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ABSTRACT: Electron donor–acceptor (EDA) complex-mediated single-electron transfer (SET) is a crucial method for generating carbon 
radicals. Hydrogen atom transfer (HAT) enables the direct generation of alkyl radicals from alkanes. We report a dual-role EDA-SET/HAT 
photoreaction system for carbon–carbon bond formation using a phenol catalyst and aryl iodide. This system facilitates a Minisci-type addition 
of alkyl radicals to arenes. Mechanistic studies revealed that EDA complex formation is mediated by halogen bonding between phenoxide and 
aryl iodide. Irradiation of the EDA complex with visible light generates an aryl radical, which abstracts a hydrogen atom from an alkane to form 
an alkyl radical.

Carbon–carbon bond formation reactions are fundamental pro-
cesses for the preparation of organic compounds. Among the numer-
ous reactions developed to construct carbon skeletons, carbon radi-
cal addition is one of the most useful reactions because of its mild 
conditions.1 Recently, reactions using carbon radical precursors un-
der photoredox catalysis conditions have attracted much attention 
as such reactions can be performed with relatively low-energy visible 
light.2 Moreover, since photosensitizers often contain expensive 
transition metal complexes such as iridium and ruthenium com-
plexes, recent attention has been directed toward utilizing visible-
light absorption promoted by substrate interactions.3,4 A charge 
transfer interaction occurs between electron-rich and electron-defi-
cient molecules, referred to as an electron donor–acceptor (EDA) 
complex.5 Because EDA complexes often absorb visible light, irradi-
ation of the EDA complexes promotes single-electron transfer 
(SET) to generate a radical ion pair. In recent years, carbon–carbon 
bond formation reactions based on EDA complex-mediated alkyl 
radical addition have been reported.6 In these reactions, photosensi-
tization is achieved using feedstocks without photosensitizers. 

Reactive radical species such as phenyl radicals generated under 
photoredox catalysis conditions abstract hydrogen atoms from al-
kanes (hydrogen atom transfer: HAT) to generate alkyl radicals.7 
This process allows for the generation of alkyl radicals directly from 
alkanes instead of using the corresponding radical precursors. We 

envisioned that HAT reagents could be generated by excitation of 
EDA complexes in a reaction system that combines EDA-SET and 
HAT. In order to explore this strategy, we focused on phenols, i.e., 
feedstock compounds, as a catalyst (Figure 1a) since their conjugate 
bases (phenoxides) are stable anionic species known to serve as elec-
tron donors in EDA complex formation via π–π stacking or halogen 
bonding.8 Several groups employed phenoxide/aryl halide EDA 
complex formation for the light-driven C–O9 or C–C10 bond for-
mation reactions (Figure 1b).  

We have recently reported an EDA-SET/HAT combined system 
for light-driven C–S bond formation via aryl radical generation using 
aryl halides (Figure 1c), in which hydrogen atom abstraction from 
alkanes by aryl radicals led to generation of alkyl radicals.11 We hy-
pothesized that the use of electron donors that generate more stable 
radical species via SET may allow for the generation of alkyl radicals 
that can react with other radical acceptors. 

Here we report an EDA-SET/HAT combined system for visible-
light-driven C–C bond formation between arenes and alkanes using 
phenol as a catalyst, with subsequent aryl radical generation (Figure 
1d). Electron-deficient arenes or heteroarenes can be used as radical 
acceptors.12 In addition, we demonstrate that the formation of the 
phenoxide/aryl iodide EDA complex is mediated by halogen bond-
ing on the basis of experimental and theoretical studies.  



 

 
Figure 1. Background and strategy of this study. 

We initially examined the reaction of 2-naphthonitrile (1a) and 
tetrahydrofuran (THF, 2a) in the presence of a catalytic amount of 
p-tert-butylphenol (3a), 2.0 equiv of o-fluoroiodobenzene (4a), and 
5 equiv of cesium carbonate in DMSO under photoirradiation con-
ditions. This reaction led to C–C bond formation at 1-position to 
give 5a in 81% yield (Table 1, entry 1). The screening of phenol cat-
alysts revealed that 3a is the most efficient in generating 5a (entries 
2–4).  

When 2-chloroiodobenzene (4b) was used in place of 4a, the 
yield of 5a slightly decreased to 73% (entry 5). The use of 4c, a more 
electron-deficient aryl halide, further reduced the yield of 5a to 53%, 
as the reaction was accompanied by the formation of 5p, a coupling 
product of the THF radical and dehalogenated aryl halide (entry 6). 
Use of dimethyl sulfoxide as a solvent and cesium carbonate as a base 
was the best conditions (entries 7–12). Lowering 2a to 20 equiva-
lents afforded 5a in 71% yield (entry 13). 

