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Abstract: Metal-organic frameworks (MOFs) are a class of crystalline materials composed of 

metal nodes or clusters connected via semi-rigid organic linkers. Owing to their high surface area, 

porosity, and tunability, MOFs have received significant attention for numerous applications such 

as gas separation and storage. Atomistic simulations and data-driven methods (e.g., machine 

learning) have been successfully employed to screen large databases and successfully develop new 

experimentally synthesized and validated MOFs for CO2 capture. To enable data-driven materials 

discovery for any application, the first (and arguably most crucial) step is database curation. This 

work introduces the ab initio REPEAT charge MOF (ARC-MOF) database. This is a database of 

~280,000 MOFs which have been either experimentally characterized or computationally 

generated, spanning all publicly available MOF databases. A key feature of ARC-MOF is that it 

contains DFT-derived electrostatic potential fitted partial atomic charges for each MOF. 

Additionally, ARC-MOF contains pre-computed descriptors for out-of-the-box machine learning 

applications. An in-depth analysis of the diversity of ARC-MOF with respect to the currently 

mapped design space of MOFs was performed – a critical, yet commonly overlooked aspect of 

previously reported MOF databases. Using this analysis, balanced subsets from ARC-MOF for 

various machine learning purposes have been identified. Other chemical and geometric diversity 

analyses are presented, with an analysis on the effect of charge assignment method on atomistic 

simulation of gas uptake in MOFs. 

 

INTRODUCTION 

Metal-organic frameworks (MOFs) are a class of crystalline materials composed of organic 

and inorganic structural building units (SBUs) and are often synthesized via self-assembly. A 

hallmark of MOFs is their nanoporosity resulting in record specific surface areas, with a theoretical 

upper limit of at least 14600 m2/g.1 Another key feature of MOFs is their functional tunability, 

arising from the fact that there is a seemingly infinite number of possible combinations of organic 

and inorganic SBUs, resulting in a virtually boundless design space. In addition to the chemical 

diversity of MOFs arising from the identity of the SBUs, the SBUs can be arranged in different 

net topologies allowing for significant geometric diversity. Thousands of distinct network 

topologies have been identified in experimentally characterized materials.2 Due to these 

exceptional properties (large surface areas, high porosity, and tunability) MOFs have attracted 



significant interest for a wide variety of applications ranging from catalysis to drug delivery.3–6 

With the urgent and serious concerns of climate change, one high-profile application of MOFs has 

been in gas separation and storage,7–11 where MOFs are now being commercialized for industrial 

scale CO2 capture from combustion flue gases.12,13 

Rational design of materials for a specific application is more desirable than trial-and-error 

development, which can be a long and expensive process. To this end, various atomistic simulation 

methods such as such as density functional theory (DFT) calculations have become invaluable 

tools in accelerating the materials and molecular design process.14–16 For gas separation and 

storage, atomistic grand canonical Monte Carlo (GCMC) simulations have been shown to provide 

relatively accurate estimates of the gas adsorption properties of MOFs if the structure is known.16 

The rapid increase in materials data and vast improvements in computer hardware have enabled 

the application of high throughput screening and data driven methods to further accelerate 

materials discovery.17–19 Recently, machine learning (ML) and other data-driven methods have 

been used to successfully develop new experimentally synthesized and validated MOFs for CO2 

capture.20 To enable data-driven materials discovery for any application, the first (and perhaps 

most crucial) step is the curation of a database. To date, tens of thousands of MOFs have been 

synthesized,21 as recorded by the Cambridge Crystallographic Data Centre (CCDC). The CCDC 

collates and curates the Cambridge Structural Database (CSD), a repository of small-molecule and 

metal-organic crystal structures. In 2017, the CCDC collected MOF and MOF-like structures into 

a separate database called the CSD MOF Subset.21 However, the procedure used to generate this 

database led to the inclusion of a large fraction of MOFs which are not porous, even though 

permanent porosity is a key requirement for many MOF applications such as gas separation. A 

smaller, yet more popular, database named the Computation-Ready Experimental (CoRE) MOF 

database, was created in 2014 composed of ~5,000 MOFs from the CSD.22 In 2016, Nazarian et 

al. created the “CoRE MOF 2014-DDEC” database, in which DFT-derived partial atomic charges 

were determined for about half of the CoRE MOF 2014 database.23 The database was initially 

validated by using GCMC simulations of methane adsorption. An advantage this database 

presented over others is that it included DFT-derived charges, which enable improved accuracy of 

GCMC simulations when modeling adsorption of molecules where electrostatic interactions are 

important, such as CO2. A subsequent study performed a DFT-level structural relaxation of the 

MOFs in the CoRE 2014 database to investigate the effect of solvent removal on the adsorption 



properties of the materials.24 The CoRE 2014 database was recently expanded to ~14,000 MOFs 

from the CSD (CoRE 2019 Database), and is currently the largest source of permanently porous 

experimentally characterized MOFs.25 Chen and Manz screened the CoRE 2019 database to 

determine structures with isolated atoms, overlapping atoms, and hypo/hypervalent atoms.26 

Notably, the authors identified thousands of chemically invalid structures, demonstrating the 

requirement for a more thorough structure-checking procedure. 

Databases of experimentally realized MOFs such as the CoRE and CSD databases are 

preferable for identifying high-performing materials since they contain synthetically feasible 

structures. However, the number of permanently porous MOFs suitable for gas separation is still 

rather limited. Thus, databases of computationally generated or hypothetical MOF (hMOF) 

structures have been created to explore more combinations of SBUs than currently exist for 

experimentally synthesized MOFs.20,27–30 The approaches to generate hMOF structures can be 

broadly classified as either “bottom-up” or “top-down”. Bottom-up approaches involve 

sequentially connecting SBUs until a periodic crystal structure is obtained. Top-down approaches 

start with a given topology and map SBUs onto the topological net to generate a periodic crystal 

structure. In 2012, Wilmer et al. developed a bottom-up approach which entailed recombining 102 

building blocks derived from already-synthesized MOFs.27 Using predictable assembly of building 

blocks into MOFs, the authors generated every possible structure within specified constraints 

(including geometric rules from existing MOFs), resulting in a database (“Wilmer database”) of 

~138,000 hMOFs arranged in six topologies. This pioneering work resulted in the first large 

database of MOFs to be constructed and was initially screened for methane uptake. Gurnani et al. 

recently used the database to generate ML models to predict methane adsorption isotherms of 

MOFs.31 The authors expanded the diversity of the database by substituting new metal clusters 

into the existing structures. Surprisingly, the model could be successfully extended to metal 

chemistries absent from the training set. In 2016, Boyd and Woo developed the topology-based 

crystal constructor (ToBasCCo) algorithm – a top-down approach which uses graph theory to 

generate hMOFs using only an underlying topological net, a combination of SBUs, and the bond-

forming sites of the SBUs.32 Importantly, this method allows for the generation of a more 

geometrically diverse set of structures. Using this algorithm, a MOF database (“Boyd-Woo 

database”) containing over 300,000 structures and over 1000 net topologies has been 

constructed.20,28 Boyd et al. later screened and mined the database to identify strong, hydrophobic 



CO2 binding sites which led to the experimental synthesis of water-stable MOFs for post-

combustion CO2 capture that still functioned well at high relative humidities.20 Other top-down 

and bottom-up databases of hypothetical MOFs have also been developed, including databases 

where structures were created by functionalizing the pores of a parent MOF.33 While hMOF 

databases allow for access to a wider combination of organic and inorganic SBUs, they frequently 

possess dramatically poorer diversity with respect to the inorganic SBUs when compared to 

experimental databases.34,35 Depending on the property of interest, using such databases could 

introduce unwanted biases which reduce efficiency of screening and/or transferability of machine 

learning models. Thus far, few studies have focused on correcting this lack of diversity in hMOF 

databases, with the exception of the work by Majumdar et al.,34 in which new hMOFs were 

generated with underrepresented inorganic SBUs to expand the metal chemistry diversity of the 

existing hMOF space. 

