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Abstract 

Dark field scattering microscopy can create large hyperspectral data sets that contain a wealth 

of information on the properties and the molecular environment of noble metal nanoparticles. 

For a quick screening of samples of microscopic dimensions that contain many different types 

of plasmonic nanostructures, we propose a multivariate analysis of data sets of thousands to 

several hundreds of  thousands of scattering spectra. By using non-negative matrix 

factorization for decomposing the spectra, components are identified that represent individual 

plasmon resonances and relative contributions of these resonances to particular microscopic 

focal volumes in the mapping data sets. Using data from silver and gold nanoparticles in the 

presence of different molecules, including gold nanoparticle-protein agglomerates or silver 

nanoparticles forming aggregates in the presence of acrylamide, plasmonic properties are 

observed that differ from those of the original nanoparticles. For the case of acrylamide we 

show that the plasmon resonances of the silver nanoparticles are ideally suited to support 

surface enhanced Raman scattering (SERS) and the two-photon excited process of surface 

enhanced hyper Raman scattering (SEHRS). Both vibrational tools give complementary 

information on the in situ formed polyacrylamide and the molecular composition at the 

nanoparticle surface. 

Introduction 

The strong elastic scattering of light at visible wavelengths due to localized surface plasmon 

resonances (LSPR) is the basis of a vast range of applications that employ the high sensitivity 

of the LSPR of noble metal nanoparticles. The LSPR of a single gold or silver nanoparticle 

gives detailed information about its size, shape, and interaction with other nanoparticles,[1-6] 

and about changes that occur at the particle surface, including the adsorption of atoms or 

molecules,[7-10] down to few-molecule level.[11] Moreover, small changes in surface charge 

modify the scattering spectrum,[12] enabling, e.g., monitoring of redox reactions on 
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individual nanoparticles.[13] Dark field optical microscopy visualizes the scattering of 

plasmonic nanoparticle arrays and ensembles.[14] It has become an important tool for fast 

probing of the resonances of new plasmonic substrates, e.g., for surface-enhanced Raman 

scattering (SERS),[15-17] tip-enhanced Raman scattering (TERS),[18] plasmon-induced 

magnetic resonance,[19] second-harmonic generation (SHG),[20] and hot electron 

generation.[21] 

While machine learning tools [22-24] and automated correction [25] can be used to process 

images obtained in dark field microscopy directly, it is desirable to utilize them for an 

assessment of the full scattering spectra, so that information on different plasmon modes and 

their sensitivity to changes in environment can be obtained from the full hyperspectral 

data.[26-29] Imaging of scattering intensity at particular wavelength [26] and introducing a 

color code to represent the wavelength of maximum scattering [30] resemble the ‘chemical 

mapping’ univariate in other analytical applications, such as imaging mass spectrometry, 

Raman or FTIR microspectroscopy. In samples in which individual nanostructures are not 

separated from one another further than the diffraction limited spatial resolution, probing by 

hyperspectral dark field microscopy leads to massive superposition of resonances from many 

different plasmon modes in all individual nanostructures contained in one focal volume. 

Assemblies of plasmonic nanoaggregates up to the micron size range are common in different 

molecular environments that can be studied by dark field microscopy. They include 

nanoparticle accumulations in living cells, [26, 29] substrates in plasmonic catalysis,[28, 31] 

or plasmonic nanoparticles in composite materials, such as polymers.[32] The scattering 

spectra of different microscopic pixels in a hyperspectral map can vary greatly, depending on 

their composition with respect to nanoparticle aggregate size, shape, molecular environment, 

or orientation. 
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Here, we decompose the hyperspectral information in dark field scattering microscopy data 

with the aim of mapping the dominating contributions of distinct plasmon resonances at 

specific microscopic positions in a sample. We use hierarchical cluster analysis and non-

negative matrix factorization (NMF) on data sets of many thousands of spectra that were 

acquired from gold and silver nanoparticles immobilized in the presence of a protein and 

acrylamide, respectively, as simplified molecular environments. As will be discussed, the 

specific types of nanoparticle agglomerates that are forming in the samples enable sensitive 

probing of the molecular environment by one- and two-photon excited SERS. 