Control experiments showed that a phenol catalyst, aryl halide, 
base, and photoirradiation were crucial for the reaction to take place 
(entries 14–17). Moreover, the reaction proceeded only under de-
gassed conditions (entry 18).13, 14 

Table 1. Screening of conditionsa) 

 
En-

try 
Deviation from the standard condi-

tions 
Yieldb) 

1 None 81%c) 

2 3b instead of 3a 58% 
3 3c instead of 3a 53% 
4 3d instead of 3a 56% 
5 4b instead of 4a 73%c) 

6 4c instead of 4a 53% 
7 DMF instead of DMSO 30% 
8 CH3CN instead of DMSO 40% 

9 K2CO3 instead of Cs2CO3 8% 
10 tBuOK instead of Cs2CO3 42% 
11 CsOH instead of Cs2CO3 51% 
12 KOH instead of Cs2CO3 39% 
13 Using 20 equiv of 2a 71%c) 

14 Without 3a 16% 
15 Without 4a 0% 
16 Without Cs2CO3 0% 
17 Without irradiation 0% 
18 Under air 0% 
(a) Performed with 1a (0.10 mmol), 2a (0.5 mL), 3a (0.010 

mmol), 4a (0.15 mmol), and Cs2CO3 in DMSO (0.5 mL) under 
irradiation with 450 nm blue LEDs. (b) Determined by 1H NMR 
(1,1,2-trichloroethane was used as an internal standard). (c) Iso-
lated yield. DMSO, dimethyl sulfoxide; DMF, N,N-dimethylfor-
mamide. 

 
The substrate scope of arenes 1 was investigated under the opti-

mized conditions (Figure 2). 1-Naphthonitrile (1b) gave 4-alkyl-
ated product 5b in 63% yield. 1-Acetyl and methoxycarbonyl naph-
thalenes (1c, 1d) were also suitable, generating coupling products 
5c and 5d, respectively, in moderate yields. Simple arenes such as 
naphthalene (1e) and pyrene (1f) also afforded the desired products 
(5e, 5f) in modest yields. Benzonitrile (1g) underwent the addition 
reaction of the THF radical at both ortho- and para- positions, giving 
5g in 42% yield (o:p = 17:25), whereas para-substituted benzo-
nitriles (1h–1o) gave coupling products (5h–5o) only at the ortho-
position relative to the cyano group. Use of electron-deficient 
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substrates (1h, 1i) resulted in the formation of 5h and 5i in modest 
yields accompanied by di-substitution products. In contrast, p-
methylbenzonitrile (1j) gave 5j in as low as 19% yield. Acetophe-
none (1p) and benzophenone (1q) yielded adducts 5p (30%) and 
5q (41%), respectively, and 1,4-dicarbonyl compounds (1r, 1s) 
yielded single adducts 5r (26%) and 5s (44%), respectively. 

Heteroarenes (1t–1x) were also applicable: quinoline, quinoxaline, 
isoquinoline, and electron-deficient pyridine furnished THF ad-
ducts 5t–5x in moderate yields. Furthermore, benzothiazole (1y) 
and benzoxazole (1z) reacted with the THF radical at 2-position to 
yield 5y (57%) and 5z (30%), respectively. 

 
Figure 2. Substrate scope  
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Next, we investigated the generality of alkanes 2 (Figure 3). Cy-
clic ethers such as tetrahydropyran (2b), 1,4-dioxane (2c), 1,3-diox-
olane (2d), and 2,2-dimethyl-1,3-dioxolane (2e) were applicable as 
substrates, generating coupling products (6b–6e) in moderate 
yields. Acyclic ethers were also applicable: diethyl ether (2f) and 1,2-
dimethoxyethane (2g) gave 6f and 6g, respectively, in low to 

moderate yields. Tetrahydrothiophene (2h), a sulfide, afforded 6h 
albeit in low yield. Cyclic amides N,N’-dimethylimidazolidinone 
(2i) and N-methylpyrrolidone (2j) afforded 6i and 6j, respectively. 
Notably, cyclopentane (2k), a simple hydrocarbon, was also appli-
cable, giving 6k in 31% yield. Trioxane, when reacted with 1a and 1d, 
generated 6l and 6m in 40% and 30% yield, respectively. 

 
Figure 3. Generality of alkyl and acyl groups.  

 
Furthermore, 6m could be derivatized into methyl 4-formyl-1-

naphthoate (7) in 96% yield, suggesting that the reaction could be 
applied to C–H formylation reactions as well (Scheme 1).15 

 
Scheme 1. Hydrolysis of trioxane derivative 6m to form alde-

hyde 7. 
Finally, mechanistic studies of the present reaction system were 

carried out. The inhibition of C–C bond formation by the addition 
of free radical scavengers, such as N-tert-butyl-α-phenylnitrone 
(PBN) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), con-
clusively supported a radical pathway (Figure 4a). Moreover, the use 
of THF-d8 instead of THF under the optimized conditions (shown 
in Figure 2) led to the formation of 2-deuterated chlorobenzene, as 
confirmed by 2H NMR measurements,16 suggesting that the genera-
tion of 2-chlorophenyl radical followed by the abstraction of the hy-
drogen atom from THF (Figure 4b). Furthermore, in order to deter-
mine the rate-determining step of the reaction, the kinetic isotope 
effect (KIE) was estimated using a 1:1 mixture of THF and THF-d8. 
A positive KIE (kH/kD = 3.1) was observed, and the HAT process 
was suggested to be the rate-determining step (Figure 4c). The cal-
culated quantum yield of the reaction was  Φ = 0.045, supporting a 
photoinduced pathway (Figure 4d).17 