The computational screening of MOFs for gas separation and storage applications requires 

the determination of adsorption properties of the materials, which is usually performed via 

atomistic GCMC simulations. These simulations use a set of parameters and equations to model 

interatomic potentials (i.e., a “force field”). Most commonly, fixed partial atomic charges are used 

to model the electrostatic interactions. Although many force field parameters are generally 

transferrable from one MOF to the next, the partial atomic charges of a specific MOF framework 

are not. As such, before a GCMC simulation can be performed, one must determine partial atomic 

charges for the MOF framework. Ideally, these charges would be derived from first principles DFT 

calculations, especially when electrostatic interactions play a key role in adsorption of a particular 

guest molecule. The most appropriate partial atomic charges for evaluating interaction energies 

are so-called electrostatic potential fitted charges where the atomic charges of the system are 

selected such that they optimally reproduce the electrostatic potential determined from the DFT 

calculation. The REPEAT method36 was the first method for deriving such charges from periodic 

DFT calculations. However, MOFs typically have hundreds of atoms per unit cell. As such, a 

periodic DFT calculation to determine the wave function and electrostatic potential can take hours 

on modern computing resources. Therefore, when performing a large-scale screening of a database 

using GCMC simulations, using DFT-derived charges can become prohibitively expensive.37 This 

problem prompted the use of empirical charge-assignment methods, such as the charge 

equilibration (QEq) method38 and the split-charge equilibration (SQE) method,39 which allow 



charges in MOFs to be generated within seconds. The drawback of these methods is that they must 

be parameterized to provide a good approximation for the electrostatic potential of the material. 

Several parameterizations of these methods have been developed for MOFs40,41 including the 

MEPO (MOF electrostatic potential optimized) sets42,43 which were fit to reproduce DFT-

computed electrostatic potentials (ESPs) from a large training set of MOFs. The MEPO-QEq 

parameters have been used to generate partial atomic charges for a number high-throughput 

screening studies44–48. While significant effort has gone into optimizing parameters for these 

empirical charge assignment methods, the use of these methods on materials which deviate from 

structures in the original training sets will yield questionable charges.37 More recently, machine 

learned (ML) partial atomic charge models have been developed for MOFs by Raza et al.49 and 

Kancharlapalli et al.50 that both provide much improved results over the QEq and SQE methods. 

Both models were trained to reproduce DFT-derived DDEC charges on MOFs from the CoRE 

MOF 2014-DDEC database. In the study by Raza et al., a set of 2,266 charge-labeled MOFs were 

partitioned into training, development, and test sets in a 70:10:20 split, while Kancharlapalli et al. 

used 2,974 MOFs in a 20:80 split for the test and training sets, respectively. Notably, 

Kancharlapalli et al. removed atoms with identical chemical environments to eliminate duplicate 

atoms in the training and test sets. To ensure broad applicability of these ML models, it would be 

ideal to train ML models on large and diverse datasets. 

Even with computed charge parameters available, GCMC simulations typically require 

millions of guest-host interaction energy calculations to determine a single point on an adsorption 

isotherm. As such, this type of screening falls under the category of “brute force” methods. Brute 

force screening of large databases of materials can range from extremely compute-intensive to 

intractable. Consequently, ML has been used to create models which directly relate the structure 

of a material to a target property (e.g., CO2 uptake). Such models would bypass the need for a 

GCMC simulation altogether and allow one to compute a property for a given material at rates 

which are orders of magnitude faster than traditional methods. ML models can learn how to relate 

chemical or structural descriptors of a MOF to its performance.  Descriptors should, at a minimum, 

uniquely characterize the material and be easier to calculate than the property itself. A descriptor 

should also be invariant to rotations, translations, and atom ordering. Many studies have focused 

on using ML to predict adsorption properties of MOFs.45,51,52 However, one major step in these 



studies entails the calculation of the descriptors. An ideal database of MOFs would be “ML-ready”, 

with pre-computed descriptors and target data to facilitate the development of new ML models. 

 In this paper, we introduce a diverse database of 280,000 experimentally characterized and 

hypothetical MOFs from various sources with DFT derived partial atomic charges for GCMC 

screening, as well as descriptors and simulated adsorption data that can be used for developing 

machine learning models. We call this database the ab initio REPEAT charge (ARC-MOF) 

database, and it includes DFT derived REPEAT charges for each MOF and 515 descriptors that 

encompass three different classes, for each material in the database. These descriptor classes can 

be generalized as geometric, atomic-property-weighted radial distribution functions (AP-RDFs)53,  

and revised autocorrelations (RACs)35 . The RACs and geometric descriptors are then used in an 

in-depth diversity analysis to evaluate the chemical diversity of ARC-MOF against the current 

known design space of MOFs – a critical, yet commonly overlooked detail in past publications of 

MOF databases. Other chemical and geometric diversity analyses are presented, with an analysis 

on the effect of charge assignment method on GCMC simulated gas uptakes in MOFs. 

COMPUTATIONAL METHODS 

Partial Atomic Charge Calculations 

DFT-Derived Partial Atomic Charges: Partial atomic charges were calculated from periodic 

density functional theory (DFT) calculations performed on each MOF using the REPEAT 

method.36 REPEAT fits partial atomic charges of each atom such that they collectively minimize 

the difference between the electrostatic potential (ESP) resulting from a DFT calculation of the 

system and the ESP from the fitted charges. Periodic DFT calculations were performed on all 

MOFs using VASP version 5.4.454,55 with the Perdew–Burke–Ernzerhof (PBE) functional56 and 

the projector augmented-wave (PAW) method.57 A 3x3x3 Monkhorst-Pack sampling of k-points 

in the Brillouin zone was used for all MOFs whose smallest cell vector length is less than 14 Å.  

