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ABSTRACT: We present a unique strategy for the synthesis of vicinal amino alcohols. Ring opening of aziridines with pendant 
silanols is compatible with a range of substrates. To engage productively in ring opening, the aziridine must be at least mildly 
activated, and a variety of such N-substituents are tolerated. The utility of this methodology is highlighted in facile prepara-
tions of the natural products (±)-Clavaminol H, (±)-dihydrosphingosine, and (±)-N-hexanoyldihydrosphingosine as well as a 
natural product analogue (±)-des-acetyl-Clavaminol H.

Amino alcohols are important constituents of biologi-

cally active molecules (Figure 1)1-3 and have inspired 

the invention of many elegant techniques for their con-

struction (Scheme 1).4, 5 Pioneering efforts on synthe-

ses of vicinal amino alcohols have focused on transi-

tion metal catalyzed processes to install both N- and O-

moieties in a single transformation.6-8 A complemen-

tary approach is the ring-opening of epoxides with N-

nucleophiles and of aziridines with O-nucleophiles.9, 10 

This untethered approach11-16 is convenient from the 

perspective of step counts, but challenges with regio-

control often result in intractable product mixtures.  

Temporary tethering using Lewis acid templates af-

fords excellent regiocontrol with epoxides,17-22 but 

only one such report exists with aziridines.23 Our labor-

atory has a programmatic focus on the development of 

the di-tert-butyl-silanol auxiliary into a uniquely reac-

tive functional handle.24-29 We envisioned a ring-

opening of aziridines by pendant di-tert-butyl silanol 

auxiliaries, which would afford protected amino alco-

hols in a single transformation. Here, we show our de-

velopment of this reaction, and its application in the 

rapid assembly of select natural products and ana-

logues.        

                    



 

 

Before we could begin work on our target re-

action, we had to devise a way to access the starting 

materials (Scheme 2). There are many excellent proto-

cols for the syntheses of aziridines.30, 31 Fortunately, 

many of these are compatible with the alkenyl silanol 

(Scheme 2A), and the majority of our substrates were 

prepared using Sharpless,32 Sudalai,33 Che,34, 35 or Kürti 

reactions.36 We have also found that the combination of 

(t-Bu)2Si(OTf)2 (1.5 equiv.) and 2,6-lutidine (3 equiv.) 

allows for silanol attachment to aziridine alcohols 

(Scheme 2B). 

Our work on the ring-opening of epoxides with 

pendant silanols25 informed our efforts with their aziri-

dine relatives37 (Scheme 3). Optimization experiments 

were performed using di-tert-butyl(2-((2S*,3S*)-3-

ethyl-1-tosylaziridin-2-yl)ethoxy)silanol, prepared in 

one step using a Sharpless aziridination of (E)-di-tert-

butyl(hex-3-en-1-yloxy)silanol. Treating this aziridine 

silanol with 10 mol% of Ph3C+BF4
- and 1 equivalent of 

NaHCO3 afforded cyclized product in a 45% yield 

(Scheme 3, Entry 1). Increasing the reaction time from 

2 hours to 16 hours did not lead to greater product for-

mation (Scheme 3, Entry 2), and decreasing catalyst 

loading to 5 mol% was markedly deleterious (Scheme 

3, Entry 3). An increase in catalyst loading from 10 

mol% to 20 mol% was not helpful (Scheme 3, Entry 

4). Switching to BINOL-phosphoric acid (loadings of 

30 and 50 mol%) (Scheme 3, Entries 5–6) gave a mod-

est boost to reaction performance. The best result came 

with using 1 equivalent of BINOL-phosphoric acid in 

CH2Cl2 (Scheme 3, Entry 7). Based on these studies, 

we chose two protocols [Protocol A: Ph3C+BF4
-
 (15 

mol%)/NaHCO3 (1 equiv.)/CH2Cl2 and Protocol B:  

 

 
BINOL-Phosphoric acid/CH2Cl2] to test with a range 

of aziridine silanols.     



