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Abstract 

Electrochemical impedance spectroscopy (EIS) is a characterization technique widely used to 

evaluate the properties of electrochemical systems. The distribution of relaxation times (DRT) 

has emerged as a model-free alternative to equivalent circuits and physical models to 

circumvent the inherent challenges of EIS analysis. Deep neural networks (DNNs) can be used 

to deconvolve DRTs, but several issues remain, e.g., the long training time, the DNN accuracy, 

and the deconvolution of DRTs with negative peaks. The DNN-DRT model was developed 

here to address these fundamental limitations. Specifically, a pretraining step was included to 

decrease the computation time. A thorough error analysis was also conducted to evaluate the 

different components of the DRT and impedance errors to ultimately decrease them. Lastly, 

the training loss function was modified to handle DRTs with negative peaks. These different 

advances were validated with an array of synthetic EIS spectra and real EIS spectra from a 

lithium-ion battery, a solid oxide fuel cell, and a proton exchange membrane fuel cell. 

Moreover, this new model outperformed in most cases the previously developed DRTtools and 

deep-DRT model. Overall, we envision that this research will open the venue for more DNN-

based analyses of EIS data for electrochemical systems. 
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1 Introduction 

Electrochemical impedance spectroscopy (EIS) is an experimental technique widely used for 

the analysis of electrochemical energy devices (e.g., batteries [1-5], fuel cells [6-10], and 

supercapacitors [11-14]), medical [15, 16], and biological [17-19] systems. The major appeals 

of this technique are that it can be carried out over a wide range of frequencies (from mHz to 

MHz) [20] and that modern equipment allows us to measure EIS spectra quickly and efficiently 

with limited user expertise. To interpret EIS data, equivalent circuits and physical models are 

often utilized [21-23]. However, despite their simplicity, equivalent circuit models (ECMs) are 

not unique. Physical models can provide more insights, but are problem-specific and 

significantly more difficult to implement [24, 25]. Considering these challenges, the 

distribution of relaxation times (DRT) has recently emerged as an alternative approach to 

analyze EIS data [26-29]. The DRT model assumes that the electrochemical processes 

underpinning EIS spectra are relaxations [30-34]. This means that the DRT impedance model, 

𝑍 (𝑓), at a given frequency, 𝑓, is obtained using the following expression [35, 36] 

𝑍 (𝑓, 𝛾) = 𝑖2𝜋𝑓𝐿 + 𝑅 +
 𝛾(log 𝜏)

1 + 𝑖2𝜋𝑓𝜏
𝑑log 𝜏 (1) 

where 𝐿 , 𝑅 , 𝜏 , and 𝛾(log 𝜏)  are the inductance, ohmic resistance, timescale, and DRT, 

respectively. Usually, the constraint 𝛾(log 𝜏) ≥ 0 is also assumed to avoid negative relaxations 

[5, 37]. Despite the DRT’s considerable promise, deconvolving 𝛾(log 𝜏) from experimental 

data is still challenging. Indeed, the inverse problem that needs to be solved to obtain 𝛾(log 𝜏) 

is ill-posed with a strong dependence on experimental errors and cutoff frequencies [29, 38, 

39]. To estimate 𝛾(log 𝜏) , existing methods leverage Fourier transform [40, 41], genetic 

algorithms [42, 43], Monte Carlo samplers [44, 45], and ridge regression (RR) [37, 46-49]. In 

particular, RR seeks to minimize the following loss function [37, 47]: 
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ℒ(𝜸) = 𝒁 (𝒇) − 𝒁 (𝒇, 𝜸) + 𝑃(𝜸) (2) 

where 𝜸, 𝒁 , 𝒇, and 𝒁  are the vectors of discretized DRTs, experimental impedances, 

experimental frequencies, and DRT impedances, respectively, ‖∙‖ is the Euclidean 2-norm, and 

𝑃(𝜸) is a penalty function.  

It was recently shown that deep neural networks (DNNs) can be utilized to deconvolve the 

DRT [50, 51]. In particular, the first DNN-based method ever developed, called deep-prior 

DRT, used a DNN with a single random scalar as input [50] and output a vector of DRT values 

at discrete timescales together with the circuit parameters 𝐿  and 𝑅 . The non-negativity 

constraint (i.e., 𝛾(log 𝜏) ≥ 0 ) illustrated above was imposed by choosing non-negative 

activation functions for the DNN. Unlike in conventional RR, regularization was not necessary 

to obtain 𝛾(log 𝜏) [47, 52, 53]. Another particularly interesting aspect of the deep-prior DRT 

approach is that the corresponding inverse problem is overparametrized: the size of the vector 

of DNN parameters, including weights and biases, is significantly larger (~10  parameters) 

than the number of probed frequencies (~10  frequencies). As illustrated by the “double-

descent” bias-variance curve introduced by Belkin et al. [54, 55], overparameterization allows 

for small test errors, thereby improving the DNN performance. Quattrocchi et al. further 

extended the deep-prior DRT approach with the deep-DRT model by considering a DNN that 

takes as inputs the scalar log-timescale log 𝜏 and a state vector 𝝍 = (𝜓 , … , 𝜓 ) describing 

experimental conditions (e.g., temperature, pressure, etc.) [51]. In addition to inverting the 

DRT and regressing the experimental impedance, the trained deep-DRT model was used to 

predict the DRT (and corresponding impedance) at experimental states not tested 

experimentally.  

While the literature highlights the considerable potential of DNN-based methods for DRT 

deconvolution, several shortcomings need to be resolved for enhanced EIS analyses. i) DNN 
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training requires several tens of thousands of iterations, which is time consuming [56, 57]. ii) 

Even though the DNN is a universal approximator that closely matches any function (see 

Section S1 of the supplementary information (SI)), DRT deconvolution has been performed 

with a limited accuracy because the integral in (1) needs to be approximated at a fixed number 

of collocation points [47, 50]. iii) The recovery of DRTs with negative peaks has yet to be 

studied as the output of DNN methods that have been constrained to be non-negative by means 

of a dedicated activation function at the DNN’s last layer [50, 51]. This article aims to address 

thesechallenges. 

