Molybdenum/Quinone-Catalyzed Deoxygenative Coupling of Aromatic Carbonyl Compounds

Somsuvra Banerjee,¹ Takafumi Kobayashi,¹,² Kazuhiko Takai,² Sobi Asako,¹,²* and Laurean Ilies¹*

¹RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
²Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.

ABSTRACT: A catalytic amount of Mo(CO)₆ and an ortho-quinone ligand, in the presence of triphenylphosphine as a mild reductant enables the intermolecular reductive coupling of aromatic aldehydes and the intramolecular coupling of aromatic ketones to produce functionalized alkenes. Diaryl- and diheteroaryl alkenes are synthesized typically with high (E)-selectivity and with a tolerance of bromide, iodide, and steric hindrance. Intramolecular coupling of 1,6-diketones under similar conditions affords 9,10-disubstituted phenanthrenes.

The reductive coupling of two carbonyl compounds to produce an alkene, typically in the presence of in situ-generated low-valent titanium (Tyrlik–Mukaiyama–McMurry reaction), has found numerous applications for the synthesis of natural products, macrocyclic compounds, conjugated molecules, etc. However, most of these reactions require a stoichiometric amount of a titanium salt and a metal reductant, resulting in chemoselectivity and reproducibility issues, and a significant decrease in popularity in recent years. Despite a pioneering early report on titanium-catalyzed deoxygenative cyclization to produce indole derivatives in the presence of metallic Mn and chlorotrimethylsilane, probably because of the stability of the titanium oxo species, catalytic reactions have remained scarce and synthetically less attractive. For example, previous reports require metallic reductants such as Yb, photochemical conditions prone to olefin isomerization, or preconversion to hydrazone intermediates. We report herein that a catalytic amount of inexpensive and easy-to-handle Mo(CO)₆ and α-quinone ligand, in the presence of essentially 1 equiv of triphenylphosphine as a mild reductant, enables the intermolecular reductive coupling of aldehydes and the intramolecular coupling of ketones to produce functionalized alkenes. Various di(hetero)arylalkenes, including sterically demanding ones, can be synthesized in high yields and with high (E)-selectivity. The mild reaction conditions tolerate halides such as bromide and iodide. The intramolecular coupling of 1,6-diketones produces 9,10-disubstituted phenanthrenes.

Molybdenum is the most abundant transition metal in seawater, and it is an essential trace element for all life forms; but, arguably, the use of molybdenum for catalysis has been underexplored to date. During our studies on the use of molybdenum catalysts in organic synthesis, we found that a molybdenum/quinone complex, readily generated in situ from Mo(CO)₆ and an α-quinone, reacts with a carbonyl group to generate a putative molybdenum carbene, which was exploited for intramolecular C–H bond functionalization and C–N bond-forming cyclization (Scheme 1B).
Others later applied this molybdenum/quinone species for deoxygenative cyclopropanation, and a related molybdenum catalyst for the cross-coupling of benzyl alcohols. Importantly, the molybdenum o xo species could be reduced by a disilane or a phosphine to regenerate the molybdenum active species and complete a catalytic cycle. We envisioned that a similar molybdenum/quinone complex (A in Scheme 1C) may activate a carbonyl compound (1) to generate a molybdenum carbene species (B), and this species may react with another carbonyl group to produce an alkene (2) via metallaloxocyclobutane; then, the resulting molybdenum oxide species (C) may be reduced by a phosphine or silane to regenerate the active species and complete the catalytic cycle (Scheme 1C). According to this hypothesis, we reacted benzaldehyde (1a) in the presence of 10 mol% of Mo(CO)\textsubscript{6}, 3,5-di-tert-butyl-1,2-benzoquinone (Q1) and 1.2 equiv of triphenylphosphine as the reductant at 140 °C for 16 h, and we obtained trans-stilbene (2a) in 81% yield after isolation by silica gel column chromatography (97% by \(^1\)H NMR analysis of the crude reaction mixture). The product was obtained exclusively as the trans isomer; the cis isomer was not observed at all, even in the early stages of the reaction, as confirmed by GC and \(^1\)H NMR analysis (see the SI for the kinetic profile of the reaction). The reaction was clean, and we did not observe any side products; a trace amount of the starting material was recovered. The formation of triphenylphosphine oxide was observed by GC analysis of the crude mixture, suggesting a catalytic turnover.