For MOFs whose cell vectors were all greater than 14 Å only the -point was sampled. A random 

sampling of 3000 MOFs whose minimum cell-vector length was between 13.5-14.0 Å, showed 

that the REPEAT charges calculated with a -point sampling had a mean absolute deviation 

(MAD) from those determined with a 3x3x3 sampling of k-points of only 0.0024 e. The same 

comparison on a random sampling of 3000 MOFs whose minimum cell-vector length was less 



than 7 Å was found to have a MAD of 0.0156 e, which is an order of magnitude higher. Since 

insufficient Brillouin zone sampling is more acute for smaller cells, this shows that our choice of 

sampling only the -point for MOFs with cells vectors larger than 14 Å is justified. The VASP 

calculations used a planewave cut-off of 300 eV and a lower than default FFT grid density (VASP 

keyword ‘PREC=Low’) to save computing time. To justify this choice of lower precision settings 

for the DFT calculations we have calculated the REPEAT charges for a set of MOFs using a 400 

eV plane wave cut-off, a ‘PREC=Normal’ setting, and a 6x6x6 Monkhorst-Pack sampling of k-

points. The REPEAT charges derived from the higher precision calculations were then compared 

to the charges calculated using the low precision settings (PREC=Low and a 3x3x3 sampling of 

k-points for MOFs possessing a cell vector less than 14 Å and -point sampling otherwise). For a 

diverse set of 111 MOFs taken from various databases, with 16 different metals (Cu, Ni, Fe, Mo, 

Cd, Zn, V, Co, Mg, Mn, In, B, Zr, Ag, Al and La) and at least 12 different topologies, the difference 

in REPEAT charges using the two precision settings was found to have a MAD of only 0.0032 e 

over 10572 atomic centers.  Further, the average maximum absolute deviation over all MOFs was 

only found to be 0.015 e. For the REPEAT calculations, no restraints were used but the default 

van der Waals radii were scaled by a factor of 0.9. 

 Only MOFs that were expected to have neutral frameworks were selected from the various 

sources for ARC-MOF, such that MOFs that were explicitly labelled as charged were excluded. 

Additionally, most MOFs were assumed to be closed-shell and calculated using a restricted-DFT 

formalism. Any MOFs containing the elements Cr, Mn, Fe, Co, Ni, Gd, Dy, Ho, Er that commonly 

have unpaired electrons were calculated using an unrestricted-DFT formalism. 

Empirical Partial Atomic Charges: To determine the effect of charge-assignment method on 

adsorption properties of MOFs, MOF electrostatic potential optimized (MEPO) empirical charge 

assignment methods were compared to REPEAT charges. For these charges, the charge 

equilibration (MEPO-QEq58) and split charge equilibration (SQE-MEPO43) methods were used, 

and are described in detail elsewhere.  

Structure Validation 

To ensure ARC-MOF contains only chemically reasonable structures, the oxidation state of each 

metal atom in each structure was determined. Structures containing metals with impossible, 



unknown, and/or non-integer oxidation states were excluded from this study. Structures which 

possessed atom-pair distances of less than 70% of the sum of their covalent bond radii were 

discarded as bad to avoid including structures which possess overlapping atoms.  Lattice 

parameters were also checked to avoid structures with unrealistically small cell vectors. The 

smallest cell vector in the CSD MOF database which only contains experimentally synthesized 

MOFs, was found to be 3.22 Å59. Therefore, only MOFs with unit cell vectors greater than this 

length were included in ARC-MOF. Finally, structures with hypercoordinated main-group 

elements were discarded. For this check, structure graphs were generated for each MOF with the 

metal atoms removed, since metals frequently involve hypercoordinated oxygen and hydrogen. 

Then, MOFs containing carbon atoms with more than 4 bonds, oxygen atoms with more than two 

bonds, and halogen/hydrogen atoms with more than one bond were discarded. For experimental 

MOFs containing counterions, perchlorate and hydronium ions were excluded from this check. 

Chemical Substructure Identification 

Trends in the incidence of various chemical substructures (i.e., chemical moieties and organic 

functional groups) in ARC-MOF were determined using bond connectivity data in the 

crystallographic information files (CIFs) of the structures. For structures which had CIF files 

missing bond connectivity tables, the requisite bond connectivity tables were generated using the 

nearest-neighbour algorithm proposed by Isayev et al.60, as implemented in the Python 

cheminformatics library pymatgen (version 2022.0.5)61. In this nearest-neighbour algorithm, 

adjacent atoms are considered bonded if they shared a Voronoi facet, and the distance between 

them was less than their summed Cordero covalent radii62 plus an additional bond tolerance value. 

A bond tolerance value of 0.25 Å was selected to represent only strong interatomic interactions62 

and to limit hypercoordination at carbon atom and metal atom sites. The substructures were 

extracted by identifying bonded atom pairs within its connectivity table, then evaluating each 

atom’s first coordination sphere. Only substructures not bound to metal atoms were considered in 

this analysis. These fragments were compared against a representative library of chemical 

substructures to identify which ones were present within each ARC-MOF structure. 

Descriptor Calculations 

Geometric Descriptors:  Geometric descriptors of all materials were calculated with Zeo++63 

version 0.3.0 with the high accuracy flag and a probe radius of 1.86 Å. The accessible surface area, 



accessible volume, and probe-occupiable volume were calculated with 2000, 50000, and 2000 

Monte Carlo steps, respectively. A list of the 20 geometric properties evaluated for each MOF is 

given in the supporting information. 

Revised autocorrelation function descriptors:  RACs are provided as descriptors for ML studies 

and are additionally used in this work to evaluate the diversity of our database in comparison to 

other MOF databases. The RACs were computed according to the methodology described by 

Moosavi et al.35 RACs are products or differences of properties computed on a non-weighted 

chemical graph. An example of a difference-based RAC is: 

𝑃𝑠𝑐𝑜𝑝𝑒
𝑠𝑡𝑎𝑟𝑡

𝑑
𝑑𝑖𝑓𝑓

= ∑ ∑ (𝑃𝑖 − 𝑃𝑗)𝛿(𝑑𝑖,𝑗; 𝑑)

𝑠𝑐𝑜𝑝𝑒

𝑗

𝑠𝑡𝑎𝑟𝑡

𝑖

 

Where d is the “depth” of the RAC, equal to the bond-wise path distance from the starting atom 

and di,j is the bond-wise path distance between atoms i and j. δ is the Kronecker delta, equal to 

unity when di,j is equal to d, and equal to zero otherwise. Pi and Pj represent atomic properties of 

atom i and j, respectively. The start and scope lists for each type of RAC and the RACs included 

in this work are given in the supporting information. The properties considered for the RACs in 

this work are electronegativity, nuclear charge, atom identity, connectivity, and covalent radii. For 

the linker connecting atom and functional group RACs, an additional property (polarizability) is 

included. To compute the RACs, the molSimplify code written by Kulik and coworkers was used.64 

The start and scope atom lists used in this work are given in Table S2. 