To reduce the computational time, the DNN-DRT model developed herein includes a 

pretraining step. As shown in Figure 1, RR is used to obtain a coarse DRT estimate and pretrain 

the DNN [58]. Then, the accuracy of the pretrained DNN is improved by minimizing a loss 

function generally without penalty (i.e., (2) without the 𝑃(𝜸) term). Second, postprocessing is 

used to analyze errors, and, if needed, the obtained model error is minimized by refining the 

grid over which the integral in (1) is computed. By removing the non-negativity constraint and 

introducing suitable penalty terms, the DNN-DRT model can recover DRTs with negative 

peaks. The consistency of the DNN-DRT method was evaluated using synthetic experiments, 

including EIS data with overlapping features, discontinuities, and negative peaks. Furthermore, 

the DNN-DRT method was validated against real EIS data from a lithium-ion battery [59], a 

solid oxide fuel cell [60], and a proton exchange membrane fuel cell [61].  

By overcoming these three fundamental limitations (i.e., long training time, DRT discretization 

with a fixed number of collocation points, and difficulty in deconvolving DRTs with negative 

peaks) this work paves the way for an enhanced, DNN-based analysis of EIS spectra for energy 

systems and beyond. 
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Figure 1: First, RR is conducted to derive a coarse DRT 𝜸 , which is then used for pretraining 

to obtain initial values 𝜽  of the DNN parameters used during training to optimize 

𝜸 (log 𝜏 , 𝜽). Lastly, an error analysis is conducted to increase the DNN accuracy. 

2 Methods 

2.1 The DNN-DRT Model 

The DRT is encoded through a DNN and is denoted as 𝛾 (log 𝜏 , 𝜽) with 𝜽 the vector of 

DNN parameters (i.e., weights and biases). To compute the integral in (1) numerically, the 

bounds at ±∞ are replaced by two log-timescales log 𝜏  and log 𝜏 . Using 𝑁 collocation 

points, the truncated integral is evaluated numerically over the range of log-timescales log 𝝉 =

(log 𝜏 , log 𝜏 , … , log 𝜏 )  where 𝜏 = 𝜏  and 𝜏 = 𝜏  with 𝜏 < 𝜏 < ⋯  < 𝜏 . 
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Therefore, using a midpoint rule to compute (1), the impedance 𝑍 (𝑓, 𝜽) at a frequency 𝑓 

is given by [47] 

𝑍 (𝑓, 𝜽) = 𝑖2𝜋𝑓𝐿 + 𝑅 +
 1

2(1 + 𝑖2𝜋𝑓𝜏 )
𝛾 (log 𝜏 , 𝜽) log

𝜏

𝜏

+
1

2(1 + 𝑖2𝜋𝑓𝜏 )
𝛾 (log 𝜏 , 𝜽) log

𝜏

𝜏

+
 1

2(1 + 𝑖2𝜋𝑓𝜏 )
𝛾 (log 𝜏 , 𝜽) log

𝜏

𝜏
 

(3) 

where 𝐿  and 𝑅  are estimated concomitantly with DNN training. 

Given the vector of experimental impedances, 𝒁 (𝒇) , probed at the 𝑀  frequencies 𝒇 =

(𝑓 , 𝑓 , … , 𝑓 ) , we aim to obtain a latent DRT vector 𝜸 (log 𝝉 , 𝜽) =

𝛾 (log 𝜏 , 𝜽), 𝛾 (log 𝜏 , 𝜽), … , 𝛾 (log 𝜏 , 𝜽)  at the vector of log-timescales log 𝝉. 

We will assume the following discretized version of (1) [47]: 

𝒁 (𝒇, 𝜽) = 𝑖2𝜋𝐿 𝒇 + 𝑅 𝟏 + (𝐀 + 𝑖𝐀 )𝜸 (log 𝝉, 𝜽) (4) 

where the matrices 𝐀  and 𝐀  ∈ ℝ ×  are given in the literature [47], 𝟏 = (1,1, … ,1) ∈

ℝ , and 𝒁 (𝒇, 𝜽) = 𝑍 (𝑓 , 𝜽), 𝑍 (𝑓 , 𝜽) … , 𝑍 (𝑓 , 𝜽) is the vector of DNN 

impedances. 

2.2 Errors 

It is assumed that the experimental impedance 𝒁 (𝒇) = 𝑍 (𝑓 ), 𝑍 (𝑓 ), … , 𝑍 (𝑓 )  

is given by 

𝒁 (𝒇) = 𝒁 (𝒇, 𝜽) + 𝜺 + 𝜺 + 𝜺 + 𝜺  (5) 
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where 𝜺 , 𝜺 , 𝜺 , and 𝜺  are the vectors of epistemic, truncation, integration, and 

measurement errors, respectively [39, 62]. In this article, 𝜺  is not considered. The errors 

due to the numerical methods include truncation, 𝜺 , and integration, 𝜺  (see Section 

2.4). Finally, EIS data is inherently laden with experimental noise, 𝜺 . Hereon, 𝜺  is 

assumed to be normally distributed, i.e., 𝜺  ~𝒩(0, 𝜎 𝐈) (𝜎  is a scalar and 𝐈 the 𝑀 × 𝑀 

identity matrix) [37, 47, 51].  

2.3 DRT Model 

2.3.1 Ridge Regression 

If RR is used to obtain the DRT, then the vector of the discretized DRT from RR, 

𝜸 (log 𝝉 , 𝜆 ) = 𝛾 (log 𝜏 , 𝜆 ), 𝛾 (log 𝜏 , 𝜆 ), … , 𝛾 (log 𝜏 , 𝜆 ) , is the solution 

of the following problem: 

𝜸 (log 𝝉 , 𝜆 )

= argmin
𝜸

 𝒁 (𝒇) − (𝐀 + 𝑖𝐀 )𝜸(log 𝝉)

+ 𝜆 ‖𝑳𝜸(log 𝝉)‖  

(6) 

where 𝑳 is a differentiation matrix and 𝜆  is a scalar [47]. 

2.3.2 DNN deconvolution 

To obtain 𝜸 (log 𝝉 , 𝜽), pretraining is carried out first (see Figure 1). In particular, the 

weights and biases are optimized as 

𝜽 = argmin
𝜽

‖𝜸 (log 𝝉 , 𝜆 ) − 𝜸 (log 𝝉 , 𝜽)‖  (7) 

Subsequently, the model 𝜸 (log 𝝉 , 𝜽) is optimized by minimizing 

ℒ (𝜽) = 𝒁 (𝒇) − 𝑖2𝜋𝐿 𝒇 − 𝑅 𝟏 − (𝐀 + 𝑖𝐀 )𝜸 (log 𝝉 , 𝜽)  (8) 
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with respect to 𝜽 where 𝜽  is taken as the starting point of the minimization (see 

Figure 1). We must stress that 𝜸 (log 𝝉 , 𝜽) in (7) must be discretized at the same collocation 

points as 𝜸 (log 𝝉 , 𝜆 ). Nonetheless, the log-timescale vectors log 𝝉 in (7) and in (8) are not 

necessarily identical since a denser grid for 𝜸 (log 𝝉 , 𝜽) can be used during training (see 

Section 2.5.3 for more details). 