In Table 1 we show the effect of several key reaction parameters on the reaction of benzaldehyde (1a) to produce stilbene (2a). Among the o-quinone ligands investigated, Q1 and ortho-chloranil (Q2) gave high yields (entries 1 and 2), whereas 9,10-Phenanthrenequinone (Q3) gave a much lower yield (entry 3). In the absence of a quinone ligand (entry 4), the reaction was not obtained, and the material balance was poor. Triphenylphosphine was the optimal reductant; a diphosphine such as dppe was also effective, albeit it gave a lower yield (entry 5). By contrast, triphenylphosphite was completely ineffective (entry 6). A silane such as tris(trimethylsilyl)silane could also be used as a reductant (entry 7), but triethoxysilane was inefficient (entry 8). In the absence of a reductant, the reaction did not proceed at all (entry 9). However, a reaction using a larger amount (50 mol% or 100 mol%) of molybdenum/o-quinone in the absence of a reductant proceeded in 55% and 65% yield, respectively (SI). The catalyst loading could be decreased to 5 mol%, without a significant decrease in yield (entry 10). The reaction temperature was important: after generation of the active molybdenum/quinone species at 140 °C, conducting the reaction at 100 °C resulted in a large decrease in yield (entry 11). We speculate that the high temperature is required not only to remove carbonyl ligands from molybdenum and generate the active species, but also for other steps such as ligand exchange to coordinate the carbonyl substrate or the reduction of the molybdenum oxide species generated during the catalytic cycle. The reaction was not complete after 8 h (entry 12). The yield was largely proportional to the amount of reductant (entry 13).

The reaction was uniquely catalyzed by Mo/quinone; other metal carbonyl complexes such as Cr(CO)\textsubscript{6}, W(CO)\textsubscript{6}, Mn\textsubscript{2}(CO)\textsubscript{10}, and Re\textsubscript{2}(CO)\textsubscript{10} were ineffective (SI).

We next investigated the reaction of various aromatic aldehydes under the optimized reaction conditions (Table 2). The reaction proceeded with a variety of electron-rich, electron-deficient, and bulky aromatic aldehydes and afforded the corresponding trans-stilbene derivatives with high (E)-selectivity. A notable feature of the reaction is the tolerance of organic halides such as chloride (2f), bromide (2g, 2n), and iodide (2h) — valuable handles for further functionalization. A sterically demanding alkene bearing mesityl groups (2i), could be synthesized in moderate yield. trans-Cinnamaldehyde gave a triene product 2j in high yield, but with the erosion of stereoselectivity, as previously observed. Ferrocencarboxaldehyde (1k) reacted with a moderate yield, but with high (E)-selectivity. Heteroaromatic aldehydes such as 2-furancarboxaldehyde (1l), 2-thiophencarboxaldehyde (1m), and 6-bromo-2-pyridinecarboxaldehyde (1n) gave the corresponding (E)-alkenes with high yield and selectivity. Ketone substrates, such as acetophenone (1o), did not react under these conditions and the starting material was recovered. Several other unsuccessful substrates are shown in the SI.
The reaction conditions: aromatic aldehyde (1, 0.40 mmol), Mo(CO)_6 (10 mol%), Q1 (10 mol%), PPh_3 (0.48 mmol) in mesitylene (0.40 mL) at 140 °C for 16 h. The yields of the isolated (E)-alkenes 2 are reported. Determined by 1H NMR in the presence of 1,1,2,2-tetrachloroethane as an internal standard. 5 mol% of Mo(CO)_6, 5 mol% of Q1, and 1.0 equiv of PPh_3 were used. **Yield of the isolated major isomer.** The isomer ratio of the crude reaction mixture determined by GC analysis. Reduced product (1,2-diferrocenylethane) was also obtained in 21% yield. nd = not detected. 1o was recovered in 95% (GC).

In summary, we found that a molybdenum species generated from Mo(CO)_6 and an o-quinone promotes the deoxygenative coupling of aldehyde and ketones. Furthermore, in the presence of a reductant such as triphenylphosphine or a silane derivative, the reaction becomes catalytic. These findings are particularly significant for the development of catalytic deoxygenative coupling to synthesize functionalized olefins, a reaction that has typically relied on stoichiometric amounts of a transition metal and a strong reductant, and also for the development of new molybdenum catalytic species for organic synthesis. Efforts toward a mechanistic understanding and synthetic applications are ongoing in our laboratory.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website. Experimental details, characterization data, and NMR spectra (PDF).

AUTHOR INFORMATION
Corresponding Author
*sobi.asako@riken.jp; laurean.ilies@riken.jp

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENT
We thank MEXT (KAKENHI Grant-in-Aid for Early-Career Scientists No. 19K15565 and Grant-in-Aid for Scientific Research (B) No. 22H02125 to S.A.) and Mitsubishi Tanabe Pharma Award in Synthetic Organic Chemistry. Japan for financial support. We thank Dr. Z. Hou and Dr. M. Takimoto (CSRS, RIKEN, Japan) for generously allowing us to use the mass spectrometer.

REFERENCES

(15) A stoichiometric amount (2 equiv) of Mo(O3) or W(O3) was reported to convert benzaldehyde to stilbene in low yields, via a putative metallaoxacyclobutane intermediate: Fujiwara, Y.; Ishikawa, R.; Akiyama, F.; Teranishi, S. Reductive Coupling of Carbonyl Compounds to Olefins by Tungsten Hexachloride-Lithium Aluminum Hydride and Some Tungsten and Molybdenum Carbonyls. J. Org. Chem. 1978, 43, 2477–2480.

(17) An alternative mechanism that involves pinacolate species cannot be excluded.

