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ABSTRACT

Molecular docking, a structure-based virtual screening method, is a reliable tool to enrich bio-active
molecules from molecular databases. With the expansion of the size of virtual libraries, the speed of
existing molecular docking programs becomes less than adequate to meet the demand for screening
ultra-large libraries containing tens of millions or billions of molecules. Here we propose Uni-Dock,
a GPU-accelerated molecular docking program supporting various scoring functions including vina,
vinardo, and ad4, which achieves more than 1000-fold speed-up with high accuracy compared with
the AutoDock Vina single-CPU-core version, outperforming reported GPU-accelerated docking
programs including AutoDock-GPU and Vina-GPU. Uni-Dock divides molecules into batches and
simultaneously docks batches of molecules using hundreds of concurrent threads for each molecule.
The data flow between GPU and CPU is optimized to eliminate CPU hotspots and maximize GPU
utility. We demonstrate and analyze the improved performance of Uni-Dock on the CASF-2016 and
DUD-E datasets and recommend three combinations of hyperparameters corresponding to different
docking scenarios. To demonstrate Uni-Dock’s capability on routinely screening ultra-large libraries,
we performed hierarchical virtual screening experiments with Uni-Dock on Enamine Diverse REAL
drug-like set containing 38.2 million molecules to a popular target KRAS G12D in 12 hours using
100 NVIDIA V100 GPUs.

Keywords Molecular Docking · Virtual Screening · GPU Acceleration

1 Introduction

Virtual screening (VS), which aims to identify hit compounds as the start point for drug discovery, plays a crucial role
in modern drug design due to its high efficiency, low cost, and freedom from industrial product limitations compared to
high-throughput screening (HTS) [1, 2]. Among various VS approaches, molecular docking, a structure based method,
has become one of the most popular tools [3]. Molecular docking searches for the binding pose of a ligand within
a receptor, and calculates the binding affinity of the resulting receptor-ligand complex. Various benchmark studies
have proved that molecular docking has a good ability to predict the binding pose and to enrich bio-active molecules
[4, 5, 6, 7].

Previous works indicate that the screening of larger molecular libraries probably lead to candidate compounds with
higher potency [8]. Considering the "low-hanging fruits" are rare in modern drug discovery, the pursuit of chemical
diversity to empower drug discovery of targets with high value, as well as difficulty, is hoped. Possibly in response to
this trend, a rapid increase in the size of commercial libraries was observed in recent years. A representative example
is Enamine REAL Space[9], which comprises 22.7 billion make-on-demand molecules and is challenging the virtual
screening efficiency [10]. On the other hand, urgent public health events such as COVID-19 pandemic and monkeypox
virus infection place high demands on speedy screening of databases against new receptors [11]. Consequently, widely

∗Corresponding authors.



Uni-Dock: A GPU-Accelerated Docking Program Enables Ultra-Large Virtual Screening

used molecular docking methods, like AutoDock4 [12], AutoDock Vina [13] and Glide [14, 15], can no longer meet
researchers’ requirements for the speed and cost of virtual screening owing to the bottleneck of computational resources
[16].

To speed up screening computation, several efforts have been made to devise better methodologies and achieve
accelerations primarily based on CPUs. AutoDock Vina 1.2 [17] is compatible with ad4 scoring function, so that the
speed of AutoDock4 can take advantage of the acceleration of MC/BFGS [18] searching method in AutoDock Vina.
QuickVina2 [19] and QuickVina-W [20] reduce redundancy in searching by letting searching threads of AutoDock Vina
communicate with an record of the explored searching space. However, the resulting improvement of docking speed
is generally within one order of magnitude, which might not result in significant benefits when screening ultra-large
databases.

In addition, some other works have attempted to reduce the overall running time of large-scale virtual screening
through the parallelization on computing clusters. For example, VirtualFlow [16] takes advantage of the linear
scalability of docking and calculates 1 billion compounds in approximately 2 weeks when leveraging 10,000 CPU cores
simultaneously. In spite of the reduced wallclock time for all compounds, it does not change the average CPU running
time for each molecule, thus the cost on computational resources still remains the bottleneck.

With the development of Artificial Intelligence (AI), some efforts like DeepDocking [10] and active learning Glide [21]
attempt to train deep learning (DL) models to predict docking score on a subset of the large scale molecular database.
However, since deep learning models rely on a large amount of labeled data to improve generalization, training a usable
model requires millions of molecular docking first [10], which limits its wide application.