2.3.3 Distribution of Relaxation Times for Systems with Inductive Behavior 

EIS spectra with inductive behavior, e.g., the “hook” [61, 63], have DRTs with negative peaks. 

To account for this, the non-negativity constraint in (6) was removed. Furthermore, two penalty 

terms 𝑃 (𝜽) and 𝑃 (𝜽) were added to (8) for DNN training, leading to the following loss 

function to be minimized 

ℒ (𝜽) = 𝒁 (𝒇) − 𝑖2𝜋𝐿 𝒇 − 𝑅 𝟏 − (𝐀 + 𝑖𝐀 )𝜸 (log 𝝉 , 𝜽)

+ 𝑃 (𝜽) + 𝑃 (𝜽) 

(9) 

where 𝑃 (𝜽) is defined as 

𝑃 (𝜽) = λ(log 𝜏 , 𝜽)
𝜕

∂ log 𝜏
𝛾 (log 𝜏 , 𝜽) 𝑑log 𝜏  (10) 

where 𝑞 ∈ ℤ  and λ(log 𝜏 , 𝜽)  is a coefficient estimated in a hyper Bayesian framework 

leveraging the RR parameter 𝜆 , see Section S4 [30]. 

The function 𝑃 (𝜽) penalizes the presence of sign changes on 𝛾 (log 𝜏 , 𝜽) and is given 

by 
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𝑃 (𝜽) = 𝛼 min(max(−𝛾 (log 𝜏 , 𝜽)𝛾 (log 𝜏 , 𝜽), 0) , 𝛽 )

+ 𝛼 min(max(−𝛾 (log 𝜏 , 𝜽)𝛾 (log 𝜏 , 𝜽), 0) , 𝛽 ) 

(11) 

with log 𝜏  the 𝑛  log-timescale for 𝑛 = 1, 2, …, 𝑁  , and 𝛼 , 𝛼 , 𝛽 , and 𝛽  four scalars 

defined as 𝛼 =
( )

, 𝛼 = , 𝛽 = , and 𝛽 = 2𝛽  (see Section S3.2). 

2.4 Error Indicators 

To evaluate the quality of the DRT deconvolution and impedance recovery, various error 

metrics were used [51], namely the normalized DRT error for RR 𝜀 ,  and for DNN training 

𝜀 , , defined as: 

𝜀 , =
‖𝜸 − 𝜸 ‖

‖𝜸 ‖
 (12a) 

𝜀 , =
‖𝜸 − 𝜸 ‖

‖𝜸 ‖
 (12b) 

where 𝜸 (log 𝝉) = 𝛾 (log 𝜏 ), 𝛾 (log 𝜏 ), … , 𝛾 (log 𝜏 )  is the discretized 

DRT vector computed with the analytical formulas given in Section 2.5.5. We must stress that 

𝜸 (log 𝝉)  was discretized on the same grid as 𝜸 (log 𝝉 , 𝜆 )  in (12a) and as 

𝜸 (log 𝝉 , 𝜽) in (12b). 

The quality of the impedance recovery was assessed with four frequency-dependent indicators, 

namely the truncation 𝜀 (𝑓) , integration 𝜀 (𝑓) , RR 𝜀 , (𝑓) , and DNN training 

𝜀 , (𝑓) errors, whose definitions are given in Table 1. The expressions of the truncation 

errors on the real and imaginary parts of the impedance, 𝜀 , (𝑓) and 𝜀 , (𝑓), and those 

of the integration errors, 𝜀 , (𝑓)  and 𝜀 , (𝑓) , are derived in Section S2 and S3. 
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Additionally, the frequency-averaged 𝜀̅ , 𝜀̅ , 𝜀̅ , , and 𝜀̅ ,  of 𝜀 (𝑓), 𝜀 (𝑓), 

𝜀 , (𝑓), and 𝜀 , (𝑓), respectively, are presented in Table 1.  

Table 1 – Truncation, integration, RR, and DNN errors, and their corresponding frequency 

averages. 

Error type Frequency-dependent Frequency-averaged 

Truncation 𝜀 (𝑓) =
𝜀 , (𝑓) + 𝑖𝜀 , (𝑓)

𝑍 (𝑓)
 𝜀̅ =

1

𝑀
𝜀 (𝑓 ) 

Integration 𝜀 (𝑓) =
𝜀 , (𝑓) + 𝑖𝜀 , (𝑓)

𝑍 (𝑓)
 𝜀̅ =

1

𝑀
𝜀 (𝑓 ) 

RR 𝜀 , (𝑓) =
𝑍 (𝑓) − 𝑍 (𝑓, 𝜽)

𝑍 (𝑓)
 𝜀̅ , =

1

𝑀
𝜀 , (𝑓 ) 

DNN 𝜀 , (𝑓) =
𝑍 (𝑓) − 𝑍 (𝑓, 𝜽)

𝑍 (𝑓)
 𝜀̅ , =

1

𝑀
𝜀 , (𝑓 ) 

 

2.5 Implementation 

2.5.1 Ridge Regression 

Given 𝑀 experimental frequencies, we approximated the integral in (1) at 𝑁 log-timescales 

with 𝑓 =  for 𝑘 = 1, … , 𝑀 (𝑁 = 𝑀), which is common practice [5, 37, 47]. The penalty 

coefficient 𝜆  was taken between 10-6, …, and 10-1 (the values used are given in Table S1). 

The problem (6) was solved using CVXPY [64]. 

2.5.2 DNN Pretraining  

To deconvolve the DRT, the problem in (7) was first normalized with respect to the RR 

polarization resistance, 𝑅 , obtained by integrating 𝛾 (log 𝜏 , 𝜆 ) from log 𝜏  to log 𝜏  

with the trapezoidal rule. Then, the optimization in (7) was carried out with Adam algorithm 

for 2,000 steps [65]. 

2.5.3 DNN Training 
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The DNN parameters 𝜽 were obtained by minimizing the loss function in (8) (see Figure 1). 