 

We wished to establish the effect of various 

aziridine N-substituents on the performance of the cy-

clization reaction (Scheme 4). With N-H aziridine 1 

(Scheme 4, Entry 1), no reaction was observed, either 

with Ph3C+BF4
- or with BINOL-phosphoric acid. In 

contrast, with N-phthalimido aziridine 2, cyclization 

afforded product in a 59% isolated yield (Scheme 4, 

Entry 2). With more electron withdrawing substitu-

ents, such as acetate (Scheme 4, Entry 3) and tosylate 

(Scheme 4, Entry 5) groups, cyclization markedly im-

proved. Even appending naproxen, a remarkably bulky 

substituent, did not inhibit cyclization (Scheme 4, En-

try 4).   Interestingly, even though benzyloxycarbonyl 

groups (Cbz) activate aziridines for ring-opening 

(Scheme 4, Entry 6), the yield of our cyclization 

dropped with N-Cbz aziridine 6. The yield of product 

was excellent, however, with phosphoramidate 7. 

Overall, a wide variety of N-substituents are tolerated 

by our cyclization protocol, but the aziridine must be 

at least somewhat activated to engage productively.                              

 
Many aziridine substrate classes were compat-

ible with cyclization protocols A (Ph3C+BF4
-/NaHCO3) 

or B (BINOL-phosphoric acid), including trans-di-

substituted aziridine silanols (Scheme 5, Entries 1-5 

and 8-9), cis-di-substituted aziridine silanols (Scheme 

5, Entries 6-7), and tri-substituted aziridine silanols 

(Scheme 5, Entries 10-12). Many functionalities were 

tolerated, including aryl halides (Scheme 5, Entry 3 

and Scheme 5, Entry 8), CF3 groups (Scheme 5, En-

try 3), benzothiophene heterocycles (Scheme 5, Entry 

4), and alkyl ethers (Scheme 5, Entry 11). Crystal 

structures of products 27 (Scheme 4) and 48 (Scheme 

5) enabled us to confidently assign product identity and 

relative stereochemistry. In general, the best protocol 

for a substrate class was determined through empiric 

testing (as an example, see Scheme 5, Entry 4). Thus, 

for substrates not shown here, we recommend unbiased 

evaluation of both protocols A and B.   

Our success with the range of substrates shown 

in Schemes 4 and 5 prompted us to apply this reaction 



 

as a key step in the assembly of a variety of sphingo-

sine-type natural products, a storied class whose mem-

bers have demonstrated biological activity.38, 39 Com-

mercially available (E)-dodec-2-en-1-ol was converted 

into silanol 51 using our laboratory’s standard silyla-

tion protocol  (Scheme 6A). A Kürti aziridination fol-

lowed by acetylation gave cyclization precursor 53. 

Cyclization with Ph3C+BF4
-/NaHCO3 formed 54 in a 

75% yield. TBAF removal of the silyl group yielded 

(±)-Clavaminol H40-44 which could be converted into 

(±)-des-acetyl-Clavaminol H45-47 upon heating with 

6M aqueous HCl solution. A similar strategy was ap-

plied for the synthesis of (±)-N-hexanoyldihydrosphin-

gosine48 (Scheme 6B). (±)-N-hexanoyldihydrosphin-

gosine is commercially available, but, to our 

knowledge, ours is the first synthesis of this target. Pro-

tecting 56 with CbzCl followed by our BINOL-

phosphoric acid promoted cyclization furnished key in-

termediate 60, which was then globally deprotected 

into (±)-Dihydrosphingosine (Scheme 6C).49-58 

In summary, we present a unique strategy for 

the synthesis of vicinal amino alcohols. Ring opening 

of aziridines with pendant silanols is compatible with  

 
 a variety of N-substituents and alkyl chains. The utility 

of this methodology is demonstrated via facile prepa-

rations of (±)-Clavaminol H, (±)-Dihydrosphingosine, 

(±)-N-Hexanoyldihydrosphingosine, and (±)-des-ace-

tyl-Clavaminol H. Given the ubiquity of the vicinal 

amino alcohol motif in targets of value, this technology 

is a welcome addition to the synthetic armory.  
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