 

2. Results and Discussion 

Gold and silver nanoparticles, both stabilized in aqueous solution and by citrate ions were 

drop cast on microscope slides. Transmission electron micrographs of the nanoparticles are 

shown in Figure 1. Both types of nanoparticles have been used in applications of SERS in 

different context, the gold nanoparticles as SERS nanoprobes in cells, with and without 

specific molecular functionalization, [33, 34] and the silver nanoparticles as substrates for 

SERS and surface-enhanced hyper Raman scattering (SEHRS) studies of different organic 

molecules, for example in the context of plasmon-supported reactions.[35, 36] The size of the 

gold nanoparticles (Figure 1A-1D) was determined to be about 14 nm, [33, 34] that of the 

silver nanoparticles (Figure 1E-1H) to about 70 nm, with many of the latter showing non-

spherical shape.  
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Figure 1. Transmission electron micrographs of the nanoparticles used in this study. (A-D) 

Citrate stabilized gold nanoparticles, scale bars: 50 nm (E-H) Citrate stabilized silver 

nanoparticles, scale bars: 200 nm 

 

2.1 Exploring large dark field scattering data sets of silver nanoparticles 

Figure 2A shows an RGB image of the silver nanoparticles, generated by using the unit 

counts at the red, green, and blue wavelength of 660 nm, 540 nm, and 470 nm, respectively. 

For each wavelength, a map with 696 x 696 pixels was created. The three maps were 

afterwards normalized using a min/max normalization and combined to a ‘true color’ image. 

The scattering of the nanoparticle aggregates shows in lighter colors, and many pixels where 

no nanoparticles are present are colored black in the image. A magnification of some areas 

(Figure 2B) reveals agglomeration and assembly into lines, some with dendritic structures that 

suggest the typical self-similar assemblies discussed frequently in the past [37-39] 
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Figure 2. Dark field scattering data set of silver nanoparticles. (A) RGB image based on 

scattering intensity at 660 nm, 540 nm, and 470 nm. Scale bar: 20 µm. (B) Magnification of a 

region of interest. Scale bar: 2 µm. (C, D) Visualization of a the result of a classification 

analysis generating eight clusters that represent scattering signals at different spectral regions: 

Cluster 1, white, no signal, Cluster 2, magenta, 400 -450 nm, Cluster 3, blue, 450-490 nm, 

Cluster 4, cyan, 490-520 nm, Cluster 5, green, 520-560 nm, Cluster 6, yellow, 560-590 nm, 

Cluster 7, orange, 590-635 nm, Cluster 8, red, > 635 nm. 

 

The images shown in Figures 2A and 2C contain 484416 spectra. For a quick exploratory 

analysis, including hierarchical cluster analysis or principal component analysis, it is desirable 

to drastically reduce the size of the data set without losing information. In the example of the 

silver nanoparticles shown in Figure 2, a fast and simple classification approach was applied, 

that assigned all of the 484416 spectra into seven classes, with respect to their maximum 
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scattering wavelength, as well as one class of spectra that can be excluded, as they come from 

the ‘dark’ regions that do not show any signal in the RGB image (Figure 2A, 2B). In 

principle, the pixels in Cluster 1 are not-relevant for describing the optical properties of the 

sample and can be excluded from the data set (Figure 2C, 2D). If a spectrum shows no bands 

determined by a pre-set threshold, the spectrum is assigned to the group of data points with no 

signal (here Cluster 1). In the map, each spectrum is represented with a false color pixel that is 

assigned to each spectral class. Most of the data points in the map can be excluded using this 

algorithm, leaving 31670 of 484416 spectra for a detailed analysis in this sample. In the 

magnified structure in Figure 2D, scattering maxima due to plasmon resonances are mostly 

located in the range of 520-700 nm. 

Automatic selection of spectra with actual information based on a signal threshold is an 

efficient way to reduce computation time in an analysis. Similarly, large data sets can be 

divided into regions of interest (ROI), as proposed in previous studies.[27, 29] As examples, 

maps of ~10000 spectra, can be processed easily without prior extraction of spectra.  

To screen subsets of data, we use hierarchical cluster analysis (HCA) as an exploratory 

analysis tool in order to obtain further information about the predominating plasmon 

resonances at different positions in the samples. HCA can reveal more information about 

similarities of the spectra, considering the full spectral range that can have several plasmon 

resonances. Moreover, as will be discussed later, non-negative matrix factorization (NMF) 

will be used to decompose each individual spectrum into different contributions of a set of 

NMF components. Scheme 1 summarizes the data analysis proposed here. 
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Scheme 1. Different possibilities used for multivariate screening of the hyperspectral data 

sets. 