The penalty terms, 𝑃 (𝜽) and 𝑃 (𝜽), were added to the loss function ℒ (𝜽) in (9) 

only for EIS spectra with inductive features (Section 2.3.3). For 𝑃 (𝜽), we set 𝑞 = 1 in (10), 

and we computed the first derivative of 𝛾 (log 𝜏 , 𝜽) by backward differentiation [66]. The 

influence of the grid density on the DRT recovery was evaluated by discretizing 𝛾 (log 𝜏 , 𝜽) 

with 𝑁 = 𝑀, 10 𝑀, and 100 𝑀. The error metrics 𝜀 ,  and 𝜀 ,  in (12a) and in (12b) were 

computed in the range [log 𝜏 , log 𝜏 ] utilizing the trapezoidal rule with the grid density used 

in RR and DNN training, respectively. 

2.5.4 Deep Neural Network Architecture and Optimization 

For the simulations, we used a vanilla feedforward DNN consisting of 12 layers with i) an input 

layer of dimension 1 (with the normalized log-timescale log �̃� = −1 + 2
( )

( )
 as 

input); ii) ten hidden layers of width 32; and iii) an output layer of dimension 1 that outputs 

𝛾 (log 𝜏 , 𝜽). The first layer had sinusoidal activation function [67]. If the 𝛾(log 𝜏) ≥ 0 

constraint was enforced, the hidden and output layers had softplus activation functions [68]. 

When the 𝛾(log 𝜏) ≥ 0 constraint was relaxed, non-saturating exponential unit functions were 

used for the hidden and output layers [69]. The DNN had 10,657 parameters. 𝐿  and 𝑅  were 

also optimized during training. For DNN pretraining, the weights were initialized using the 

Xavier method (normal or uniform), and the biases set to zero or sampled from a normal 

distribution (Table S2). Then, the weights and biases of the pretrained DNN were used as initial 

values for DNN training. The learning rates for pretraining and training were set to 10-3 and 

10-4, respectively. To avoid overfitting, the early stopping threshold was set to 10-8 between 

two consecutive evaluations of the loss, and the optimal iteration corresponded to the minimum 

value of 𝜀 , . The model was implemented with PyTorch [70]. 

2.5.5 Generation of the Synthetic Experiments 
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Synthetic spectra were generated using the analytical DRTs and impedances reported in Table 

2. We used 𝑀 = 81 log-spaced frequencies between 10-2 and 106 Hz with ten points per decade 

(ppd). Unless otherwise specified, the random errors, 𝛆 , were computed according to 

Section 2.2 with 𝜎 = 0.5 Ω. 
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Table 2 – Analytical DRTs and impedances used in the synthetic experiments where 𝑅 , 𝑅 , , 𝑅 ,  are resistances, 𝜙, 𝜙 , and 𝜙  are dispersion 

factors, 𝜏 , 𝜏 , and 𝜏  are timescales, and 𝐻 is the Heaviside function.  

Model 𝛾 (log 𝜏) 𝑍 (𝑓) Referenc
e 

Single 
ZARC 

𝑅

2𝜋

sin (1 − 𝜙)𝜋

cosh 𝜙 log
𝜏
𝜏 − cos (1 − 𝜙)𝜋

 𝑅 +
𝑅

1 + (𝑖2𝜋𝑓𝜏 )
 [25] 

2×ZAR
C 

and 
Hook 

𝑅 ,

2𝜋

sin (1 − 𝜙 )𝜋

cosh 𝜙 log
𝜏
𝜏 − cos (1 − 𝜙 )𝜋

+
𝑅 ,

2𝜋

sin (1 − 𝜙 )𝜋

cosh 𝜙 log
𝜏
𝜏 − cos (1 − 𝜙 )𝜋

 

𝑅 +
𝑅 ,

1 + (𝑖2𝜋𝑓𝜏 )
+

𝑅 ,

1 + (𝑖2𝜋𝑓𝜏 )
 [25] 

PWC 
𝑅 𝐻(𝜏 − 𝜏 ) − 𝐻(𝜏 − 𝜏 )

log
𝜏
𝜏

 𝑅 +
𝑅

log
𝜏
𝜏

log 1 −
𝑖

2𝜋𝑓𝜏
− log 1 −

𝑖

2𝜋𝑓𝜏
 [30] 

Fractal 
𝑅

𝜋
sin(𝜙𝜋)

𝜏

𝜏 − 𝜏
 if 𝜏 < 𝜏

0 otherwise

 𝑅 +
𝑅

(1 + 𝑖2𝜋𝑓𝜏 )
 [71] 

Gerische
r 

𝑅

𝜋

𝜏

𝜏 − 𝜏
 if 𝜏 < 𝜏

0 otherwise

 𝑅 +
𝑅

1 + 𝑖2𝜋𝑓𝜏
 [31] 
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3 Results 

The DNN-DRT model was firstly benchmarked against synthetic experiments1. Using the 

single ZARC model, we sought to evaluate the magnitude of the truncation 𝜀  and 

integration 𝜀  errors. We also studied the influence of the number of collocation points, 𝑁, 

and of the experimental noise, 𝜺 , on the DRT recovery. Next, we considered more complex 

models with overlapping features (2 ×ZARC), discontinuities (fractal, piecewise constant 

(PWC), Gerischer), and inductive features (hook). Finally, we tested the DNN-DRT model 

against real EIS data from one battery and two fuel cells.  

3.1  Synthetic Experiments 

3.1.1 Single ZARC Model 

3.1.1.1 Preliminary Analysis 

A single ZARC is a circuit comprising a resistor in series with a parallel association of a resistor 

and a constant phase element (see Table S3 for the parameter values). Figure 2 (a) shows the 

exact, RR, and pretrained DNN DRTs for 𝑁 = 10 𝑀. Graphically, we observed that RR and 

pretraining enabled us to identify the DRT peak. Figure 2 (b) displays the exact, pretrained 

DNN, and trained DNN DRTs. The DNN DRT recovery was greatly improved compared to 

the RR DRT, which was confirmed by the normalized DRT errors for RR (𝜀 , = 42.25%, 

see Table S4) and for DNN training (𝜀 , ≈ 5.50%). Figure 2 (c) shows ℒ (𝜽) (see 

(8)) and 𝜀 ,  (see (12b)) as functions of the iteration number. Both reached their minimum 

after about 5,000 iterations, while it took approximately 8,000 iterations without pretraining, 

see Figure S1. After that minimum was reached, ℒ (𝜽) oscillated around its minimum 

value while 𝜀 ,  gradually increased. Figure 2 (d) displays the experimental and exact 

 
1 The values of 𝜆  used for RR (see (6)) are summarized in Table S1. 
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impedances, and Figure 2 (e) additionally includes the RR and pretrained DNN impedances. 

