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Abstract
Particle-laden composites are typical thermal interfacial materials (TIMs) in
the electronic applications, which are widely used in the electron packaging
fields. The effective thermal conductivity (effective TC) of the particle-laden
composites is dominant by the particle-matrix and particle-particle interfa-
cial thermal resistance (ITR). The reliable identification of ITR is essential
for the accurate prediction of TC of the composites, which has potential
in the design of TIMs. In this work, we propose an efficient strategy to
identify the interfacial thermal resistance in the particle-laden composites
combining the numerical simulation, high-throughput computation, machine
learning algorithm and simple experimental measurement. Firstly, the high-
throughput computation is conducted based on the numerical modeling of
the standard samples, in which the input parameters are ITRs in the com-
posites. Afterwards, a prototypical function-based machine learning strategy
is employed on the database to describe the numerical relation between the
effective TC and the input parameters. Finally, comparing the numerical
predictions from the machine learning model with the experimental mea-
surement of the effective TC, a high-throughput screening of the ITRs is
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executed for the identification of their values. The reliability of the strategy
is validated by an example of Al2O3-AlN/silicone composites, showing that
the particle-particle ITR is higher than particle-matrix ITR.
Keywords:
Interfacial thermal resistance, Particle-laden composites, high-throughput
computation, machine learning

1. Introduction

The increasing density of integrated circuit leads to a dramatic increase of
heat accumulation per unit area of chip, making heat dissipation a bottleneck
problem for electronic packaging [1]. To improve the thermal management as
well as to enhance the lifetime and reliability of the device, thermal interface
material (TIM) is filled into the gap between the chip and heat spreader to
enhance the heat transfer [2, 3]. As required by the packaging processes, the
high-end TIM in direct contact with the chip, termed as TIM1, is mostly
composed of polymer matrix filled with thermally conductive particulate
fillers. The polymer matrix, usually silicone-based polymers, provides the
mechanical properties and workability of the composite material, while the
particulate fillers are added to increase the effective thermal conductivity
(effective TC). The efficient heat transport of the composite material relies
on the formation of heat transfer paths due to the fillers. In order to fa-
cilitate the heat transfer, the fillers are selected as the ones with high TC,
such as Al2O3 and AlN. When heat passes through the interface between
different components inside the composite material, the temperature suffers
a discontinuous jump; the ratio of the temperature discontinuity to the heat
flux density through the interface is defined as the interfacial thermal re-
sistance (ITR) [4], which is also known as Kapitza resistance [5]. The ITR
significantly hinders the heat transfer at the interfaces, which leads to dra-
matic decrease of effective TC of composite material. As a result, though a
variety of fillers with high TCs are used in the polymer-based composites,
the resulting effective TCs of those materials are often far below those of
the fillers and the expected values [6]. As the ITR plays a dominant role
in determining the TC of polymer-based composite materials, it should be a
key parameter to be considered when using analytical/empirical equations or
numerical simulations to accurately predict the TC of a composite material.
The theoretical/numerical prediction, if meets the requirement of accuracy,
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could be a powerful tool to assist the design and engineering of composite
materials with high TCs and other properties related to the performance.

There are several kinds of approaches to identify the ITR, including
the theoretical phonon models, computer computations, direct experimen-
tal measurements, mining from the existing experimental data, and method
based on calibration between models and experimental observables. The
phonon-based models include the acoustic mismatch model (AMM) and dif-
fuse mismatch model (DMM) [5]. For instance, Prasher [7] incorporated the
van der Waals bonding parameters into AMM to model the contact resis-
tance between nanoparticles and substrate surface. Reddy [8] calculated the
thermal conductance of Al-Si, Al-Ge, Cu-Si and Cu-Ge interfaces over a wide
range of temperatures by DMM model taking into account the full phonon
dispersion relationship over the entire Brillouin zone. However, AMM works
well only at very low temperatures since it ignores the scattering of photons
at interface, and DMM is not suitable for non-elastic circumstances because
the interfaces are assumed to be smooth and inelastic scattering was not con-
sidered. The complex structures and physical/chemical environments of the
interfaces inside the composite material also prohibit the use of a phonon-
based model to accurately calculate the ITR.