Atomic-property-weighted radial distribution function (AP-RDF) descriptors: An in-depth 

definition of AP-RDF descriptors53 and their variants is given elsewhere45. Briefly, the AP-RDF 

descriptor gives an atomic property weighted probability of finding atom pairs separated by a given 

distance inside a unit cell of a MOF. In this work, we define the AP-RDF descriptor by the 

following equation: 

𝑅𝐷𝐹𝑃(𝑅) = 𝑓 ∑ 𝑃𝑖𝑃𝑗𝑒−𝐵(𝑟𝑖𝑗−𝑅)2

𝑎𝑡𝑜𝑚 𝑝𝑎𝑖𝑟𝑠

𝑖,𝑗

 

Where rij is the minimum image distance of all atom pairs in the MOF, Pi and Pj are atomic 

properties of atom i and j, respectively, B is a Gaussian smoothing parameter, and f is a 



normalization factor. In previous work,53 the optimal value of B was found to be 10. Each AP-

RDF was normalized by the number of framework atoms in the unit cell (Natoms) and scaled by a 

factor of 0.001 (i.e., f = 0.001/Natoms). The AP-RDF descriptors were calculated using a distance 

range of 2.0–30.0 Å in 113 steps that linearly increase from 0.004425–0.5 Å, yielding a total of 

339 AP-RDF descriptor values for each MOF.  

Diversity analysis 

The analysis presented herein was accomplished by expanding upon the methodology proposed 

by Moosavi et al.35 The chemistry-specific RAC descriptors for a) metal-centre chemistry; b) 

ligand chemistry; and c) functional group chemistry, as well as the six geometric descriptors shown 

in Table 2 were employed in this analysis. RACs are graph-based descriptors which describe the 

chemistry of the various “building blocks” of MOFs. In previous work, a depth of 2 was used to 

describe the metal chemistry. In our opinion, this is too local to the metal, as there can be some 

chemically distinct local metal environments if one considers a depth greater than two. An example 

of this is a metal bound to a substituted versus unsubstituted pyridine ligand. For these reasons, a 

depth of three was chosen for all RAC descriptors used in this analysis. The Uniform Manifold 

Approximation and Projection (UMAP) technique65 as implemented in the RAPIDS cuML Python 

library66 was used to reduce the high dimensional data for each type of descriptor to only two 

dimensions for visualization purposes (e.g., the 20-dimensional metal-centre RAC descriptors 

were reduced to two dimensions using UMAP). Hyperparameters used for the generation of these 

plots are given in the supporting material. Due to practical limitations of using UMAP on large 

datasets, a random set of 50K MOFs was selected to represent the entire set of 480K MOFs (~10% 

of the entire dataset) for the UMAP plots. While these plots allow for qualitative analysis of the 

data, quantifiable metrics are desirable. For this purpose, three metrics used by Moosavi et al.35 

were employed in this analysis. The first metric, disparity (D), quantifies the spread of the data 

compared to another dataset. Thus, this metric uses the UMAP plots to obtain a ratio between the 

2D area occupied by the coloured points (ARC-MOF) and the 2D area occupied by all the points 

(entire design space). This metric is equal to unity for a subset which spans the exact same space 

as the overall set. The other two metrics, variety (V) and balance (B) depend on the determination 

of clusters. HDBSCAN67 as implemented in the hdbscan Python library68 was used to cluster the 

MOFs based on RAC descriptors (see SI for the clusters of MOFs). Consequently, these cluster-



based metrics are independent of the UMAP plots (unlike the disparity). Variety is a measure of 

how many clusters are occupied by the subset versus the number of total clusters and is equal to 

unity for a subset which has at least one structure in each cluster. Finally, the balance is computed 

using Pielou’s evenness, a well-behaved transformation of Shannon entropy, which is equal to 

unity for a completely balanced dataset. Therefore, this is the only absolute metric (i.e., does not 

involve a comparison of the subset to the total set). Detailed information on the calculation of these 

metrics, as well as the code to compute these metrics, can be found in the SI. Farthest point 

sampling69 (also known as max/min sampling) was used to select a more balanced set of structures 

for each unbalanced type of chemistry in ARC-MOF (i.e., functional group chemistry and metal 

chemistry). Balanced subsets of ARC-MOF are provided in the SI, as well as code to perform the 

farthest point sampling. 

Grand Canonical Monte Carlo Simulations 

Grand canonical Monte Carlo (GCMC) simulations were performed using an in-house code based 

on the DL_POLY molecular dynamics package to calculate equilibrium gas adsorption properties. 

Guest-framework interactions were modeled using Lennard-Jones (LJ) potentials to account for 

steric and dispersion interactions, and the fixed partial atomic charge model was used to model 

non-bonded electrostatic interactions. The LJ parameters for the frameworks were assigned from 

the UFF force field. The REPEAT method, QEq and SQE methods were used to assign partial 

charges to the framework atoms to allow for comparison between the charge-assignment methods. 

Lorenz-Berthelot mixing rules were used for the determination of LJ parameters between atoms 

of different types. The intermolecular potential parameters for CO2 were taken from Garcia-

Sánchez et al.70 The parameters for H2S were taken from Kamath et al.71 The parameters for N2 

were developed in-house to reproduce experimental N2 uptake isotherms in MOFs.72 The 

parameters for CH4 were taken from Martin et al.73 Finally, the parameters for H2 were taken from 

Belof et al.74 For the GCMC simulations used in comparison of charge-assignment methods, 

200,000 Monte Carlo (MC) steps were performed, split evenly between equilibration and 

production. 10,000 MOFs were selected to perform the charge-assignment comparison. 

Additionally, GCMC screening of ARC-MOF was performed to obtain gas uptake relevant to five 

different gas separations. For these simulations, 10,000 MC cycles were performed, split evenly 

between equilibration and production, and the REPEAT charges reported in this work were used 



for the partial charges of the framework atoms. The gas uptake data with standard deviations, heat 

of adsorption data, as well as working capacity and selectivity for these gas separation conditions 

is given in the supporting information and is intended for use as target properties for future ML 

studies. The following processes were used to determine the relevant gas separation conditions 

given in the SI: a) methane purification; b) post-combustion VSA; c) precombustion PSA; d) 

methane storage PSA; and e) landfill gas VPSA. 

RESULTS AND DISCUSSION 

ARC-MOF Composition: ARC-MOF contains both experimentally characterized and 

hypothetical MOF structures taken from several different sources. For simplicity, we will refer to 

each source as a database, and have assigned each a unique label – DBx where ‘x’ is a identifier 

number starting from zero. Table 1 summarizes the composition of each database used to curate 

ARC-MOF, including the number of organic SBUs, inorganic SBUs, functional groups, and 

topologies used to construct the MOFs in each database, if available. The total number of MOFs 

from each database is given, with the number of MOFs remaining after structure checking, and the 

number of MOFs from each database present in ARC-MOF. CIF files of all structures in ARC-

MOF are available (see SI), with the filename comprising the ‘DBx-’ prefix from Table 1 followed 

by the name of the structure given in the original source. DB0 represents the hypothetical database 

previously developed by our group, often referred to as the Boyd-Woo database20. This is a 

database constructed from both the top-down and bottom-up MOF construction methodologies. 