Pretraining the DNN enabled to match the RR impedance. Moreover, Figure 2 (f) shows the 

experimental, exact, pretrained DNN, and trained DNN impedances. We found that the DNN 

training enabled us to match the experimental impedance more closely, which was confirmed 

by the averaged impedance errors for RR (𝜀̅ , = 5.69%, Table S5) and for DNN training 

(𝜀̅ , ≈ 3.40%). Taking the averages of 𝜀̅ ,  and 𝜀̅ ,  from ten synthetic spectra led to 

similar values (Tables S6 and S7), which confirmed that DNN training improved the 

impedance recovery. 

(a) (b) (c) 

(d) (e) (f) 

   
Figure 2: (a) RR and (b) trained DNN DRTs with the exact and pretrained DNN DRTs for the 

single ZARC model (𝑁 =10 𝑀 ); (c) loss function ℒ (𝜽)  and DRT error 𝜀 ,  as 

functions of the iteration number; Nyquist plots of the (d) experimental and exact impedances, 

including the (e) RR and pretrained DNN impedances, and (f) the pretrained DNN and trained 

DNN impedances. 

Figure 3 (a) displays the absolute value of the truncation error on the real and imaginary parts 

of the impedances, |𝜀 , (𝑓)| and |𝜀 , (𝑓)|, respectively, as functions of the frequency. 
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|𝜀 , (𝑓)| was virtually frequency-independent up to 𝑓 = 105 Hz and experienced a slight 

decrease after that. On the other hand, |𝜀 , (𝑓)| decreased until a minimum was reached 

at 𝑓 ≈ 102 Hz before it increased again up to 𝑓 ≈ 105 Hz. We also noted that |𝜀 , (𝑓)| <

|𝜀 , (𝑓)| for all frequencies. As for |𝜀 , (𝑓)| and |𝜀 , (𝑓)|, we observed that they 

both reached a maximum at around 𝑓 ≈10-1 Hz before decreasing afterwards (see Figure 3 (b)).  

(a) (b) 

  
Figure 3: Absolute value of the (a) truncation and (b) integration errors on the real and 

imaginary parts of the single ZARC impedance as functions of the frequency for 𝑁 = 𝑀, 10 

𝑀, and 100 𝑀. 

3.1.1.2 Influence of the Grid Density on the Truncation and Integration Errors 

We set 𝑀 = 81 and carried out simulations for 𝑁 =  𝑀, 5 𝑀,  10 𝑀, …, 500 𝑀. For all values 

of 𝑁, the DNN recovery of the DRT and impedance were greatly improved compared to RR 

(see Figure S2 and the boxplots in Figure S3). This was validated with the DRT and impedance 

errors (𝜀 , = 42.25%, 𝜀 , ≈ 5.51%, 𝜀̅ , = 5.69%, and 𝜀̅ , ≈ 3.41%, see Table S8). 

Graphically, we observed for 𝑁 = 𝑀, 10 𝑀, and 100 𝑀 that |𝜀 , | > 𝜀 , , and both 

errors were independent of 𝑁 (Figure 3 (a)), consistent with the literature [39]. Moreover, 

|𝜀 , | and |𝜀 , | decreased when 𝑁 increased (Figure 3(b)), consistent with intuition. 

Similar to Section 3.1.1.1,  we validated these results with ten synthetic spectra (see Table S9). 

3.1.1.3 Influence of the Experimental Noise 
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In order to study the impact of the experimental noise on the DRT and impedance recoveries, 

we followed the same procedure as in Section 3.1.1.1 with 𝜎 = 0.1 Ω, 2 Ω, and 5 Ω. When 

𝜎  increased from 0.1 Ω to 5 Ω, we observed that 𝜀 ,  did not vary (𝜀 , ≈ 42.28%, Table 

S10), but 𝜀 ,  increased (𝜀 , ≈ 4.39%, 5.50%, 17.46%, and 26.13% for 𝜎 = 0.1, 0.5 

Ω, 2 Ω, and 5 Ω, respectively). Additionally, ℒ (𝜽) and 𝜀 ,  reached their minima in 

fewer iterations, but the minimum of ℒ (𝜽) increased (Figure S4). This led to a decrease 

in the DNN accuracy of the impedance recovery (𝜀̅ , = 4.01%, 5.69%, 14.16%, and 34.26%, 

and 𝜀̅ , ≈ 0.72%, 3.40%, 13.17%, and 33.98% for 𝜎 = 0.1, 0.5 Ω, 2 Ω, and 5 Ω, 

respectively, see Table S11). We stress that 𝜀 ,  𝜀 , , 𝜀̅ , , and 𝜀̅ ,  were independent 

of 𝑁 (see Tables S10 and S11). Lastly, we found similar averaged values for these four metrics 

using ten synthetic spectra for 𝑁 = 𝑀 and each 𝜎  (see Tables S12 and S13). 

3.1.1.4 Influence of 𝝀𝐑𝐑 on the DNN Training 

RR relies on a penalty coefficient 𝜆  (see (6)), which can significantly affect the DRT and 

impedance recoveries [37, 47, 52]. To investigate this phenomenon, we set 𝑁 = 10 𝑀 and ran 

simulations for 𝜆 =10-6, 10-5, …, 10-1. For small values of 𝜆  (i.e., 𝜆 = 10-6, 10-5, and 

10-4), we observed oscillations at the bottom of the DRT peak (Figure S5), while large values 

of 𝜆  (i.e., 𝜆 = 10-3, 10-2, and 10-1) reduced and enlarged the DRT peak (Figure S6). In 

other words, low and large values of 𝜆  led to underfitting and overfitting, respectively, 

consistent with the literature [47, 72]. Then, we found that the trained DNN was able to match 

the exact DRT (Figures S5 and S6), i.e., 𝜆  did not affect the overall DNN performance. 

Consistently, the errors for RR 𝜀 ,  and 𝜀̅ ,  varied more significantly than the 

corresponding DNN errors 𝜀 ,  and 𝜀̅ ,  when 𝜆  increased (Table S14). We confirmed 

these results with ten synthetic spectra (Table S15), i.e., 𝜆  only affected RR and not the DNN 

accuracy.  
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3.1.1.5 Comparison with the Deep-DRT Model 

Next, we benchmarked the DNN-DRT model against the previously developed deep-DRT 

model for the parameters given in Section 3.1.1.1 [51]. We found that 𝜀 ,  and 𝜀̅ ,  were 

lower for the DNN-DRT model (𝜀 , = 7.65% and 𝜀̅ , = 6.67% versus 𝜀 , = 8.06% 

and 𝜀̅ , = 8.38% for the deep-DRT model), see Table S16. In other words, the new DNN 

architecture proposed herein enabled us to improve the DRT and impedance recoveries, which 

we confirmed with ten synthetic spectra (Tables S16 and S17). 