The computer computations for predicting the ITR includes the First
Principles Calculation and molecular dynamics (MD) simulation. The for-
mer calculates the ITR based on quantum mechanics, which is accurate but
prohibitively expensive when dealing with complex interface structures. The
latter employs classical mechanics for the interatomic interactions to dra-
matically reduce the computational cost, which enables simulations of much
larger systems. Many researchers have used MD simulations to calculate
the ITR [9–13], with particular attention paid to understanding the mecha-
nism of interfacial heat transfer. For instance, Ren et al.[9] investigated the
ITR between carbon nanotube and aluminum substrate by two-temperature
model along with non-equilibrium MD, in which the electrons and phonons
are assigned into electronic and atomic subsystems respectively in order to
include the contributions of both electrons and phonons. Meng et al.[10]
studied the ITR between packed silica nanoparticle by using MD simulations
and identified the critical role of chemical bonds between the nanoparticles
in affecting the ITR. Nevertheless, it should be noted that the quantitative
accuracy of MD simulation is not guaranteed because the force field based
on artificial/empirical elements inevitably introduces arbitrary uncertainties

The direct experimental measurement of ITR were carried out by taking
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advantage of the techniques such as 3ω method [14], laser flash technique
[15], time-domain thermos-reflectance (TDTR) [16], hot-wire technique [17],
infrared imaging technique [18], laser-flash Raman mapping [19], and thermal
bridge method [20]. 3ω method, laser flash technique, TDTR and hot-wire
technique identify ITR by controlling the heating of the samples followed
by analyzing the generated ‘electrical-thermal’ response, whereas infrared
imaging technique only takes advantage of the thermal information for the
identification of ITR. Those methods are generally cumbersome due to the
requirement of specific experimental devices and corresponding mathematic
models for various composites. The laser flash Raman mapping and ther-
mal bridge methods have been employed to measure the ITR between fibers
which requires the extraction of two overlapping thermally conductive fillers.
Recently, Fitzgerald et al. [20] measured the contact thermal resistance be-
tween Ag nanowires (AgNWs) with a PVP interlayer by using thermal bridge
method. They found that the ITR between AgNW and PVP is significantly
lower than that between the carbon nanotube (CNT) and typical polymers,
which implies the higher efficiency of using AgNWs than CNTs as fillers in
building heat-transfer paths in composite materials. Those works highlight
the advances in the direct measurement of ITR as well as in understanding
the underlying mechanism of thermal transport. The bottleneck is that ex-
periments suffer from sample preparation for in-situ measurement, which is
almost impossible to faithfully represent the complex physical and chemical
environment of the nanoscale interfaces inside the composite material.

With the development of machine learning technique, prediction of ITR
in various material systems based on mining from the existing experimen-
tal data attracts a lot of attention. Wu et al. [21] predicted the ITR for
over 80,000 material systems composed of 293 materials by machine learning
based on 1317 experimental data of 456 interface samples. The LSBoost,
support vector machines (SVM) and Gaussian Regression Processes (GPRs)
algorithms were used for the models, with the material properties, composi-
tions, and chemical characteristics as the descriptors. Tian et al. [22] utilized
the decision tree, kernel ridge regressor, Gaussian process regressor, and K
nearest neighbors to build machine learning models with good performance,
in which the top-important descriptors were filtered out in advance by using
the decision tree and univariate selection. However, the machine learning
models usually suffer from the lack of sufficient experimental data or the
inconsistency between data from different references. Moreover, the descrip-
tors including the physical, chemical, and material properties of ITR, such as
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the melting point, heat capacity, unit cell volume, density, and film thickness
play dominant role in the IRT prediction, the selection of which may limit
the accuracy of the models for application in composite materials.

The method based on parametric fitting with respect to experimental
observables has been used to estimate the ITR in composite materials. In
the method, the effect of ITR on thermal conductivity is represented by
the models such as effective medium theory (EMT) model [23] , Hashin-
Shtrikman model [24] and Hamilton-Hasselman model [25]. The value of
ITR is determined by fitting the parameters of the model with respect to the
experimental measurements such as effective thermal conductivity, filler size,
volume fraction, etc. The method was usually used in experimental works
to give rough estimation of how the ITR changes with respect to different
experimental treatment to composite samples. For accurate estimation, the
method suffers from the limitation of the theoretical models. For example,
EMT considers the composite with single type of filler, Hashin-Shtrikman
model only gives the relative ITR that is not comparable to other models;
extra uncertainties can be introduced when the structure of composite be-
comes complex [26, 27], such as when fillers are not evenly distributed and
with various shapes. Replacing the theoretical models with numerical model-
ing certainly improves the flexibility of the representation of various compos-
ite materials. Nevertheless, noises and fluctuations of properties introduced
by the numerical modeling make the parametric fitting tricky.