The results of the NMF analysis of the data set acquired from the silver nanoparticles 

discussed above are shown in Figure 3.  
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Figure 3. (A) NMF maps corresponding to the four pure components of the magnified region 

of the dark field image of silver nanoparticles presented in Figure 2. The NMF maps visualize 

the relative contribution of each of the four pure components. Therefore, each pixel has an 

intensity value between 0 and 1, and the sum of all contributions to the same pixel in each 

map equals 1. (B) The four NMF components. The colors of the component spectra 

correspond to those of the NMF maps in (A). (C) Extracted spectra from the marked spots in 

(A). 

The decomposition was executed for different numbers of components (data not shown), and 

the amount of four components was found to be optimal, as it led to well-separated, relatively 

narrow bands in the component spectra. Figure 3A shows the NMF maps of the four 

components for the whole image of the silver nanoparticle sample. The component spectra, 

plotted in Figure 3B, contribute differently at different positions in the map. One pure 
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component represents part of the resulting spectrum in a microscopic volume (pixel), e.g., one 

or two particular plasmon resonances, so a detailed description of each spectrum also needs to 

take into account the other respective components as well. Figure 3C shows four individual 

spectra selected in each NMF map, where a high portion of the corresponding pure 

component is present (from I, II, III and IV in Figure 3A). They were extracted from the 

image and can be compared to the pure component spectra of each of the maps (compare 

Figure 3C with Figure 3B). As an example, one of the components (Figure 3B, black trace) of 

the NMF map has maxima at 463 nm and at 646 nm. The original spectrum from a pixel in 

the corresponding map (Figure 3A, black map, I) with high contribution of that component 

(Figure 3B) shows maxima at the same positions, with the low wavelength contribution by the 

typical dipolar plasmon mode of spherical silver nanoparticles around 460 nm here as 

shoulder. The other extracted spectra 2, 3, and 4 (Figure 3A and 3C blue, red, and green) also 

show similar maxima as the respective component spectra (Figure 3B and 3C blue, red, and 

green, respectively). 

The example in Figure 3 illustrates that NMF can really serve as a explorative analysis tool, in 

order to gain information about the most possible scattering maxima and their contribution to 

the spectra that are obtained from different regions in the sample. The maps of the individual 

components (Figure 3A) indicate different scattering maxima in the spectra at the outer border 

of the microscopic structure, than in the spectra in the middle parts. We also performed HCA 

of the data set of the silver nanoparticles, where we also found that the spectra are sorted into 

clusters with respect to the shape of the microscopic agglomerates (data not shown here). The 

application of HCA to the dark field scattering data sets is further discussed for the example 

of different types of gold nanoaggregates below. 

 

2.2 Agglomerates of gold nanoparticles with and without protein 
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Gold nanoparticles are often used for optical probing of biological samples, by dark field 

microscopy as well as by SERS. Understanding the formation of aggregates in the presence of 

proteins is of particular interest for such applications, since the nanoparticles are usually 

surrounded by a biomolecular corona that is formed by different proteins contained in the cell, 

the extracellular environment, or a cell culture medium. Small gold nanoparticles of ~14 nm 

diameter, used for SERS applications were shown previously to form agglomerates in protein 

solution, specifically in the presence of typical serum proteins such as bovine serum albumin 

(BSA).[34] Three different samples of these nanoparticles were studied by dark field 

microspectroscopy here i) as-prepared citrate stabilized gold nanoparticles (Figure 4 A, D, G), 

ii) aggregates of the same gold nanoparticles formed by adding sodium chloride in a final 

concentration of 100 mM (Figure 4 B, E, H), and iii) agglomerates of the nanoparticles 

formed in the presence of 15 µM BSA as discussed in previous work[40] (Figure 4 C, F, I). 