3.1.2 2×ZARC Model 

3.1.2.1 Overlapping, Separated, and Distant 2×ZARC Models 

In this section, we assessed the ability of the DNN-DRT model to distinguish processes 

characterized by close timescales. First, we studied the overlapping 2×ZARC (𝜏 = 10-1 s, 

𝜏 = 10-2 s), separated 2×ZARC (𝜏 = 10-1 s, 𝜏 =10-4 s) and distant 2×ZARC (𝜏 = 100 s, 

𝜏 = 10-4 s) models. All parameters are reported in Table S18. The left panel of Figure 4 shows 

for 𝑁 = 10 𝑀 and each 2×ZARC model the exact, pretrained DNN, and trained DNN DRTs. 

The experimental, exact, pretrained DNN, and trained DNN impedances for each 2×ZARC 

model are displayed on the right panel of Figure 4. We found that the trained DNN DRT was 

much closer to the exact DRT than the pretrained DNN DRT (Figure 4). This was validated 

with the DNN error for RR (𝜀 , =  24.33%, 41.95%, and 44.49% for the overlapping, 

separated, and distant 2×ZARC models, respectively, see Table S4) and for DNN training 

(𝜀 , ≈ 6.60%, 6.75%, and 13.59%). Moreover, the trained DNN slightly improved the 

impedance recovery, as shown in Figure 4 and by the impedance errors for RR (𝜀̅ , ≈ 3.28%, 

5.48%, and 5.34%, see Table S5) and for DNN training (𝜀̅ , ≈ 3.22%, 2.12%, and 2.12%). 

We stress that 𝜀 ,  𝜀 , , 𝜀̅ , , and 𝜀̅ ,  were independent of 𝑁 for all models (see Tables 
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S4 and S5, and Figure S7). Additionally, we used ten synthetic spectra to confirm these 

conclusions (Tables S6 and S7, and the boxplots on Figure S7). 

Second, we focused on the separated 2×ZARC model with peaks of different heights (see the 

parameters in Table S18). The DRTs and Nyquist plots are presented in Figure 5, and the errors 

in Table S4. We found the same result as for the 2×ZARC model with peaks of the same height. 

More specifically, the DNN training improved the DRT and impedance recoveries compared 

to RR, and the errors were all independent of 𝑁 = 𝑀, 10 𝑀 and 100 𝑀 (Tables S4 and S5). 

These conclusions were validated for 𝑁 = 𝑀 by generating ten synthetic spectra (Tables S6 

and S7). 

Third, we compared the DNN-DRT model against the DRTtools for 𝑁 = 𝑀 [37] using the 

separated 2 × ZARC model with peaks of different heights. The DNN-DRT model 

outperformed the DRTtools for the DRT recovery (see 𝜀 ,  in Table S19) and led to a similar 

impedance recovery (𝜀̅ ,  in Table S20), which we also noted graphically (Figure S8).  

Furthermore, we compared the DNN-DRT and deep-DRT models for the overlapping and 

separated 2×ZARC models (the parameters are described in [51]). For these two 2×ZARC 

models, the DNN-DRT model only improved the impedance recovery (Table S16), which was 

confirmed with ten synthetic spectra (Tables S16 and S17). 
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

 
 

Figure 4: Exact, pretrained DNN, and trained DNN DRTs for the (a) overlapping, (c) separated, 

and (e) distant 2×ZARC models (𝑁 =10 𝑀); corresponding Nyquist plots (b), (d), and (f) with 

the experimental impedances. 
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

 
 

Figure 5: Exact, pretrained DNN, and trained DNN DRTs for the separated 2×ZARC model 

with 𝑅 , = (a) 10 Ω, (c) 30 Ω, and (e) 50 Ω (𝑁 =10 𝑀); corresponding Nyquist plots (b), (d), 

and (f) with the experimental impedances. 

3.1.2.2 Truncation Errors 
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Unlike for the single ZARC model (Section 3.1.1.2), the truncation error, 𝜀̅ , for the 

separated 2×ZARC model with two peaks of the same height (Section 3.1.2.1) remained small 

but not negligible compared to the averaged DNN impedance error, 𝜀̅ ,  (𝜀̅ ≈ 0.92%, 

𝜀 , = 41.95%, 𝜀 , ≈ 6.75%, 𝜀̅ , = 5.48%, 𝜀̅ , ≈ 2.12% for 𝑁 = 1, 10, and 100 𝑀, 

see Tables S4 and S5). In this section, we studied the impact of the integration bounds 𝜏  and 

𝜏  on 𝜀̅ , and, in particular, we set log 𝜏 =-8 and log 𝜏 =4. We found that 𝜀̅  was 

remarkably reduced (𝜀̅ =2.57×10-2%, see Table S20). In other words, extending the range 

of timescales led to a significant reduction on 𝜀̅ . Interestingly, the errors 𝜀 ,  and 𝜀̅ ,  

for RR increased while the errors for DNN training reduced for all values of 𝑁  (𝜀 , = 

48.90%, 𝜀 , = 5.92%, 𝜀̅ , = 7.84%, 𝜀̅ , ≈ 2.09% for 𝑁 = 1, 10, and 100 𝑀).  

3.1.3 Discontinuous DRTs 

Next, we tested how well the DNN-DRT model could recover discontinuous DRTs by studying 

the fractal, PWC, and Gerischer models (the parameters are given in Tables S21, S22, and S23, 

respectively). For all three models and 𝑁 = 1, 10, and 100 𝑀, the peak was approximately 

identified during RR, as shown in Figures 6, S9, and S10. This was confirmed by the large 

values of 𝜀 ,  (𝜀 , = 77.15%, 29.51%, and 67.95% for the fractal, PWC, and Gerischer 

models, respectively, see Table S4 for all 𝑁). Training the DNN enabled us to increase the 

accuracy, as evidenced by the lower values 𝜀 ,  compared to 𝜀 ,  (𝜀 , ≤  75.89%, 

16.99%, and 66.07%, see Table S4). Furthermore, when 𝑁 increased from 𝑀 to 10 𝑀, 𝜀 ,  

decreased for the fractal and Gerischer models but increased for the PWC model; then, 𝜀 ,  

increased for all three models when 𝑁 varied from 10 𝑀 to 100 𝑀 (Table S4). Similarly, the 

impedance recovery was slightly improved by DNN training compared to RR, see Figures 6, 

S9, and S10, and the values of the impedance errors (𝜀̅ , = 6.94%, 5.37%, and 6.00%, versus 

𝜀̅ , ≤6.91%, 4.17%, and 4.16%, see Table S5). Interestingly, 𝜀̅ ,  decreased for the 
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fractal model and did not vary for the PWC and Gerischer models, see Table S5. We validated 

these results by drawing ten synthetic EIS spectra (Tables S6 and S7, and the boxplots in Figure 

S11). 