In this paper, we propose an innovative strategy for an accurate deter-
mination of ITR in particle-laden composites taking the advantage of high-
throughput calculation, machine learning and experiments (see in Fig. 1).
Firstly, a series of standard samples with randomly dispersed fillers are fab-
ricated in experiments, whose thermal conductivities are characterized with
sufficient statistics. The corresponding numerical models of the standard
samples are generated in terms of the statistics of the fillers in experiments.
The structures of the models are compared with the nano-CT of the stan-
dard samples to guarantee the fidelity. Then high-throughput calculations
with the numerical modeling based on fast Fourier transform algorithm algo-
rithm areare carried out to build a database containing the input variables
of modeling and the corresponding output effective thermal conductivities.
The input variables include the respective thermal conductivity of the fillers
and polymer matrix, and the respective ITR for interfaces of filler-polymer
(ITRf−p) and filler-filler (ITRf−f ). The obtained database is used to train
a prototypical function-based machine learning model to represent the quan-
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titative relationship between the input and output variables, κ=f(ITRf−p,
ITRf−f ), where κ denotes the effective TC of the composites. Then the
ITRs in the particle-laden composites is determined by a high-throughput
screening of the independent variables of κ=f(ITRf−p,ITRf−f ), taking the
effective TCs of the standard samples measured in experiments as refer-
ences. Finally, the determined ITRs are validated by comparing between the
numerical predictions and the experiments of the validation samples. The
proposed methodology provides a versatile tool for accurate determination
of ITRs inside composite materials, which could also enable a further high-
throughput screening of design parameters of composite materials based on
numerical modeling with high accuracy.

Figure 1: Strategy of the proposed algorithm for the determination of ITR.

2. Results

2.1. Measurement of size distribution of fillers
We first measure the statistics of the fillers, which will be used to build

microscopic structures of the composites for numerical modeling. The par-
ticulate fillers are AlN and Al2O3 with average particle size of 3 and 4 µm,
respectively. The particle size distribution is measured with Malvern Pana-
lyticle particle size analyzer (Type: Mastersizer 3000), with the results shown
in Fig. 2. It shows that the experimental data of particle diameter D obeys
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logarithmic normal distribution in Eq. (1), which is the common distribution
in the industrial powder products:

f(D) = 1
D ∗ σ ∗

√
2π

exp(−(logD − µ)2/2σ2). (1)

The parameters µ and σ for Al2O3 and AlN are determined by fitting the
data with logarithmic normal distribution, from which we can deduce the
arithmetic mean E[D] and arithmetic standard deviation SD[D] as:

E[D] = exp(µ+ σ2

2 ). (2)

SD[D] = E[x] ∗
√

exp(σ2)− 1. (3)
The values are given in Table. 1.

0 2 4 6 8 10
Diameter ( m)

0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

Measurements
Fitting curve
Model

Al
2
O

3

(a)

0 5 10 15 20 25
Diameter ( m)

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

Measurements
Fitting curve
Model

AlN

(b)

Figure 2: Particle size distribution of (a) Al2O3; (b) AlN.

Table 1: The fitting parameters and characteristic parameters for the particle size.
Type µ (µm) σ (µm2) E[D] (µm) SD[D] (µm2)
Al2O3 1.02 0.35 2.95 1.06
AlN 1.25 0.59 4.17 2.70

2.2. Preparation of composite samples and characterization of structures
Silicone is selected as the polymer matrix of the standard samples of the

thermally conductive composite materials. The silane coupling agent is em-
ployed to promote the dispersion of the particulate fillers in the composites.
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The Al2O3-x/silicone, AlN-y/silicone and Al2O3-x-AlN-y/silicone composites
are prepared by a mixing process, where x and y denote the absolute vol-
ume fraction of Al2O3 and AlN in the composites, respectively. The fillers,
coupling agent and silicone matrix are weighted properly and mixed under
vacuum in the high-speed mixer with a speed of 1500 r/min for 2 minutes.
The various filler volume fractions of the composite samples are listed in
Table. 2. Note that the coupling agent occupies 4 vol% in all these sam-
ples. The 3D images of the composites are obtained with the X-ray micro-CT
(YXLON FF20 CT), from which both the distribution of filler sizes and posi-
tions can be derived. The information will be used to validate the microscopic
structures of the numerical models for the composites.

Table 2: The details of samples with various filler volume fractions.
Samples Al2O3 volume fraction AlN volume fraction

(x vol%) (y vol%)
Al2O3-x/silicone 55, 58, 60, 65 0
AlN-y/silicone 0 55, 58, 60, 62
Al2O3-x-AlN-y/silicone 29 29

30 30
31 31
32.5 32.5

2.3. Measurement of TC of composite samples
The thermal conductivities of the standard samples are measured by LW-

9389 TIM Thermal Conductivity and Resistance Tester, which will act as
references for the determination of ITRs. For each formula in Table. 2, we
prepare four independent samples and measure the respective thermal con-
ductivity (Table. 3), from which the mean and variance of the measurements
are derived. It can been seen that the variance of the Al2O3/silicone samples
is smaller than that of the AlN/silicone ones, which is attributed to the bet-
ter dispersion of Al2O3 particles. The dispersion of the particulate fillers can
be validated by micro-CT test. For instance, Fig. 3 presents the micro-CT
images of an Al2O3-60/silicone sample in which the red points denote the
Al2O3 particles, showing a random and uniform distribution.
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Table 3: The thermal conductivities of the standard samples measured by experiment
technique.