However, most structures in the database were made using the top-down ToBasCCo code 

developed by Boyd and Woo.32 All structures in the Boyd-Woo database were optimized with the 

UFF force field75 where the geometry of the metal and atoms directly bonded to the metal were 

frozen. DB1 is an hMOF database constructed by Lan et al.30 using their top-down crystal 

construction algorithm76 to generate hypothetical ionic liquid/MOF composites. DB2 was created 

by Colón et al.29 using their top-down MOF builder code Topologically Based Crystal Constructor 

(ToBaCCo)29 and optimized the structures using molecular mechanics. DB3 contains hMOFs 

generated using ToBaCCo by Anderson et al.77,optimized using UFF. The organic SBUs used in 

this database consist only of functionalized benzene dicarboxylate (BDC) ligands, with the 

following functional groups: amino, bromo, fluoro, hydroxyl, nitro, methyl, thiol and 

trifluoromethyl groups. DB4, reported by Gómez-Gauldrón et al,78 consists of hypothetical MOFs 



featuring Zr6O4(OH4)(CO2)12 and Zr6O4(OH4)(CO2)8(OH)4 SBUs. 12 ditopic organic SBUs were 

combined with the inorganic SBUs to create MOFs with the fcu topology and 36 tetratopic organic 

SBUs were combined with the inorganic SBUs to create MOFs with ftw, csq, and scu topologies. 

The MOFs were built and optimized in Materials Studio79 using the Crystal Builder and Forcite 

modules, respectively. DB5 is a subset of the Wilmer database27 containing only MOFs with a 

unique combination of interpenetration capacity, actual interpenetration level, inorganic node, 

primary linker, secondary linker, and functional groups, as curated by Chung et al80. DB6 contains 

hMOFs based on the Cu-paddlewheel SBU possessing pcu topology.81 An additional 560 

unfunctionalized parent versions of the MOFs were also generated. DB7 is an hMOF database 

generated by Majumdar et al., with the focus of using inorganic SBUs not commonly observed in 

hMOF databases.34 DB8 is a set of hMOFs reported by Anderson and Gómez-Gauldrón, in which 

the Cu-paddelwheel SBU was combined with tetratopic organic SBUs using a modified version of 

ToBaCCo. The resulting structures were optimized in LAMMPs using the UFF4MOF force field. 

DB10 contains hMOFs created using ToBaCCo and optimized using UFF.82 DB12 is the CoRE 

2019 database.25 Bao et al. created DB13, which contains MOFs comprised of organic SBUs 

evolved using a genetic algorithm to maximize deliverable methane capacity from an initial 

population of 57,815 commercially available molecules.83 DB14 is the CSD-MOF database that 

contains structures from the non-disordered subset of the Cambridge Structural Database.21 Only 

structures with the H-atoms added were sampled from and structures with the same CSD code that 

we included from the CoRE databases were not added to ARC-MOF to avoid duplicate structures. 

DB15 refers to new structures created for this work using a top-down approach as implemented in 

Pormake84. To sample MOFs from each database, the structures were sorted based on the number 

of atoms in unit cell. DFT calculations were first calculated on the smallest members of each 

database moving to larger structures incrementally until the DFT calculations were no longer 

feasible with the computing resources available. For DB1, which contains over 300K MOFs, the 

above procedure was followed on a random subset of ~75000 structures. Structures where the 

wave function would not properly converge were discarded. All MOFs in ARC-MOF were 

assumed to have a charge neutral framework, and so MOFs from the various sources that were 

specified as being charged were not sampled. 

Table 1.  The labeling used to identify sources of structures to construct the ARC-MOF 

database, compositions, the number of MOFs remaining after the structure checking 



procedure, and the number of MOFs present from each database in ARC-MOF. The 

percentages in parentheses represent the percentage contribution of each database to 

ARC-MOF. Information on database composition is given only for hMOF databases. 

label  Reference 

Database Composition 

Total No. of 

MOFs 

No. of MOFs 

after 

structure 

check 

No. of MOFs 

in ARC-MOF 

(%) 

No. 

organic 

SBUs 

No. 

inorganic 

SBUs 

No. 

functional 

groups 

No. 

topologies 

DB0 Boyd et al.20,32 175 23 50 1,166 358,398 263,218 203,025 (72.2) 

DB1 Lan et al.30 32 17 9 18 303,992 181,885 23,267 (8.3) 

DB2 Colón et al.29 60 14 0 41 13,514 3,920 199 (0.1) 

DB3 R. Anderson 

et al.77 

12 4 8 15 426 358 123 (0.0) 

DB4 Gómez-

Gauldrón et 

al.78 

48 2 -- 4 204 48 25 (0.0) 

DB5 Chung et al.80 82 5 12 6 51,163 27,022 22,366 (8.0) 

DB6 Li  et al.81 41 1 3 1 11,555 10,944 9,092 (3.2) 

DB7 Majumdar et 

al.34 

95 14 -- 52 23,891 12,316 6,955 (2.5) 

DB8 R. Anderson 

and Gómez-

Gauldrón85 

7 1 -- 19 126 122 8 (0.0) 

DB10 G. Anderson 

et al.82 

5 4 -- 17 105 78 22 (0.0) 

DB12 CoRE 201925 -- 15,613 8,379 7,145 (2.5) 

DB13 Bao et al.83 100 5 -- 9 8,629 6,180 5,165 (1.8) 

DB14 CSD MOF21 -- 10,636 4,070 72 (0.0) 

DB15 This work 195 19 -- 37 7,708 2,841 2,146 (0.8) 

Total -- 806,520 521,381 279,610 

 

Chemical and Geometric Diversity of ARC-MOF 

We now examine both the chemical and geometric diversity of ARC-MOF, with a 

comparison to other databases of MOFs. Figure 1 shows the distribution of common geometric 

descriptors within ARC-MOF in comparison to the CoRE 2019,25 CSD-MOF,86 QMOF87, and 

Majumdar34 databases.  The distributions plotted are for the entire databases. Since it is difficult 

to determine the maxima and minima of the geometric parameters from the plots shown in Figure 

1, these are given in Table 2 for each database. 



 
Figure 1. Distribution of common geometric parameters within the ARC-MOF database 

(solid blue), the full CoRE 2019 database25 (dotted green), the CSD MOF database88 (solid 

black), the QMOF database87 (solid red), and the Majumdar database34 (dashed orange). The 

insets in c) and f) show the absolute number of MOFs. The fraction of structures with zero 

surface areas, void fraction or diameters is not plotted, although they are included in the 

calculation of the distributions. 