Next, we compared the DNN-DRT model against the DRTtools for 𝑁 = 𝑀. Both led to similar 

results for the DRT recovery of the fractal model (𝜀 , = 73.94% and 73.69% for the DNN-

DRT and DRTtools, respectively, see Table S19), and for the impedance recovery of the PWC 

(𝜀̅ , = 4.17% and 4.16%) and Gerischer (𝜀̅ , = 4.14% and 4.03%) models (see Figure 

S8). We also noted that the DRTtools outperformed the DNN-DRT model for the impedance 

recovery of the fractal model (𝜀̅ , = 6.91% and 4.46%). However, the DNN-DRT model 

excelled for the DRT recovery of the PWC (𝜀 , = 10.16% and 23.03%) and Gerischer 

(𝜀 , = 59.53 % and 61.02%) models. 

In addition, we compared the DNN-DRT and deep-DRT models for 𝑁 = 𝑀 (the parameters 

are reported in Table S16) for the fractal and PWC models. The DNN-DRT model 

outperformed the deep-DRT model for the DRT recovery of the fractal (𝜀 , = 73.30% and 

89.47% for the DNN-DRT and deep DRT models, respectively, see Table S16) and PWC 

(𝜀 , = 7.50% and 10.45%) models. We also found that the DNN-DRT and deep-DRT 

models performed similarly for the impedance recovery (𝜀̅ , = 6.91% and 6.00% for the 

fractal model, 𝜀̅ , = 7.30% and 7.83% for the PWC model). The comparisons between the 

DNN-DRT and deep-DRT models were validated with ten synthetic spectra for each 

impedance model investigated (Table S17). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 6: Exact, pretrained DNN, and trained DNN DRTs for the (a) fractal, (c) PWC, and (e) 

Gerischer models ( 𝑁 = 10 𝑀 ); corresponding Nyquist plots (b), (d), and (f) with the 

experimental impedances. 

3.1.4 DRTs with Inductive Features 

3.1.4.1 Preliminary Analysis 
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Next, we focused on the ability of the DNN-DRT model to handle DRTs with negative peaks, 

which we described with the hook model (the parameters are reported in Table S24 [61]). After 

RR, we observed oscillations at the bottom of each peak, and both peaks were underestimated 

(Figure 7 (a)). This explains the high value of the DRT error for RR (𝜀 , = 41.30%, see Table 

S4). Then, the DRT recovery was greatly improved after DNN training because of the two 

additional penalty terms 𝑃 (𝜽) and 𝑃 (𝜽) in ℒ (𝜽) (see (9)), which led to 𝜀 , ≤ 

34.24%. The specific role of each penalty term will be further investigated in the next section. 

Regarding the impedance, we noted that RR was very accurate, as can be understood 

graphically (Figure Figure 7 (b)) and with the average impedance error (𝜀̅ , = 2.27% and 

𝜀̅ , ≤ 3.00%, see Table S5). These findings did not vary with the number of collocation 

points 𝑁 (see the values of each error for 𝑁 = 𝑀, 10 𝑀, and 100 𝑀 in Tables S4 and S5, and 

in Figure S12), and we validated them with ten synthetic spectra (Tables S6 and S7, and the 

boxplots in Figure S11). 

(a) (b) 

  
Figure 7: (a) Exact, pretrained DNN, and trained DNN DRTs for the hook model (𝑁 =10 𝑀) 

and (b) corresponding Nyquist plot with the experimental impedance. 

3.1.4.2 Effect of the Penalty Functions on the Recovery of Inductive DRTs 
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In this section, we studied the effect of the penalties 𝑃  and 𝑃  added in ℒ (𝜽) to 

handle DRTs with negative peaks. More precisely, we investigated for 𝑁 = 10 𝑀 𝑃  and each 

component of 𝑃  in (11) to assess how well these functions could suppress oscillations and 

minimize the errors 𝜀 ,  and 𝜀 , . Interestingly, 𝑃  alone was not sufficient to suppress 

the oscillations created during RR, and we found in this case that 𝜀 ,  and 𝜀̅ ,  were close 

to the case without penalties (Table S25). Moreover, the minimum of 𝜀 ,  was achieved 

using the second term in 𝑃 , while the finest impedance recovery (i.e., lowest 𝜀̅ , ) was 

obtained by combining 𝑃  and only the first term in 𝑃 . 

3.1.5 Investigation of the Influence of the DNN Inputs  

To further validate our error analysis, we tested the trained DNN under the following two 

scenarios. First, we kept the initial log 𝝉 and chose 81 log-spaced frequencies between 10-1.9 

Hz and 105.9 Hz for the set of frequencies 𝒇 to obtain the experimental impedance (Figure 1). 

Second, given the initial 𝒇, we chose 79 equispaced points between -5.4 and 1.8 with the same 

original bounds -6 and 2 for log 𝝉 (81 log-timescales in total) to deconvolve the DRT. We then 

investigated the single ZARC, PWC, and hook models with 𝑁 = 𝑀 , 10 𝑀 , and 100 𝑀 . 

Compared to the results for the single ZARC model in Section 3.1.1.1 (𝜀 , ≈ 5.50% and 

𝜀̅ , ≈ 3.40% in Tables S4 and S5 for 𝑁 = 𝑀, 10 𝑀, and 100 𝑀), the DRT and impedance 

errors did not vary for either scenario and all values of 𝑁  (𝜀 , ≈ 5.66% and 𝜀̅ , ≈ 

3.39%, Table S26). Regarding the PWC model, we noticed a large increase in 𝜀 ,  when we 

changed log 𝝉 for 𝑁 = 𝑀 (from 10.16% to 17.81%, Table S26). Otherwise, we did not observe 

any change in either 𝜀 ,  or 𝜀̅ , . As for the hook model, only the second scenario led to 

an increase in 𝜀̅ ,  for all 𝑁 (Table S26). 