The maps here (Figure 4A, 4B, 4C) are ROI of large maps and have a size of 79 pixels x 81 

pixels (6399 spectra) each. In Figure 4 we show three RGB images (Figure 4A, 4B, 4C) and 

maps based on the assignment of the spectra to different classes as result of a hierarchical 

cluster analysis (HCA) (Figure 4D, 4E, 4F) of the three samples. HCA sorts similar spectra 

into clusters so that the corresponding pixels in the map can be marked with a particular color 

for the same cluster. The RGB images (Figure 4A, 4B, 4C) differ, that of the gold 

nanoparticle-protein agglomerates showing more orange and red colors (Figure 4C) than the 

two other maps. The HCA maps (Figure 4D, 4E, 4F) were generated without any pre-

processing of the spectra and therefore also identify regions of high and low signal in the 

microscopic sample. All three HCA images (Figure 4D, 4E, 4F) indicate similarities of 

spectra in similar regions of the microscopic aggregates. High scattering signals are found for 

the inner parts of the clusters in the samples prepared without BSA (Figure 4G and 4H), while 

high absolute intensities are found in the outer zones of the agglomerates in the sample 

prepared with BSA (Figure 4F and 4I, green pixels and green trace). Microscopic structures 
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can be identified, where the spectra are changing from the inner part to the outer part of the 

larger accumulations of the gold nanoparticles.  

 

Figure 4. RGB images obtained from data sets of (A) gold nanoparticles, (B) gold 

nanoaggregates prepared with sodium chloride and (C) gold-BSA agglomerates. Each 

mapping data set comprises 6399 spectra. (D, E, F) Respective hyperspectral maps from the 

result of hierarchical cluster analyses (HCA) applied to the data sets. without pre-processing. 

Mapping was based on five spectral classes, each assigned a different color. (G, H, I) 

Average spectra calculated from the different classes in each data set, colors correspond to 

pixel colors in D, E, and F, respectively. Scale bars: 2 µm 
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The averaged spectra from each of the classes (Figure 4G, 4H, 4I) show maxima at different 

positions in the three samples and also between the different classes within each map. In the 

aggregates formed by adding sodium chloride (Figure 4E and 4H), a shift is observed from 

the regions of lower scattering intensity (black), mainly caused by individual nanoparticles 

and/or small aggregates, and those from the center of the microstructures (blue traces), that 

have contributions from more red-shifted resonances. In agreement with the RGB image, all 

averaged spectra in the sample prepared with BSA show a red shifted maximum compared to 

those in Figure 4G and 4H and also lack a pronounced shoulder at low wavelength. 

Since most information on the individual spectra is lost during averaging of the spectra after 

the cluster analysis, an analysis of the individual pixel spectra was performed using NMF. 

Also here, a decomposition into four components proved optimal to resolve different 

resonances while enabling comparison of similar bands between the different samples. Figure 

5 shows the results of the decomposition by NMF as maps that are based on the relative 

contribution of each of the four components to each pixel (Figure 5A, 5C, and 5E), resulting 

in four images for each of the three samples (Figure 5B, 5D, and 5F, matching colors).  

In all samples, the maps show high contributions by some of the components that are 

complementary and also indicate that plasmonic properties of the clusters change from the 

inner to the outer parts of the microscopic structures. As an example, the black and the blue or 

green maps of Figure 5D highlight different resonance wavelengths, as evidenced by the 

respective pure component spectra in Figure 5C. The component shown in black (Figure 5C) 

indicates a resonance with a maximum at 577 nm, while the component displayed in blue 

(Figure 5C) shows a strong contribution at 704 nm, which typically present in large 

nanoaggregates that must be characteristic of the centers of the microscopic nanoparticle 

formations here (Figure 5D, blue map). The latter spectra were also sorted to the cluster that is 

shown in light blue in Figure 4D and 4H. 



14 
 

Although the data from all three different samples yield pure component spectra that range in 

signal from ~500 nm to ~1000 nm (compare the traces in Figure 5A, 5C, and 5E), the shape 

and positions of the maxima differ a lot. While the samples that do not contain BSA yield 

components with a pronounced contribution around 490-500 nm (Figure 5A, red trace, 5C, 

blue trace), such a resonance is absent from the data of the gold-BSA agglomerates (Figure 

5E). A component with a maximum ~560 nm is missing in the gold-BSA sample as well. 