Examination of the plots in Figure 1 reveals that the databases containing hypothetical 

MOFs (QMOF, Majumdar and ARC-MOF) have distributions of geometric parameters that are 

more similar to one another compared to purely experimental MOF databases (CoRE and CSD-

MOF). The hypothetical databases have distributions that are more skewed towards structures with 

larger pore diameters, surface areas and void fractions, indicating that they contain materials that 

are more porous than the two purely experimental databases. This is consistent with the fact that 

the experimental MOF databases are also higher in density, on average. It would be prudent to 

specifically compare the ARC-MOF and QMOF databases since DFT calculations have been 

performed on all materials in each. In general, the two databases have similar distributions for the 

six geometric parameters shown in Figure 1. Perhaps the most apparent difference is that ARC-

MOF has a more normal distribution of void fractions and gravimetric surface areas as compared 

to QMOF which has more even distributions for these parameters in the low value regimes. Close 

inspection of the distribution of largest cavity diameter and pore limiting diameter might suggest 

that the QMOF database has more structures with larger pores. However, it is important to realize 

      

      



that ARC-MOF is a much larger database than QMOF. The inset plots in Figures 1c and 1f show 

the absolute numbers of MOFs for those parameters, rather than the fraction. (Figure S1 provides 

plots of the absolute values for all six geometric parameters).  This reveals ARC-MOF has a greater 

number of MOFs over the ranges of large diameters than QMOF. Additionally, Table 2 shows that 

ARC-MOF has maximum diameters that are more than twice that of QMOF. 

Table 2. Maxima and minima of selected geometric properties for ARC-MOF and other MOF 

databases. 

Database   
density 

(g/cm3) 

volumetric 

surface 

area 

(m2/cm3) 

gravimetric 

surface 

area (m2/g) 

volume 

fraction 

largest 

cavity 

diameter 

(Å) 

pore 

limiting 

diameter 

(Å) 

ARC-MOF 
max 6.20 3474.6 10218.6 0.95 83.1 81.1 

min 0.02 0 0 0 1.6 0.1 

CoRE 
max 4.16 3150.3 8308.7 0.89 71.6 71.5 

min 0.06 0 0 0 2.7 1.1 

CSD 
max 4.06 3152.9 6621.1 0.803 71.6 71.5 

min 0.13 0 0 0 2.7 0.5 

QMOF 
max 2.88 2878.2 7437.8 0.876 33.7 30.1 

min 0.08 0 0 0 1.9 0.9 

Majumdar 
max 2.09 2723.6 8013.1 0.92 56.6 54.2 

min 0.05 0 0 0 4.1 3.0 

 

 A second analysis that was performed is related to the chemical substructures present in 

ARC-MOF. This data is summarized in Figure 2, with the raw data given in the supporting 

material.  The most common moieties were found to be aromatics (93.0 % of all MOFs with 47.4 

% containing an N-heterocyclic aromatic), alkynes (33.1 %), alkenes (25.3 %), halogens (25.5 %), 

and amines (24.2 %). Other significant functional groups — including acids, alcohols, amides, 

sulfides, etc. — were also present in the database structures in relatively smaller quantities. The 

results of our database functional group analysis appear consistent with the moieties most 

frequently observed in organic linker SBUs employed in MOF syntheses and those included in 

hypothetical SBU libraries. 



 

Figure 2. Comparison between the incidence of representative chemical substructures in 

ARC-MOF. Only substructures not bound to metal atoms were considered in this analysis.  

 Topological data (i.e., information about the node-linker connectivity and symmetry) is 

available in the filenames of over 210 000 structures in the ARC-MOF database. Of the MOFs 

whose topology is known, the frequency of the twenty most common net topologies in ARC-MOF 

are summarized in Table 3. The majority of MOFs in ARC-MOF are identified as possessing pcu 

(30.1 %), fsc (21.5 %), nbo (20.4 %), or pts (17.6 %) net topologies. However, the database consists 

of more than 426 unique net topologies, with 31 topologies being represented in a minimum of 50 

structures. 



Table 3. Top 20 occurring net topologies in ARC-MOF. Only MOFs 

containing topology information in their filename are considered. 

Topology Count % Topology Count % 

pcu 63 485 30.1 pto    342 0.2 

fsc 45 297 21.5 qtz    246 0.1 

nbo 42 924 20.4 tfo    228 0.1 

pts 37 068 17.6 tfz    211 0.1 

sra 10 772 5.1 dia    200 0.1 

cds  1 409 0.6 xbe    144 0.1 

lvt  1 190 0.6 qzd    144 0.1 

bcu     741 0.4 sxc    139 0.1 

fof     690 0.3 kag    125 0.1 

acs     682 0.3 other  4 143 2.0 

hxg     511 0.2 
   

 

Biases are frequently introduced in the curation of any MOF database which affects the 

transferability of ML models and efficiency of large-scale screening. For these reasons, the 

importance of the chemical diversity of MOF dataset in any high-throughput workflow cannot be 

overstated. For example, Moosavi et al. have previously demonstrated that there is a substantially 

lower diversity of the metal chemistry of hMOFs compared to the design space covered by 

experimental databases.35 Therefore, as a final step to investigating the diversity of the structures 

in ARC-MOF, an in-depth analysis using revised autocorrelation descriptors (RACs) and 

geometric descriptors was performed, as described in the methodology section. In this work, we 

define the ‘entire’ design space as the collection of all MOFs taken from the sources listed in Table 

1 that passed our structure checking protocols (~532K MOFs) as outlined in the methodology 

section. ARC-MOF is a subset of this design space. The chemistry-specific RAC descriptors for 

a) metal-centre chemistry; b) ligand chemistry; and c) functional group chemistry, as well as the 

six geometric descriptors shown in Table 2 were used in this analysis. Structures for which a 

periodic graph could not be constructed were not included in the analysis since RACs could not 



be computed for these structures (~9% of the overall space – 49,402 MOFs). Thus, 480K MOFs 

were used in the following analysis. While we regard this as an inherent limitation of using RACs 

for this analysis, these are presently the best descriptors available in the literature for this purpose. 

Ideally, one would aim to construct a scatterplot of these descriptors and visualize a “map” 

of the chemistry of the design space as described by the RACs and thereby analyze the chemical 

diversity. However, since the RACs are a high-dimensional representation of the design space, one 

must reduce this space to a 2- or 3-dimensional space to allow for visualization. For this task, 

Uniform Manifold Approximation and Projection (UMAP) was used to display the high-

dimensional data in a two-dimensional space for each type of descriptor to generate so-called 

UMAP plots (Figure 3). Due to practical limitations of using UMAP on large datasets, a random 

set of 50K MOFs was selected to represent the entire set of 480K MOFs (~10% of the entire 

dataset). The UMAP plots show how well the subset (ARC-MOF) covers the entire known design 

space, and how uniformly this space is mapped (i.e., whether clusters exist in the data). On the two 

axes, kernel density estimate (KDE) plots of the UMAP data for each dimension show the density 

of the points in the space, giving a qualitative measure of the balance of the dimension-reduced 

data. The radar plots in Figure 3 show the value of each diversity metric (disparity, variety, and 

balance), which are described in the methodology section. In Figure 3, coloured points on the 

UMAP plots and coloured lines on the radar plots represent ARC-MOF, while grey points and 

lines represent the entire design space. 