3.1.6 Discussion 
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To summarize the results obtained with synthetic EIS data, we first noted that the DNN training 

improved the DRT and impedance recoveries compared to RR for all cases except the hook 

model. Using the single ZARC model, we showed that i) the DRT and impedance errors were 

negligibly affected by the number of collocation points; ii) the DRT and impedance recoveries 

became less precise as the level of experimental noise increased; and iii) the regularization 

parameter for RR did not affect the DNN performance. We also showed that this new DNN 

architecture can recover various impedances, including those with negative peaks. Furthermore, 

the DNN-DRT model performed as well or even better than the deep-DRT model and 

DRTtools in the various cases investigated. Lastly, we confirmed the conclusion drawn for 

each synthetic case using ten synthetic experiments.  

3.2 Deconvolution of Experimental Data 

We evaluated the DRT-DNN model using EIS data collected from real electrochemical systems. 

Specifically, we investigated EIS spectra obtained from a lithium-ion battery, a solid oxide fuel 

cell, and a proton exchange membrane fuel cell. 

3.2.1 Lithium-ion Battery 

We started with a symmetric cell built with lithium-ion electrodes and a composite polymer 

electrolyte [59]. The impedance was modeled with a 3 ×ZARC whose parameters were 

estimated by RR (see Table S27 for the values of these parameters). Given 𝑁 = 10 𝑀, Figure 

9 presents the recovered DRT and impedance, while Figure S13 shows the plots of the 

impedance modulus and argument. Regarding the DRT, the peaks at 𝜏 =  1 s and 𝜏 =

 1.91×10-4 s were well identified. However, the peak at 𝜏 = 1.05 ×10-7 s was not recovered 

because the corresponding dispersion factor 𝜙  was equal to 1 (Table S27). This explains the 

high DRT error for RR (𝜀 , = 44.17% for all 𝑁, see Table S28), which was greatly reduced 
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after DNN training (𝜀 , ≈ 26.17%). The same conclusion can be made for the impedance 

recovery (𝜀̅ , = 9.30% and 𝜀̅ , ≈ 6.09%, see Table S29).  

(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

 
 

Figure 8: (a) Fitted-ECM, (c) pretrained DNN, and (e) trained DNN DRTs for a lithium-ion 

symmetric cell (𝑁 = 10 𝑀); corresponding Nyquist plots (b), (d), and (f). 

3.2.2 Fuel Cells 
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3.2.2.1 Solid Oxide Fuel Cell 

Secondly, we analyzed the EIS spectrum from a symmetric solid oxide fuel cell with   

(Ba0.95La0.05)0.95FeO3- for the cathode material and samarium-doped ceria for the electrolyte 

[51, 60]. Following [73], we modeled the experimental impedance with a 2×ZARC model 

whose parameters are given in Table S30. After RR, the position of the DRT peak was well 

identified but its height was slightly underestimated (Figures Figure 9 and S13 for 𝑁 = 10 𝑀), 

hence the large DRT error for RR 𝜀 , = 20.72% (Table S28). Comparatively, the impedance 

error was negligible (𝜀̅ , = 0.91%, Table S29). Then, the trained DNN remarkably reduced 

both errors (𝜀 , = 13.25% and 𝜀̅ , = 0.18%). Notably, all errors did not depend on 𝑁 =

 𝑀, 10 𝑀, and 100 𝑀 (Tables S28 and S29).  

  



 
 

31 
 

(a) (b) 

  
(c) (c) 

  
(e) (f) 

  
Figure 9: (a) Fitted-ECM, (c) pretrained DNN, and (e) trained DNN DRTs for the solid oxide 

fuel cell (𝑁 = 10 𝑀); corresponding Nyquist plots (b), (d), and (f). 

3.2.2.2 Proton Exchange Membrane Fuel Cell 

Lastly, we considered the EIS spectrum from a proton exchange membrane fuel cell with 

platinum on carbon anode and cathode electrodes, and Nafion electrolyte membrane with an 
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inductive component [61]. We modeled this fuel cell with the hook model (see Table S31 for 

the parameters). We proceeded as described in Sections 3.2.1 and 3.2.2.1 and concluded that 

the trained DNN closely deconvolved the DRT and fitted the EIS spectrum, see Figures 10 and 

S13 for 𝑁 = 10  𝑀  and the errors (𝜀 , = 29.65%, 𝜀 , ≤  27.35%, 𝜀̅ , =  1.95%, and 

𝜀̅ , ≤ 3.19% in Tables S28 and S29). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 10: (a) Fitted-ECM, (c) pretrained DNN, and (e) trained DNN DRTs for the proton 

exchange membrane fuel cell (𝑁 = 10 𝑀); corresponding Nyquist plots (b), (d), and (f). 

4 Conclusions 

For the purpose of analyzing EIS data, the DRT has been successfully deconvolved using many 

approaches, including the use of neural networks. Leveraging a new architecture and a 
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pretraining step, this work successfully addresses three main limitations of DNNs, namely the 

long training time, the fixed grid density to compute the DRT integral, and the deconvolution 

of inductive DRTs. Using synthetic and real EIS data, we show how the DNN-DRT model can 

solve these challenges, and in particular a thorough error analysis is proposed to evaluate the 

DRT and impedance recoveries. We also demonstrate that this new model performs at least as 

well as the DRTtools and the deep-DRT model. Overall, we envision that this work will foster 

the implementation of new DNN architectures to improve the analysis of EIS data for energy 

systems. 
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List of Symbols 

𝜸 Vector of discretized DRTs 

𝜺 Vector of experimental errors  

𝜽 Vector of DNN parameters (biases and weights) 

𝝉 Vector of timescales 

𝛾 DRT 

𝜀  Integration error  

𝜀  Normalized DRT error  

𝜀̅  Average impedance error with respect to the frequency 

𝜀  Truncation error  

𝜆  Coefficient of the RR penalty term 

𝜎  Noise standard deviation 

𝜎  Noise standard deviation for the synthetic experiments 

𝜏 Characteristic relaxation timescale 

 

𝒇 Vector of frequencies 

𝐈 Identity matrix 

𝒁 Vector of impedances  

𝑓 Frequency 

𝐿  Inductance  
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ℒ  Loss function for DNN training 

𝑀 Number of frequencies probed 

𝑁 Number of collocation points 

𝑃  First penalty term in the training loss function for the hook model 

𝑃  Second penalty term in the training loss function for the hook model 

𝑅  Ohmic resistance 

𝑍 Impedance 

where the subscripts RR, DNN, and exp refer to RR, DNN training, and experimental, 

respectively. 

List of Abbreviations 

DNN Deep neural network 

DRT Distribution of relaxation times 

ECM Equivalent circuit model 

EIS Electrochemical impedance spectroscopy 

PPD Points per decade 

PWC Piecewise constant 

RR Ridge regression 
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