Both data sets from pre-aggregated samples yield a pure component with a maximum at 

~577 nm (Figure 5C, black trace, Figure 5E, green trace) and a maximum ~750 nm (Figure 

5C, green trace, Figure 5E, blue trace), suggesting the presence of aggregates with 

characteristic resonances that cannot be found in the sample of the pure gold nanoparticles. In 

the gold-BSA agglomerates (Figure 5E), the band is very wide, with higher contribution in the 

longer wavelengths, in agreement with the observed red shift of the cluster average spectra 

found in Figure 4I. 
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Figure 5. Results of the NMF decomposition of data sets of (A, B) gold nanoparticles, (C, D) 

gold nanoaggregates generated by adding sodium chloride, and (E, F) agglomerates of gold 

nanoparticles and BSA. (A, C, E) Four components that were used to construct four maps in 

(B, D, F) in corresponding color for each of the samples. The maps indicate the relative 

contributions of the respective component in each of the data points. 
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2.3 Silver nanoparticles in polymerizing samples 

Silver nanoparticles were studied in the presence of Mg2+, previously discussed to enhance 

surface enhanced Raman scattering (SERS), surface enhanced hyper Raman scattering 

(SEHRS), as well as plasmonic chemistry. [41-44] Figure 6 shows two regions of interest in 

dark field scattering maps of two samples, one containing only MgSO4, the other MgSO4 and 

acrylamide. Both RGB images indicate the formation of aggregated structures (Figure 6A, 6B, 

enlarged insets). The nanoparticles in the sample prepared without acrylamide form large, 

microscopic structures that often have dendritic shape, similar to the ones shown in Figure 2 

(Figure 6A). Several organic components have been described to promote the formation of 

dendritic structures of silver nanoparticles in the past. [45, 46] 

The decomposition into four NMF components reveals a component with a very wide 

maximum, extending from ~695 nm to ~760 nm, and the sample containing acrylamide shows 

a strong contribution from a component that has a scattering maximum at 725 nm that appears 

more narrow (Figure 6B, green trace). Comparing both samples with the sample discussed in 

Figure 3, the low wavelength component at 513 nm (Figure 3B) is replaced by a maximum at 

528 nm (Figure 6A, green trace), also supporting previous observations that efficient 

nanoaggregate formation occurs in the presence of MgSO4.[42] In the sample containing 

acrylamide, this resonance is missing, instead, components are found at 554 nm and ~600 nm 

(Figure 6B, black and red trace). Both data sets yield a pure component with a maximum at 

~650 nm (blue traces in Figure 6A and 6B). The corresponding maps yield high contrast and 

show that the positions where the different components contribute strongly do not overlap.  
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Figure 6. RGB image and NMF components of a dark field scattering data set of silver 

nanoparticles (A) in the presence of MgSO4 and (B) in the presence of MgSO4 and 

acrylamide. The sizes of the maps are (A) 105 x 49 spectra and (B) 176 x 59 spectra. Scale 

bars: 2 µm 
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The component around ~550 nm should be ideal to support optical processes that benefit from 

plasmon resonances in this spectral region, in particular Raman and hyper Raman scattering 

(HRS), when Stokes-shifted relative to an excitation wavelength of 532 nm and 1064 nm (for 

two-photon excited hyper Raman scattering, cf. inset in Figure 7B), respectively. Therefore, 

these vibrational spectra can provide an additional perspective on the properties of the silver 

nanoaggregates, by characterizing the molecules that may be involved in the aggregate 

formation, and their interaction with the nanoparticle surface. Both, spontaneous Raman 

scattering (SERS) spectra with excitation at 532 nm (inset in Figure 7A), as well as two-

photon excited, surface enhanced hyper Raman (SEHRS) spectra with an excitation 

wavelength of 1064 nm (inset in Figure 7B) will give information on the molecules that are in 

close proximity to the silver surface.[47] SEHRS is the two-photon analogue of SERS, but 

follows different selection rules, and is far more sensitive to small changes in surface potential 

and molecular adsorption.[48] We observed in the microscope the formation of 

polyacrylamide microscopic structures, of which we obtained SEHRS and SERS spectra.  

The SERS spectrum clearly indicates the spectral bands assigned to the polymer (Figure 7A). 

The data are in agreement with SERS spectra of acrylamide and polyacrylamide, with strong 

signals from the C-N stretching mode at 1407 cm-1 and the polymer chain and side chains at 

1153 cm-1, 881 and 821 cm-1,[49] and the pronounced stretching vibration of the C=O group 

of polyacrylamide that may also contain some contributions from the C=C stretching of 

acrylamide at 1625 cm-1.[49] 

The SEHRS spectrum is excited off-resonance with the acrylamide molecule that is present at 

10-micromolar concentration. This is a clear indication of a close proximity of the 

poly/acrylamide with the surface of the nanoparticles and a formation of efficient hot spots, as 

is also suggested by the dark field scattering data that indicate aggregate formation. 