Samples Thermal conductivity (W/mK)
1 2 3 4 Average Variance

Al2O3-55/silicone 1.29 1.30 1.22 1.32 1.28 0.0019
Al2O3-58/silicone 1.57 1.46 1.47 1.42 1.48 0.0041
Al2O3-60/silicone 1.56 1.56 1.50 1.48 1.53 0.0017
Al2O3-65/silicone 1.96 1.98 2.01 1.93 1.97 0.0011
AlN-55/silicone 1.54 1.62 1.40 1.51 1.52 0.0083
AlN-58/silicone 1.77 1.61 1.83 1.56 1.69 0.0164
AlN-60/silicone 1.90 1.85 1.93 1.89 1.89 0.0011
AlN-62/silicone 2.32 2.30 2.46 2.38 2.37 0.0052

Al2O3-29-AlN-29/silicone 1.49 1.48 1.45 1.47 1.47 0.0003
Al2O3-30-AlN-30/silicone 1.64 1.74 1.68 1.48 1.64 0.0124
Al2O3-31-AlN-31/silicone 1.65 1.69 1.82 1.84 1.75 0.0089

Al2O3-32.5-AlN-32.5/silicone 2.00 2.18 2.32 2.09 2.15 0.0186

Figure 3: The micro-CT image of Al2O3-60/silicone sample.

2.4. Generation of microstructures for numerical modeling
The microstructures of the particulate composites are generated by us-

ing GrainGeo module of GeoDict software (Math2Market GmbH, Germany)
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based on the measured statistics of the fillers used in the standard samples.
The representative volume element (RVE) is a cubic box meshed with unit
cells (voxels), and the side length of the RVE is 40 µm. The side length of the
cubic voxels of RVE is 0.1 µm, with the number of voxels being 400×400×400.
The Al2O3 and AlN particles of the measured size distribution as shown in
Fig. 2 and Table. 1 are dispersed randomly without overlapping in the
RVE under periodic boundary condition. Various microstructures of the
composites are generated according to the gradation in Table. 2, including
the Al2O3/silicone, AlN/silicone and Al2O3-AlN/silicone composites. Sev-
eral examples of the microstructures with different filler volume fractions
are presented in Fig. 4, where the red and blue particles denote Al2O3 and
AlN, respectively. The sizes of the particles in the models are extracted and
the corresponding particle size distribution is compared with the experimen-
tal data, showing a good agreement (see in Fig. 2). It indicates that the
generated structures of the composites are consistent with the reality. The
selection of gradation schemes for the microstructures is addressed in the
next section.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Microstructures of the particulate composites, where the red and blue particles
denote Al2O3 and AlN, respectively. (a) Al2O3-55; (b) Al2O3-65; (c) AlN-55; (d)AlN-60;
(e) Al2O3-30-AlN-30; (f) Al2O3-32.5-AlN-32.5.

2.5. Determination of quantitative relationship between ITR and TC of com-
posites

The quantitative relationship between the ITR and effective TC of the
composite, κ=f(ITRf−p, ITRf−f ), are represented by a machine learning
model trained based on a database obtained from high-throughput calcula-
tions, where κ, ITRf−p, and ITRf−f denote the effective TC of composite,
the ITRs for filler-polymer and filler-filler interfaces, respectively. The High-
throughput calculations are realized by using the ConductoDict module of
GeoDict software and a home-made Python post-processing script. GeoDict
calculates the TC tensors based on the so-called explicit jump immersed in-
terface approach, which solves the equations in parallel by combing the fast
Fourier transform (FFT) and GiGGStab methods. We have recently shown
that the approach dramatically reduces the computational time and require-
ment of memory without losing precision compared with the finite element
modeling, which enables the efficient and accurate high-throughput calcula-
tions [28]. The input parameters for the numerical simulations are the TCs
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of the fillers, the ITR between the fillers and silicone matrix (ITRf−p ), and
the ITR between the fillers (ITRf−f ). A range of different values are selected
for each input variable (Table. 4), based on which the high-throughput cal-
culations are performed. The range of values for each variable is set to be
reasonable based on the physics. As a result, a total of 320 simulations are
conducted for the composite with single type of filler (i.e., Al2O3-x/silicone or
AlN-y/silicone), each of which has 3 input variables (TC of filler, ITRf−p, and
ITRf−f ). For the composites with both Al2O3 and AlN as fillers (i.e.,Al2O3-
x-AlN-y/silicone), however, there will be seven input variables resulting in
819200 combinations according to Table 4, which is prohibitively expensive
to simulate. Therefore, only five types of ITRs with reduced range of values
(see S4 in SI) are selected as the input variables for the simulation, which
reduces the number of simulations to 2048. The TCs of Al2O3 and AlN are
set as 30 and 200 W/mK in the simulations of the binary mixed particle-filled
composites, respectively, which are based on the intrinsic properties of the
commercial samples. Besides, the TC of silicone matrix is set as a constant
of 0.18 W/mK, which is not selected as an input variable.