EDA complex formation was confirmed from the UV–vis spectra, 
which showed an increase in absorbance at 400–500 nm when 4b 
and sodium p-tert-butylphenoxide (3a-Na) were mixed (Figure 
4e).18 The Job plot analysis of the EDA complex 3a-Na/4b at 420 
nm yields a 1:1 ratio of the two components form a 1:1 EDA (Figure 
4f).19 
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Figure 4. Mechanistic studies. (a) Addition of free radical scav-
engers. (b) Deuterium labeling experiment. (c) Kinetic isotope 
effect measurement. (d) Quantum yield determination. (e) 
UV–vis spectra of 3a and 4b. (f) Job plot of the EDA complex 
(UV-vis absorption at 420 nm).  

 

This 1:1 EDA complex can exist in two possible forms, one medi-
ated by halogen bonding and the other, by π–π stacking (Figure 5). 
To determine the structure of the complex, we investigated whether 
the reaction would proceed in the presence of inhibitors that block 
the respective interactions (Figure 6a). The addition of 2-methox-
ynaphthalene, a π–π stacking inhibitor, slightly inhibited the for-
mation of 5a, whereas nonafluoro-1-iodobutane, a halogen bonding 
inhibitor, significantly inhibited the formation of 5a.  

 

Figure 5. Two possible forms of the EDA complex between 3a 
and 4b. 

 
We then performed 1H NMR experiments to directly observe 

EDA complex formation between p-tert-butylphenoxide and 4b. 
The formation of a “side-by-side” complex via halogen bonding 
(Figure 5a) would result in a shift of the 1H NMR signals to lower 
field compared with those of free components because of the anti-
shielding effects of the aromatic rings. On the other hand, the signals 
of the “overlapped” EDA complex via π–π stacking (Figure 5b) 
would shift to higher field because of the shielding effects of the aro-
matic rings. In the presence of 4b, the peaks of phenoxide aromatic 
protons shifted to lower field (Figure 6b). The proton signals of 4b 
was shifted to higher field as the amount of 4b increased. To put it 
another way, that signals was shifted to lower field as increasing the 
ratio of phenoxide. These findings suggest that the two aromatic 
rings were positioned “side by side,” and that the formation of the 
EDA complex is mediated by halogen bonding under the present re-
action conditions.  

In order to obtain further evidence, we performed density func-
tional theory (DFT) calculations for the two forms of the EDA com-
plex. DG of the halogen-bonding-assisted EDA complex was 0 
kcal·mol–1, whereas that of the π–π stacking-assisted EDA complex 
was 3.9 kcal·mol–1, suggesting that the former is more stable than the 
latter (Figure 6c).20 

 
Figure 6. Determination of EDA complex structure. (a) Addi-
tion of the inhibitors of EDA complex formation. (b) 1H NMR 
spectra of the EDA complex between 3a and 4b. (c) DFT 
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calculations for the two forms of the EDA complex 
(APFD/DGDZVP).  

The proposed mechanism of the present reaction system 
based on the results of mechanistic studies is shown in Figure 7. 
A phenoxide, generated from the reaction of a phenol catalyst and 
base, forms an EDA complex with iodoarene via halogen bonding. 
Visible-light excitation of the EDA complex generates phenoxy 
and aryl radicals. Subsequently, the aryl radical acting as a HAT 
reagent abstracts an alkane hydrogen atom to generate an alkyl 
radical, followed by a Minisci-type radical addition to an arene. 
The hydrogen atom in radical intermediate A is abstracted by the 
phenoxy radical to generate product 5, and the phenoxide ion is 
regenerated by deprotonation. 

 
Figure 7. Proposed mechanism. 

We developed a phenoxide-catalyzed visible-light-driven 
radical C–C bond formation reaction using a combined system 
of EDA-SET and HAT. Various alkyl radicals including those 
from simple alkanes were formed by this method. Mechanistic 
studies revealed that aryl radicals, generated by EDA complex 
excitation, abstract hydrogen atoms from alkanes, resulting in 
the formation of alkyl radicals. Experimental and theoretical 
studies revealed that the formation of the EDA complex is me-
diated by halogen bonding between phenoxide and aryl iodide. 
This photoreaction system requires only feedstock reagents 
and not expensive catalysts or highly reactive compounds. We 
believe that this simple and readily available radical generation 
system combining EDA-SET and HAT will find applications in 
other types of radical reactions. 
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