Interestingly, the SEHRS spectrum also provides evidence that the acrylamide monomer must 
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be present at the surface of the nanoparticles as well. This is indicated by several bands, 

including the vinyl CH2 deformation mode at 1282 cm-1, the band at 1442 cm-1 that is 

assigned to both the deformation of CH2 groups and the C-N stretching in acrylamide, the 

NH2 twisting vibration that is visible at 1134 cm-1 (that is distinguished from the skeletal 

vibration of the polymer at 1177 cm-1), and a so far unassigned band at 610 cm-1 that was also 

reported in SERS spectra of acrylamide but not found in polyacrylamide.[49, 50] The very 

pronounced signal at 982 cm-1, an HCCH out-of-plane bending mode, has also been assigned 

to acrylamide,[49] but could also come from polyacrylamide.[50] It has been described as 

weak in RS and SERS spectra,[49] and its strong enhancement in the SEHRS spectrum could 

give complementary information to the SERS data regarding orientation of the polymer. In 

addition to the fact that the probing by SEHRS is even more restricted to the nanoparticle 

surface than in the SERS data,[47] the altered relative intensities of some vibrational modes 

found here can give valuable complementary information on the polymer structure. 
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Figure 7. (A) SERS and (B) SEHRS spectrum of a sample containing silver nanoparticles, 

MgSO4, and 10-5 M acrylamide, indicating the formation of polyacrylamide in the acrylamide 

containing samples. Excitation conditions: (A) 532 nm, 1.9 x 1027 photons cm−2 s−1 (B) 

1064 nm, 3.4 x 1028 photons cm−2 s−1. Acquisition time: (A) 1 s, (B) 10 s, average of 67 

spectra. The insets in (A) and (B) depict the Raman and the hyper Raman scattering process, 

respectively. 

Polymerization reactions, including acrylamide polymerization, [49] in the presence of silver 

nanoparticles were usually performed using a radical source,[32, 51] but here no initiator is 

present. We suppose that the polymerization is mainly promoted by the presence of the silver 

nanoparticles, probably by silver ions that we found to help plasmon-catalyzed oxidation 

reactions at the surface of silver nanoparticles.[35] In addition to providing a source of silver 

ions, the plasmonic properties of the silver nanoparticles may play an important role in 



21 
 

promoting the reaction, particularly since there is no molecular resonance known for the 

acrylamide molecule itself that could serve in a direct photochemical production as reported 

by others. [52] We are currently delineating the potential role of the silver nanoparticles in a 

plasmon-supported polymerization approach, since it could be beneficial for a microscopic in 

situ synthesis, similar to the laser-direct plasmonic writing that we reported recently.[53] 

 

3. Conclusions 

The results shown here indicate that decomposition of extremely large dark field scattering 

hyperspectral images of microscopic samples that contain plasmonic nanostructures can be 

achieved using multivariate approaches, including non-negative matrix factorization. Fast 

exploration of such large data sets becomes particularly important with the advent of new, fast 

acquisition methods of dark field hyperspectral data. [54] Although the far-field, diffraction 

limited probing cannot be used to characterize individual nanostructures or aggregates, 

different microscopic regions in a sample can be characterized quickly regarding their 

plasmonic properties and molecular environments. As was discussed for the example of 

nanoparticles in the presence of different organic molecules, multivariate imaging based on 

the dark field scattering spectra can give information on the nanoparticles, while plasmon-

supported spectroscopies provide a perspective on the molecular environment. This may 

prove useful in optical probing in microspectroscopy and other applications, including 

plasmonic catalysis and the in situ synthesis of nanoparticle-polymer composites.  

 



22 
 

4. Materials and Methods 

4.1 Sample preparation 

Gold(III) chloride trihydrate (HAuCl4.3H2O, 99.9% trace metals basis) and silver nitrate 

(99.9999 % trace metals basis), bovine serum albumin, and acrylamide were purchased from 

Sigma-Aldrich. Trisodium citrate dihydrate (99%) was obtained from Th. Geyer, sodium 

chloride and magnesium sulfate were purchased from J. T. Baker. All solutions were prepared 

using Milli-Q water (MilliPore purification system). 