Table 4: Input parameters for the high-throughput computations.
Parameter Selected values

ksilicone (W/mK) 0.18
kAl2O3 (W/mK) 20, 25, 30, 35, 40
kAlN (W/mK) 150, 180, 200, 220, 250

RAl2O3−Silicone (m2K/W) 10−8, 5× 10−8, 10−7, 5× 10−7, 10−6,5× 10−6, 10−5, 5× 10−5

RAlN−Silicone (m2K/W) 10−8, 5× 10−8, 10−7, 5× 10−7, 10−6,5× 10−6, 10−5, 5× 10−5

RAl2O3−Al2O3 (m2K/W) 10−8, 5× 10−8, 10−7, 5× 10−7, 10−6,5× 10−6, 10−5, 5× 10−5

RAlN−AlN (m2K/W) 10−8, 5× 10−8, 10−7, 5× 10−7, 10−6,5× 10−6, 10−5, 5× 10−5

RAl2O3−AlN (m2K/W) 10−8, 5× 10−8, 10−7, 5× 10−7, 10−6,5× 10−6, 10−5, 5× 10−5

The results of the high-throughput simulations serve as the database for
the machine learning. Fig. 5 illustrates the prototypical function-based ma-
chine learning framework for constructing the predicting model for the quan-
titative relation κ=f(ITRf−p, ITRf−f ), where κ, ITRf−p, and ITRf−f denote
the effective TC of composite, the ITRs of the filler-polymer and filler-filler
interfaces, respectively. In order to best represent the quantitative relation-
ship with limited set of training data, we train the machine learning model
separately for the systems with different volume fraction of fillers, instead of
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constructing a general predicting model. The volume fractions selected for
the training can be found in Table. 2. Taking the binary mixed particle-
filled composite as an example, the 5 kinds of ITRs in Table. 4 are chosen
as 5 features (x1,x2,...,x5) for the machine learning model; for each feature,
12 prototypical functions (Fig. 5) are generated following the work of Shen
et al.[29]. Among the 12 prototypical functions of each feature, we choose
the top 3 best prototypical functions by comparing the coefficient of de-
termination (R2) generated by the least squares regression (LSR). Those 3
prototypical functions for each feature are taken as the representatives for
that feature to describe the quantitative relationship κ=f(ITRf−p, ITRf−f ).
Then we conduct combinations among the 5 features, each of which rep-
resented by the respective top 3 selected prototypical functions, to get 31
combinations in total (x1x2,x1x3,...,x1x2x3,...,x1x2x3x4x5, see S5 in SI in de-
tail). Note that the single feature, such as x1, is also treated as a special case
of the combination. For each type of combination, we choose the top 3 best
combined prototypical functions according to the LSR, same as the previ-
ous step, which gives a total of 15 combined prototypical functions. Finally,
the quantitative κ=f(ITRf−p, ITRf−f ) are determined by using curve_fit
method with the 15 prototypical functions as inputs [30]. For the composite
material with single type of filler, such as Al2O3/silicone and AlN/silicone,
the number of features reduces to 3, which include the intrinsic TC of the
filler and the ITRs of the filler-polymer and filler-filler interfaces. All other
procedures for determining the machine learning model are the same as those
for the binary mixed particle-filled system; the only difference is that the TCs
of the fillers are considered as features here, whereas they are constants at the
intrinsic TC of that material for the machine learning of the composite with
both Al2O3 and AlN, aiming to reduce the number of features. The details
of the expression of the machine learning models for κ=f(ITRf−p, ITRf−f )
are provided in Supplementary information. The machine learning models
are validated by comparing the predictions with the numerical simulations
for a variety of different systems, as shown in Fig. 6. The R2 of all the
predictions are between 0.9671 and 0.9954, demonstrating the high quality
of the machine learning models.