 

Figure 3. Two-dimensional UMAP projection of descriptors of 50,000 random MOFs and 

corresponding radar plots showing diversity metrics for the a) ligand chemistry; b) metal 

chemistry; c) functional group chemistry; and d) geometry. RAC descriptors were used for 

the chemical diversity (a, b, c) and geometric descriptors were used for d. Structures present 

in ARC-MOF are represented by coloured points, which is overlaid on the entire design 

space, represented by grey points. The diversity metrics shown on the radar plots are variety 

(V), disparity (D), and balance (B), where grey again represents the entire set of MOFs and 

colour represents the ARC-MOF subset. Only functionalized MOFs were considered for c), 

and only MOFs with non-zero accessible surface area are shown in d). 

 Figure 3 suggests ARC-MOF is sufficiently diverse with respect to the presently known 

design space. This is perhaps an unsurprising conclusion given ARC-MOF is a near random 

sample of 54% of this space, and as such should have approximately equal diversity compared to 

the overall space. Clearly, the absence of substantial grey regions in Figure 3 suggests ARC-MOF 

covers the same design space as the overall set of MOFs (this is reflected in the disparity metric). 

The variety and balance are also approximately equal between the two sets. However, while the 

balance of the geometry and ligand chemistry of ARC-MOF are almost equal to unity (suggesting 

a nearly uniform distribution), this is not the case for the metal chemistry and functional group 

chemistry. Since the balance and variety calculations are independent of the UMAP plots in Figure 



3, clustering was done on the entire dataset, rather than the random 50K MOF sample, to achieve 

a more accurate determination of balance of ARC-MOF. The results of this analysis are 

summarized in Table 4. Table 4 shows a very low balance of 0.01 for both ARC-MOF and the 

entire design space, in agreement with the results of Figure 3b (Table 4).  The imbalance of metal 

chemistry in ARC-MOF (and the overall design space) is expected, as most MOF structures are 

hypothetical (i.e., computationally generated). In hypothetical database generation, there is 

typically a bias towards small number (usually in the tens or even less) of inorganic SBUs that are 

used to produce the structures, but hundreds of inorganic SBUs have been experimentally 

incorporated into MOFs and are found in ARC-MOF. Although the balance of the functional group 

chemistry within ARC-MOF (and the entire design space) is significantly higher than that of the 

metal chemistry, it is still not particularly high with a value of only 0.24 in ARC-MOF and 0.20 

in the entire design space (Table 4).  

Table 4. Balance and variety of the design space (~480K MOFs) 

and ARC-MOF (~288K MOFs). 

Type of MOF diversity Balance Variety 

ligand chemistry 
All 0.55 1.00 

ARC-MOF 0.78 0.74 

metal chemistry 
All 0.01 1.00 

ARC-MOF 0.01 0.76 

functional group chemistry 
All 0.20 1.00 

ARC-MOF 0.24 0.76 

geometry 
All 0.66 1.00 

ARC-MOF 0.83 0.74 

  

Two common ways to address data imbalance are to either add duplicate/artificial data to 

the underrepresented clusters (upsampling) or remove data from the overrepresented clusters 

(downsampling). In this work, farthest point sampling69 (also known as max/min sampling) was 

used to select a more balanced set of structures for each unbalanced type of chemistry in ARC-

MOF (i.e., functional group chemistry and metal chemistry). Notably, the RACs used for the 

farthest point sampling depended on the type of chemistry (e.g., only the metal-centre RACs were 

used for sampling the MOFs with most diverse metal chemistry). Farthest point sampling is a 

greedy algorithm which iteratively samples points from a set, such that the sampled points 

optimally cover the dataset (i.e., they are “spread out”). Using this technique, in combination with 

a clustering technique (for unclassified data), one can determine a subset which has maximum size 



and balance for a particular type of chemistry. The diversity metrics and UMAP plots for these 

balanced subsets are shown in Figure 4. For the ligand chemistry and geometry, a farthest-point-

sampled set of 100,000 MOFs was used to demonstrate the diversity was unaffected, since these 

types of RACs are already well-balanced over the entire set. It was determined from this analysis 

that a subset of 150,000 MOFs was reasonable to obtain a set of MOFs with balanced functional 

group chemistry. Likewise, a set of 20,000 MOFs was found to have balanced metal chemistry. 

These “diverse subsets” are provided in the supporting material and labelled the ARC-MOF 

diverse-ligand, diverse-functional-group, diverse-metal and diverse-geometry subsets. We 

anticipate the ARC-MOF diverse subsets will be useful for training machine learning models 

which rely particularly on these types of chemistry, (e.g., applications in catalysis or low-pressure 

gas adsorption). 

Figure 4 shows how in particular for metal chemistry, a small fraction (~5%) can 

sufficiently represent the diversity of the entire space and demonstrates the high imbalance of 

metal chemistry in the available (hypothetical) databases. The same conclusion can be drawn from 

Figure 5, which shows the 10 most common a) organic; and b) inorganic substructures present in 

ARC-MOF, and their corresponding frequencies. The top 10 most common organic substructures 

comprise ~1% of the entire ARC-MOF database, while the top 10 most common inorganic 

substructures are found in ~67% of the entire ARC-MOF database. Furthermore, the top 10 

inorganic substructures are chemically similar, being composed primarily of variations of copper 

and zinc paddlewheels. A similar result is observed for the entire design space, in which 60% of 

the MOFs contain the top 10 most common inorganic substructures (Figure S3). If the same 

analysis is done on the diverse-metal subset (20K MOFs), only ~2% of the MOFs contain the top 

10 most common inorganic substructures. Consequently, we conclude it is critical that future ML 

and screening studies of MOFs curate their own datasets from MOF databases in a way that 

maximizes not only the number of structures in the dataset, but also the balance of the descriptor 

space of interest (e.g., the metal chemistry). Otherwise, it is unlikely such models will extend to 

these MOFs with underrepresented descriptor vectors.  



 

Figure 4. Two-dimensional UMAP projection of descriptors of a varying number of MOFs 

sampled using farthest point sampling and corresponding radar plots showing diversity 

metrics for the a) ligand chemistry; b) metal chemistry; c) functional group chemistry; and 

d) geometry. RAC descriptors were used for the chemical diversity (a, b, c) and geometric 

descriptors were used for d. Structures present in ARC-MOF are represented by coloured 

points, which is overlaid on the entire design space, represented by grey points. The diversity 

metrics shown on the radar plots are variety (V), disparity (D), and balance (B), where grey 

again represents the entire set of MOFs and colour represents the ARC-MOF subset. Only 

functionalized MOFs were considered for c), and only MOFs with non-zero accessible 

surface area are shown in d). 



 

Figure 5. The top 10 most common a) organic; and b) inorganic substructures in ARC-MOF, 

as determined through a clustering analysis of the a) ligand; and b) metal-centre RAC 

descriptors of the entire database. The numbers under each substructure represent the 

frequency of the respective substructure in ARC-MOF. 

 

REPEAT Charge Analysis 

Partial atomic charges were derived from a DFT calculation of each MOF using the 

REPEAT method of Campañá et al.,36 which is an electrostatic potential (ESP) fitted charge 

method. In these methods, the ESP from a first principles (DFT) calculation is evaluated on grid 

points outside atomic radii of the atoms in the system. The partial charges on the atoms are then 

fit to minimize the difference between the ESP due to the DFT calculation and that due to the point 

charges themselves at each of the grid points. Histograms showing the distribution of the REPEAT 

charges in ARC-MOF for the most common elements are shown in Figure 6. REPEAT charge 

statistics for all elements present in the database are available in Table S5. 