Silver nanoparticles of a size of ~70 nm were synthesized by citrate reduction as described 

previously.[55] Gold nanoparticles of a size of ~14 nm were synthesized as described 

previously.[56] Transmission electron micrographs of the nanoparticles were taken using a 

Tecnai G2 20 TWIN instrument operating at 200 kV. 

The silver colloids were mixed with solutions of 1 mol/L MgSO4, 0.1 g/mL, and/or 10-4 mol/L 

acrylamide. The gold colloids were mixed with solutions of 1 mol/L NaCl, or 0.1 g/mL 

(0.15 mM) bovine serum albumin. The volume ratio was 9:1 (nanoparticles: NaCl or protein) 

and 8:1:1 (nanoparticles: MgSO4: acrylamide). The samples were drop cast on glass slides, 

dried and sealed under cover glasses. For SERS and SEHRS experiments, the liquid samples 

were placed in microcontainers. 

4.2 Dark field scattering microscopy 

Dark field images of the nanoparticles were obtained using a microscope (BX51, Olympus, 

U.S.A.) with a hyperspectral camera (CytoViva Hyperspectral Imaging System 1.4), and  a 

magnification of 60x (oil immersion, numerical aperture of 1.25). Images of 696 x 696 pixels 

were collected using an exposure time of 1 s, 0.5 s or 0.25 s. Whole data cubes of 696x696 

pixels with one scattering spectrum for each pixel (484416 spectra) were acquired. Regions of 

were defined in ENVI 4.8 software (L3 Harris Geospatial, Colorado, United States). The 
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images were analyzed and visualized using self-written routines in Matlab 2016a. (The 

Mathworks, Inc., Natick,MA, USA) 

4.3. SERS and SEHRS experiments 

The SERS and SEHRS measurements on the aqueous samples were carried out in 

microcontainers. The excitation light was focused onto the samples with a microscope 

objective (NA 0.3). The Raman and hyper Raman scattered light were detected by a liquid 

nitrogen cooled CCD detector. Spectral resolution was 3-6 cm−1, considering the full spectral 

range. Excitation of the SEHRS spectra was achieved with a 1064 nm mode-locked laser, 

generating 7 ps pulses at 76 MHz repetition rate. Excitation of SERS spectra at 532 nm was 

obtained using the second harmonic of the same laser. SEHRS spectra were accumulated for 

10 s with an excitation peak photon flux density of 3.4 x 1028 photons cm−2 s−1 (average 

power 500 mW). SERS spectra acquired for 1 s per spectrum and excited using 1.9 x 1027 

photons cm−2 s−1 (average power 16 mW). All spectra were frequency calibrated using a 

spectrum of toluene. Baseline correction by asymmetric least squares (AsLS) was performed 

on the SEHRS spectra. 

4.4 Multivariate analysis 

Hyperspectral data were exported as full data sets or regions of interest from ENVI 4.8 

software into MatLab resulting in data cube of a size of 696 pixels x 696 pixels x 472 

wavelengths in the case of a full data set. For construction of the RGB images, a 2D intensity 

map at 660 nm (red), 540 nm (green), and 470 nm (blue) was extracted from the data cube, 

respectively. The three intensity maps were min-max normalized based on their overall 

maximum value and subsequently merged into one 696 pixels x 696 pixels x 3 image. 

For classification according to spectral color, the 484,416 spectra of the data cube were sorted 

into eight groups, based on their scattering maxima in eight spectral regions, defined by a 
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signal threshold. The ranges are 400-450 nm, 450-490 nm, 490-520 nm, 520-560 nm, 560-590 

nm, 590-635 nm, and above 635 nm. Classification was executed on spectra without further 

pre-processing. 

Hierarchical cluster analysis was carried out on the spectra of defined region of interests using 

the full spectral range from 400-1000 nm using linkage function of Matlab. Euklidean 

distance measure and Ward’s algorithm were used for clustering. Cluster maps were based on 

five spectral classes. Non-negative matrix factorization was carried out using the nnmf 

function in Matlab. The spectra were taken from the data sets of the full image (696 pixels x 

696 pixels) or the regions of interest as indicated in the maps without further pre-processing.  
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