2.6. Determination of interfacial thermal resistance (ITR)
The ITRs between components inside the composites are determined by

the high-throughput screening of the input parameters of the machine learn-
ing models, κ=f(ITRf−p, ITRf−f ), taking the experimental effective TCs of
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Figure 5: Workflow of the machine learning algorithm employed in the present work.

the standard samples as the references (see in Fig. 7). In practice, the ITRs
are determined in a hierarchical manner; the ITRf−p (RAl2O3−Silicone and
RAlN−Silicone) and ITRs between the same types of fillers (RAl2O3−Al2O3 and
RAlN−AlN) are first determined based on the composites with a single type of
filler; then the determined ITRs are used as known parameters in the binary
mixed particle-filled composites, from which we determine the ITRs between
the different types of fillers (RAl2O3−AlN). Taking Al2O3/silicone composites
as example, we change the interfacial thermal resistances RAl2O3−Silicone and
RAl2O3−Al2O3 from 10−8 to 10−5 m2K/W at a step of one tenth of the mag-
nitude of values while fixing the thermal conductivity of Al2O3 particles at
30 W/mK leading to 7344 combinations of the input parameters. Note that
the TCs of fillers are treated as known parameters, though they are inde-
pendent variables in the machine learning models for the composites with a
single type of filler. The effective TCs of the composites with several filler
volume fractions (55%, 60% and 65% for the Al2O3/silicone composite) are
computed with the machine learning model based on the different ITRs as
input parameters. We define the error of the machine learning prediction as

δ =
√ ∑

f=vol%
(kML

f − kexp
f )2. (4)

where kML
f and kexpt

f are the effective TCs of the composite with filler vol-
ume fraction of f from the machine learning prediction and experimental
measurement of the standard sample (Table. 3), respectively. By finding the
minimum values of δ, the corresponding input parameters are determined
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Figure 6: Comparisons of thermal conductivity between the numerical simulation and the
machine learning prediction for (a) Al2O3/silicone composites (b) AlN/silicone composites
(c) Al2O3-x-AlN-y/silicone composites with various filler volume fraction, where x and y
denote the volume percentage of Al2O3 and AlN particles respectively.

as the ITRs of RAl2O3−Silicone and RAl2O3−Al2O3 . Following the same proce-
dure we determine RAlN−Silicone and RAlN−AlN based on the AlN/silicone
systems with AlN volume fractions of 58%, 60% and 62%. The TC of AlN
particles is chosen as 200 W/mK in computing the effective TCs of the AlN-
filled composites. The obtained ITRs are then used as known parameters for
computing the effective TCs of the Al2O3-x-AlN-y/silicone composite sys-
tems with the (x, y) selected as (31%, 31%) and (32.5%, 32.5%), based on
which the RAl2O3−AlN is screened out from the range between 10−8 and 10−5

m2K/W.
The cumulative frequency of the error δ for determining the ITRs are

shown in Fig. 8. It should be noted that the figure for each material system
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Figure 7: Scheme for the determination of ITR.

corresponds to the summation of δ under various volume fractions with the
same input parameters. For the determination of ITRs for each system, we
select the values of δ below 1% of the cumulative frequency, the corresponding
input parameters of which are the range of ITRs. The determined values of
the ITRs are shown in Table. 5.

Figure 8: Cumulative frequency of the error δ used for determining the ITR

Table 5: The summary of the determined interfacial thermal resistance.
Type of interfacial thermal resistance Values (m2K/W)±10%

Al2O3-silicone 2.2×10−8

AlN-silicone 3.0×10−8

Al2O3-Al2O3 2.0×10−7

AlN-AlN 1.0×10−7

Al2O3-AlN 3.0×10−7
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2.7. Validation of accuracy of the determined interfacial thermal resistance
Finally the determined ITRs are validated by comparing between the

numerical predictions and the experiments of the validation samples. The
proposed methodology provides a versatile tool for accurate determination
of ITRs inside composite materials, which could also enable a further high-
throughput screening of design parameters of composite materials based on
numerical modeling with high accuracynd.

To validate the accuracy of identified interfacial thermal resistance, a com-
parison between the numerical predictions and the experiment measurements
is presented in Table. 6. For each test sample in Table. 6, 3 independent
random microstructures are generated and the thermal conductivities along
three main directions are computed taken into account the interfacial thermal
resistance in Table. 5, whose average is compared with the averaged mea-
sured results of 4 random samples. The relative error between the numerical
prediction and experimental measurement is given as

ER =
|k̄num

f − k̄expt
f |

k̄expt
f

× 100% (5)

The results in Table. 6 indicate that the relative errors are all below 10 %,
i.e., the accuracy of the numerical prediction is higher than 90 %.
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Table 6: Comparison between the measured and predicted thermal conductivities of the
standard samples.