 

Figure 6. Histograms presenting the distribution of calculated REPEAT charges by element for 

(a) H, (b) C, (c) N, (d) O, (e) Cu, and (f) Zn. Each histogram represents the cumulative total of 

atoms extracted from all MOFS in the ARC-MOF database. The charges are given in units of e. 

Overhead boxplots illustrate the position of the REPEAT charge median (yellow line) and the 

interquartile range (box width) for each element. 

To evaluate the importance of DFT-quality charges for atomistic simulations, we obtained gas 

uptake data for CO2 and H2S under various conditions using GCMC simulations with two different 

charge assignment methods. CO2 pressures of 0.15 bar and 1 bar were chosen due to their relevance 

to post-combustion carbon capture conditions89 and 0.4 mbar due to its relevance to direct-air 

carbon capture conditions90. To demonstrate the importance of charge assignment method on gas 

adsorption simulations of highly polar guests, we performed a similar analysis on H2S. Pressures 

ranging from 1 bar to 0.001 bar (1000 ppm) were chosen, as a 1000 ppm concentration of H2S is 

both the immediate lethal concentration in humans91 and is frequently observed in biogas 

applications92. 

In this analysis, we treat REPEAT as being the most reliable charge method for obtaining gas 

uptakes using GCMC simulations. Therefore, linear regressions were performed between gas 

uptakes obtained using REPEAT charges and gas uptakes obtained using QEq. These plots and 

additional statistical information are available in the supporting material. Slope, R2 correlation, 

and Spearman rank coefficients from these plots are given in Table 4. In this case, slope is 

considered a measure of accuracy while R2 correlation is considered a measure of precision. Both 



metrics are equal 1 when the gas uptakes obtained using the empirical charge assignment method 

(i.e., SQE or QEq) are equal to the gas uptakes obtained using the REPEAT partial charges. When 

the rank coefficient is equal to 1, the order of adsorption in REPEAT is conserved in QEq data.    

Table 4 demonstrates that charge dependence on gas uptake increases greatly at low pressures and 

for highly polar guests. Particularly, QEq is only able to reasonably reproduce gas uptakes obtained 

using REPEAT charges when the pressure is greater than or equal to 1 bar (m=0.90 for CO2 and 

m=0.84 for H2S). When considering hydrogen sulfide at low pressures (0.001 bar), QEq performs 

poorly in reproducing the gas uptake as simulated using REPEAT charges (m=0.07, R2=0.03). 

This result underpins the value of a database with DFT-derived partial atomic charges for GCMC 

simulations where electrostatic interactions dominate such as simulations performed at low 

pressure, or for simulations involving polar guests such as water. 

 

Table 5. Linear regression parameters for correlation between GCMC uptakes 

simulated using MEPO-QEq versus REPEAT charges for 10,000 MOFs. The R2 

correlation parameter is determined from the Pearson R correlation coefficient. 

The Spearman R parameter is determined from the Spearman rank correlation 

coefficient.  

Guest 
Pressure 

(bar) 

Linear Regression Parameters 

Slope R2 Spearman R 

 

CO2 

1.00 0.90 0.92 0.97 

0.15 0.86 0.94 0.97 

0.0004 0.22 0.22 0.96 

H2S 

1.00 0.84 0.85 0.93 

0.1 0.63 0.75 0.93 

0.01 0.28 0.46 0.91 

0.001 0.07 0.03 0.90 

 

Descriptors and Target Data 

A final goal of this work was to compute descriptors and target data relevant to gas adsorption of 

MOFs to enable “out of the box” use of ARC-MOF in future screening or machine learning studies. 



To this end, we have computed AP-RDF descriptors for the entire database, and RAC descriptors 

for most MOFs in ARC-MOF. RAC descriptors could not be computed for all MOFs in ARC-

MOF due to limitations of the structural graph generation method implemented in MolSimplify. 

AP-RDFs have previously been shown to be optimal descriptors for gas adsorption studies of 

MOFs, particularly for CO2 separations.45,46 In addition to these descriptors, target data was 

computed corresponding to gas adsorption properties (e.g., gas uptake, working capacity, 

selectivity) of all MOFs in ARC-MOF for five gas separation processes, namely a) methane 

purification; b) postcombustion VSA; c) precombustion PSA; d) methane storage PSA; and e) 

landfill gas VPSA. The specific conditions of these separations can be found in the supporting 

material.   

CONCLUSIONS 

The ARC-MOF database contains ~280,000 thoroughly structure-checked MOFs which 

have been either experimentally characterized or computationally generated, spanning all publicly 

available MOF databases, with DFT-derived partial atomic charges for each MOF. Additionally, 

ARC-MOF contains pre-computed descriptors for out-of-the-box machine learning applications. 

An in-depth analysis of the diversity of ARC-MOF with respect to the currently mapped design 

space of MOFs was performed – a critical, yet commonly overlooked aspect in past publications 

of MOF databases. Chemical insights about ARC-MOF were drawn from this analysis – primarily 

that ARC-MOF sufficiently spans the overall chemical space, and that it is sufficiently balanced 

with respect to geometric properties, as well as ligand chemistry. However, ARC-MOF suffers 

from being highly unbalanced with respect to metal chemistry, a well-known flaw of current 

hypothetical MOF databases. Thus, a subset of the overall design space which is balanced with 

respect to metal chemistry has been curated, for machine learning or screening applications where 

metal chemistry is important (e.g., chemisorptive processes). As a result of the high imbalance of 

metal chemistry in the hypothetical databases, we conclude it is critical that future ML and 

screening studies of MOFs curate their own datasets from MOF databases in a way that maximizes 

not only the number of structures in the dataset, but also the balance of the descriptor space of 

interest (e.g., the metal chemistry). It was shown that farthest point sampling is an effective method 

to do this, and an efficient code to perform this sampling is provided in the SI. A key goal of this 

work is not only for researchers to make use of ARC-MOF, but also adapt the proposed 



methodology for curating balanced datasets for machine learning and screening applications. 

Finally, we have shown the utility of the ARC-MOF for applications where high quality partial 

atomic charges are desired (e.g., simulations involving polar guests, or simulations at low 

pressure). In these types of simulations, there is very poor correlation between GCMC-simulated 

uptakes using empirical charge assignment methods versus DFT-quality partial atomic charges. 

SUPPORTING INFORMATION 

 

The ARC-MOF database (.CIF files with charges) and associated descriptors/adsorption target 

properties, all structures used in the diversity analysis, clusters used in the diversity analysis, and 

balanced subsets are available on Zenodo (https://doi.org/10.5281/zenodo.6908727). The codes 

used for the diversity analysis are available on the uOttawa Woo Lab GitHub page: 

https://github.com/uowoolab. 
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