calculations,

rather than starting a new instance of NWChem for each single point. Other elec-

tronic structure theory codes that support the i-PI socket protocol include Quantum

Espresso,45,46 Siesta,47,48 Abinit,49,50 and FHI-aims.51 Additionally, this example uses

the irun iterator for running the optimization, rather than the run function. The use of

irun makes it possible to run custom user-specified code at every iteration of the opti-

mization trajectory. This enables users to perform more sophisticated logging, monitor

the structure as it is optimizing, or implement their own custom convergence criteria.
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Listing 2: A more complex Sella script for optimizing a molecule to a saddle point in internal
coordinates.

#!/usr/bin/env python3

import numpy as np
from ase.io import read
from ase.calculators.nwchem import NWChem
from ase.calculators.socketio import SocketIOCalculator
from sella import Sella

socket_name = 'nwchem'
atoms = read('input_structure.xyz')
nwchem = NWChem(

driver={'socket': {'unix': socket_name}},
task='optimize',

)
with SocketIOCalculator(nwchem, unixsocket=socket_name) as calc:

atoms.calc = calc
opt = Sella(atoms, internal=True)
for i, converged in enumerate(opt.irun(fmax=0)):

print(f'The energy at iteration {i} is {atoms.get_potential_energy()}')
if atoms.get_distance(0, 1) > 2.0:

raise RuntimeError('The 0-1 bond broke!')
if np.abs(opt.pes.get_g()).max() < 1e-2:

break
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4 Conclusion

We have presented a novel algorithm for the automated optimization of molecules to

saddle points in a basis of redundant internal coordinates. Our algorithm automatically

constructs internal coordinates from the Cartesian positions of the atoms, and auto-

matically replaces pathological linear angles with improper dihedrals. When necessary,

our algorithm automatically adds dummy atoms to the system, and adds constraints to

ensure that the dummy atom does not drift unnecessarily over the course of optimiza-

tion. In the event of a bending angle becoming linear mid-optimization, the coordinate

system is re-constructed for the current structure with the above procedure, resulting

in a more robust algorithm. To determine the direction of the reaction coordinates, our

algorithm iteratively diagonalizes the Hessian in a basis of internal coordinates. The

potential energy surface curvature information obtained during the iterative diagonal-

ization procedure is used to construct a partially-exact Hessian matrix. This Hessian

matrix is used in a state-of-the-art constrained partitioned rational function optimiza-

tion algorithm to step towards a saddle point geometry. Our approach enables efficient

and robust high-throughput automated saddle point optimization of molecular species.

The performance of our algorithm was tested on a newly created benchmark set of 500

molecular geometries that are geometrically close to reactive saddle points. We find

that on this benchmark, our algorithm converges to saddle point structures in fewer

effective steps than that of popular quantum chemistry codes.
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A Automatic Generation of Internal Coordinates

Our approach for finding internal coordinates, illustrated in figure 8, begins by con-

structing a molecular graph from the initial Cartesian geometry. This is accomplished

by checking all pairs of atoms, and adding a bond if

‖xj − xi‖ < σ
(
rcov
i + rcov

j

)
, (35)

where xi and xj are the Cartesian position of atoms i and j, σ is a scalar parameter

which in Sella defaults to 1.25, and rcov
i and rcov

j are the covalent radii of atoms i and

j.52 After all pairs of atoms have been checked, a flood fill algorithm is used to count

the number of disconnected fragments in the molecular graph. This algorithm works

by walking along the graph and noting which atoms belong to the same fragment, then

counting the number of distinct fragments. If only a single fragment is found, the

algorithm exits; otherwise, σ is increased by 5 % and the above procedure is repeated

with the additional rule that only pairs of atoms in different molecular fragments are

checked for connectivity. This additional rule helps ensure that geometries with large

separation between clusters of atoms do not become densely connected. This procedure
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Figure 8: An illustration of our algorithm for identifying internal coordinates. (a) Spheres
are drawn around each atom with radius equal to the covalent radius of the element multi-
plied by a scaling factor. Bonds are added between atoms with overlapping spheres (yellow
regions). (b) The molecular graph obtained from this procedure. Nodes of the graph corre-
spond to atoms, while edges (yellow) correspond to bond stretch coordinates. Angle bending
coordinates (green) are defined by considering all possible pairs of edges sharing exactly one
node. (c) Dihedral angle coordinates (red) are defined by considering all possible pairs of
bending angle coordinates sharing exactly one edge, excluding those that would form an
improper dihedral.
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continues until only a single molecular fragment is found.

Once the molecular graph has been constructed, the internal coordinates are formed

from combinations of the edges of the graph.8 Each unique graph edge corresponds to

a bond stretching coordinate. Pairs of bond stretching coordinates that share exactly

one atom are combined to form angle bending coordinates, with the common atom

at the center of the angle. Pairs of angle bending coordinates that share exactly one

edge are combined to form dihedral angles (pairs of angles that would form improper

dihedrals, such as e.g. an H(1)-N-H(2)-H(3) dihedral angle in ammonia, are not added

automatically).

For systems composed of independent molecules, it may not be chemically mean-

ingful to consider internal coordinates that connect two molecules together. However,

the previously described procedure will necessarily add bonds, angles, and dihedrals

that span across molecules. This can have a negative impact on performance, as the

optimizer will limit the extent to which these chemically irrelevant coordinates can

change at each step. To resolve this problem, we also implement as an alternative the

translational and rotation internal coordinates (TRIC) method of Wang and Song.53

When using the TRIC method, our algorithm will stop adding bonds between atoms

after a single iteration of the procedure described above. Each disconnected fragment of

the molecular graph is then augmented with translational coordinates of the fragment

barycenter and rotational coordinates following the TRIC procedure.

B Geometry Optimizer Convergence Criterion

For consistency with ASE’s built-in optimizer classes, Sella’s optimization algorithm

uses the maximum atomic force as the default convergence criterion. Using this crite-

rion, convergence is achieved once the largest Cartesian force experienced by any atom

in the molecule drops below a threshold value,

∥∥∥∥ dEdxi

∥∥∥∥
2

≤ fmax for all i = 1, . . . , n, (36)
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where xi represents the position of atom i. When using constraints, it is necessary

to first project out the components of the gradient in the constraint subspace. This is

accomplished by projecting the gradient in the unconstrained space g̃ back to Cartesian

coordinates, (
dE
dx

)
proj

= JTQg̃. (37)
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TOC Graphic

A Venn diagram illustrating the overlap of three
major design features of Sella: saddle point
optimization, geodesic internal coordinates, and
full automatability of the code.
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