Samples
Thermal conductivity (W/mK)

Relative errorMeasured results Numerical prediction
k̄expt

f k̄num
f

Al2O3-55/silicone 1.28 1.17 8.59%
Al2O3-58/silicone 1.48 1.40 5.41%
Al2O3-60/silicone 1.53 1.56 1.96%
Al2O3-65/silicone 1.97 2.14 8.63%
AlN-55/silicone 1.52 1.37 9.87%
AlN-58/silicone 1.69 1.68 0.59%
AlN-60/silicone 1.89 2.00 5.82%
AlN-62/silicone 2.37 2.38 0.42%

Al2O3-29-AlN-29/silicone 1.47 1.42 3.40%
Al2O3-30-AlN-30/silicone 1.64 1.61 1.83%
Al2O3-31-AlN-31/silicone 1.75 1.84 5.14%

Al2O3-32.5-AlN-32.5/silicone 2.15 2.25 4.65%

3. Discussion

3.1. Relationship between Rb and Rc

From Table. 5, it can be noted that the contact resistance between the
particles is always higher than the interfacial thermal resistance between
particle and matrix. Here we provide a reasonable explanation for this phe-
nomenon. In the particulate composites system, the interfacial thermal re-
sistance between the particles and matrix, Rb, is assumed as an extremely
thin layer which is characterized by an imperfect interface as shown in Fig.
9 (a). Specifically, through the interfacial thermal resistance interface be-
tween the particle and matrix, the temperature is continuous while the heat
flux along the normal direction of the interface suffers a jump. However, the
contact resistance between the particles in the present work, Rc, consists of
the contributions of two particle-matrix interface resistance as well as a thin
matrix layer between the particles as depicted in Fig. 9 (b).

Rc = 2Rb +Rsilicone (6)

Therefore, it is obvious that Rc should always be higher than Rb.
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Figure 9: Scheme of the interfacial thermal resistance between particle and matrix Rb,
and the interfacial thermal resistance between particles Rc.

3.2. Comparison with previously reported values
There are quite few work about the identification of interfacial thermal

resistance related with Al2O3 or AlN, with which we can make a compari-
son. Li et al.[31] measured the ITR between Ni and Al2O3 by 3ω method,
showing a result of 6.8×10−9 m2K/W. Fabrizio Iacobazzi et al.[32] employed
diffuse mismatch model to calculate the ITR between Al2O3 and oil, wa-
ter and ice respectively. The corresponding values of the ITRs are between
7∼8×10−10 m2K/W. The ITR between Al2O3 and polymer is much higher,
as the measurement of Putman et al.[33] for the interface thermal resistance
between Al2O3 and PMMA, which is (3.75±1.25)×10−8 m2K/W. It coincides
with our identification of ITR between Al2O3 and Silicone shown in Table
9. Moreover, the ITR in the AlN/PI composites has been determined by
fitting the curve of theoretical model with the experimental data of thermal
conductivity of the composites [34], giving a result of 3.32×10−7 m2K/W. It
should be noted that this value corresponds to the interfacial thermal barrier
resistance parameter in the modified Maxwell’s equation, which consists of
the influence of both the filler-matrix ITR and filler-filler ITR. Thus, it is
higher than our estimation of ITR between AlN and silicone, which is 1×10−7

m2K/W.

3.3. Comparison with other machine learning algorithms
Aside from the prototypical function-based machine learning strategy, we

also tried several other machine learning algorithms to train the database
of high-throughput computations, such as the eXtreme Gradient Boosting
(XGBoost) model, Support Vector Regression (SVR), and Artificial Neural
Network (ANN) methods. The XGBoost model is a type of gradient boosting
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model designed by Tianqi Chen [35], which is an integrated learning algo-
rithm based on decision tree with high accuracy and improved computational
efficiency. In the field of composite materials, many researchers have used
XGBoost to carry out relevant research. For instance, Furtado et al. [36]
presented a feasibility study on the application of XGBoost to predict the
design-allowed notch strength of multidirectional composite laminates. Mi-
lad et al.[37] used XGBoost to design a prediction model for the strain of
fiber-reinforced polymer (FRP) composites based on 729 experimental data
whose influential parameters include material geometry, strength properties,
strain properties, FRP properties and confinement properties. SVR is also a
widely used machine learning algorithm which maps data to high-dimensional
feature space through nonlinear mapping, and realizes linear regression trans-
formation from nonlinear function estimation problem to high-dimensional
feature space. Wei et al.[38] predicted the effective thermal conductivity of
composites and porous media by SVR, showing a better performance than
the traditional analytical models in terms of predicting accuracy. Sultana et
al.[39] employed three different algorithms, i.e., Response Surface Methodol-
ogy (RSM), ANN and SVR, to develop nonlinear empirical models for the
prediction of mechanical properties of Jute Fiber Reinforced Concrete Com-
posites. The results demonstrate that SVR model performs better than ANN
and RSM models. ANN abstracts the human brain neuron network from the
perspective of information processing, offering a complicated correlation be-
tween variables of input and output. The ANN models were successfully used
for predicting various phenomena in polymer composites. Liang et al.[40] ac-
curately predicted the thermal conductivity of BN polymer composites by
using a semi-supervised artificial neural network model with a collaborative
training style, in which the thermal conductivity of polymer matrix, the di-
ameter, aspect ratio, and volume fraction of the BN sheets are considered as
the input variables of the thermal conduction model.. Luo et al.[41] employed
ANN to build the correlation models between the cured shape types and ply-
stacking sequences of the carbon/epoxy composite laminates, which can give
a rapid and accurate prediction of the cured shapes than conventional finite
element method.

Fig. 10 shows the accuracy of XGBoost model for Al2O3-55/silicone and
Al2O3-65/silicone composites respectively. The values of R2 are higher than
0.99, showing a good agreement between the testing data and the predictions
by XGBoost. However, when we continue the high-throughput screening of
the interfacial thermal resistance based on XGBoost model, it turns out the
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problem of precision. Specifically, when we fix the thermal conductivity of
Al2O3 as well as the Al2O3-silicone interfacial thermal resistance, and vary
the Al2O3-Al2O3 interfacial thermal resistance from 2.0×10−8 to 2.9×10−8

m2K/W, the values of effective thermal conductivity predicted by the trained
XGBoost model are the same. Thus, this algorithm is not suitable for our
dataset.

In Fig. 11, we predict the thermal conductivity of Al2O3/silicone com-
posites using SVR and ANN, and compare the results with original data by
numerical simulation. It can be seen that the R2 scores obtained from the two
methods are 0.8312 and 0.716 respectively, and the predicted results are far
from the accurate data. This demonstrates that the SVR method and ANN
method do not have the capability in predicting the effective thermal conduc-
tivity of composite materials with good accuracy when the input parameter
are sensitive interfacial thermal resistance. Overall, due to the limitations of
XGBoost, SVR and ANN as mentioned above, we confirm that the proto-
typical function-based machine learning strategy is the best choice in solving
our problem.
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Figure 10: Comparisons of thermal conductivity between the training data by numerical
simulation and the predictions by XGBoost model for (a) Al2O3-55/silicone composites
and (b) Al2O3-65/silicone composites.
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Figure 11: Comparisons of thermal conductivity between the training data by numerical
simulation and the predictions by (a) SVR model for Al2O3-50/silicone composites and
(b) ANN method for Al2O3-60/silicone composites.

4. Conclusion

In this paper, we proposed an efficient method to identify the interfacial
thermal resistance in particle-laden composites combining the numerical sim-
ulation, high-throughput computation, machine learning algorithm and sim-
ple experimental measurement. Firstly, the corresponding numerical model
is generated according to the designed standard samples, following by high-
throughput computations of the effective thermal conductivity. The indepen-
dent input parameters of the numerical simulation are the thermal conduc-
tivity of particulate fillers as well as the particle-matrix and particle-particle
interfacial thermal resistances. Then, the obtained database is trained by
a prototypical function-based machine learning strategy which gives us the
numerical relation between the input parameters and the effective thermal
conductivities. Finally, a high-throughput screening of the input parameters
is conducted comparing the experimental measurement results of effective
thermal conductivities with the predictions from machine learning model for
the standard samples, by which we are able to identify the interfacial ther-
mal resistance in the particulate composites. The the computational cost of
the innovative strategy is negligible compared to the direct measurements of
interfacial thermal resistance such as microthermal bridge method.

To fully illustrate the application of the strategy, we present an example
of the identification of interfacial thermal resistances in Al2O3-AlN/silicone
composites, following by a convincing validation. Meanwhile, other machine
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learning algorithms, such as XGBoost, SVR and ANN, are also tested, show-
ing limitations in solving our problem. We conclude that the prototypical
function-based machine learning strategy we employed is the best choice
to train the database in this work. Our work demonstrates that the high-
throughput computations combined with machine learning methods can be
used as a fast prediction tool to obtain the interfacial thermal resistance
in particle-laden composites, which can overcome the difficulties of complex
operations in micro-scaled measurement and the high error of analytical cal-
culation based on physics.

5. Methods

Thermal conductivity of the particulate composites is measured by a LW-
9389 TIM Thermal Conductivity and Resistance Tester (Long Win Science
and Technology Corporation, Taiwan). The thermal conductivity is calcu-
lated from the following Eq. (7):

K = Qt

A∆T (7)

where Q is the heat flux, ∆T is the temperature difference between tem-
perature sensors of meter bar, t is the thickness of the specimen and A is
the sample surface area. In order to eliminate the influence of thermal resis-
tance between the specimen and the meter bar on the thermal conductivity
of the specimen, we conducted three tests for each specimen at various thick-
ness: t=0.5 mm, 1.0 mm and 1.5 mm, respectively. The resulting thermal
impedance I of the tests versus the thickness of the specimen satisfies linear
relationship, which can be fitted as

I = at+ b (8)

Here a and b are fitting parameters. The thermal impedance is given as

I = A∆T
Q

. (9)

Thus, we can deduce the absolute thermal conductivity of the specimen with-
out the effect the interfacial thermal resistance induced from the testing pro-
cess,

K = 1/a. (10)
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