Hence, the urgent need of computationally feasible for virtual screening on ultra-large-scale molecular databases calls for
the improvement to the docking efficiency on each molecule. The application of GPU is a promising strategy to achieve
such a goal. As a widely used acceleration hardware, GPU has shown its powerful capability of high-performance
computing, especially for highly parallelized docking workloads because the scalable array of multi-threaded streaming
multiprocessors (SM) of GPU makes it natural performing docking calculations in parallel. Therefore, it would not be a
surprise that attempts of migrating molecular docking software to GPU have been made, including AutoDock-GPU [22]
and Vina-GPU [23]. However, the speed of AutoDock-GPU is only comparable to AutoDock Vina since it is developed
on AutoDock4 which uses low-efficiency global searching algorithm. Vina-GPU makes use of the efficient Monte-Carlo
searching method proposed in AutoDock Vina, but the computational power of GPU is not fully utilized, resulting in
an average speed-up of about 20 times with 5% worse docking power than AutoDock Vina tested on AutoDock-GPU
dataset [22]. The large-scale virtual screening ability of Vina-GPU is not qualified as well, since it doesn’t provide
the data of enrichment factor on widely-accepted benchmark datasets and only 9125 ligands from DrugBank [24] are
docked in the showcase, far less than common scenarios of high-throughput virtual screening. Further, new docking
features, such as vinardo and ad4 scoring functions, batch mode and grid map support, developed in version 1.2 of
AutoDock Vina are not included in Vina-GPU.

In this work, we propose Uni-Dock, a GPU-accelerated docking method developed on AutoDock Vina 1.2, which
reduces the average time cost of docking one molecule to a minimum of 0.1 seconds, enables ultra-large virtual
screening, and supports vina, vinardo, and ad4 scoring functions.We demonstrate how we change the searching pattern
of Monte-Carlo(MC) algorithm to exploit the marvelous parallelism and memory bandwidth of GPU using various
methods.

Experiments on widely-accepted benchmark databases DUD-E [7] and CASF-2016 [5] are performed to demonstrate
the screening power and docking capability of Uni-Dock with various parameter configurations and scoring functions.
Moreover, to demonstrate the high-throughput virtual screening ability of Uni-Dock, we perform hierarchical virtual
screening approach [2] on Enamine Diverse REAL drug-like set [9] and dock all 38.2 million ligands therein to a
popular target KRAS G12D (PDBID: 7RPZ) [25] within 12 hours by using a GPU cluster containing 100 NVIDIA
V100 GPUs.

2 Methodology

Our improvements consist of three stages. In stage one, We dock one ligand with hundreds of threads on GPU. In
stage two, the docking is performed on multiple ligands in parallel with multiple threads running simultaneously. In
stage three, we further reduce GPU memory footprint and boost computational speed by using single precision in GPU
calculation. And with reduced memory usage of GPU and OpenMP enhanced CPU IO, we calculate ligand batch size
on the fly. The architecture of Uni-Dock and its comparison with Vina is depicted in fig.1.

We use eight targets from DUD-E dataset to evaluate screening power and speed of our implementation and select
AutoDock Vina operated on CPU with exhaustiveness = 32 as our baseline. In each stage, we analyze the drawbacks
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of current implementation through detailed profiling results and use hardware-adapted method to accelerate without
loss of accuracy.

Overall, Uni-Dock achieves more than 1000× acceleration comparing with single CPU core with the same accuracy.
The speed-up ratio and screening performance indicator, enrichment factor (EF) of top 10%, is illustrated in fig.2. The
acceleration ratio is calculated by the execution time of Vina on one 2.5 GHz Intel® Xeon® Platinum 8269CY (Cascade
Lake) CPU and Uni-Dock on one NVIDIA V100 32G GPU. So far, we support rigid and semi-flexible docking, which
means ligands can have rotatable bonds whereas the receptor must be rigid.
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Figure 1: A comparison between the architecture of the algorithm used by AutoDock Vina 1.2 and Uni-Dock: Vina
CPU put MC threads in a queue called task container. Each CPU core executes one MC thread to search for good poses
as output. The MC search is iterated for a given step. In each step, random mutation of rotatable bonds, evaluate energy
and force and gradient descent are performed one by one. Uni-Dock uses thread-level parallelization to utilize the
GPU’s computational power. Input ligands are processed in parallel. Their MC threads are executed simultaneously on
GPU to rapidly cover the whole search space. The specific operations inside each MC search are identical to Vina.

Figure 2: The performance improvements of three critical stages: 1627-fold speed-up with consistent accuracy.

2.1 Stage I: Single ligand, multiple threads

For the first stage of migrating CPU code to GPU, we implement the calculation of MC search in CUDA without
any modifications in the searching strategy. This is because each MC thread calculates the derivatives of atoms in the
force field needed in BFGS. Uncoalesced random memory access the force map between atoms requires undoubtedly
becomes the most critical memory bottleneck. The scheduling of searching tasks is implemented with a CPU task
queue. MC jobs with different initial conformations are put into the task queue, and asynchronously distributed to
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CPU threads. Like the CPU threads, each GPU thread handles the searching of one initial conformation. It is more
advanced that the SIMT (single instruction, multiple threads) architecture of GPU processes the conformations of one
ligand simultaneously. Because the GPU computing unit is not able to directly access the main memory, for one GPU
batch of ligands, we manage the data flow in the following steps: calculate the interaction maps of the pocket, allocate
GPU memory for data and result, transfer the prepossessed data to GPU, call a function that requires GPU data, and
gather the result back to CPU memory. To adapt GPU usage, we migrate the data structure from array-of-structure to
structure-of-array for transferring memory between CPU and GPU in stride.

After the migration, the main workload MC searching is processed on GPU with the same number of threads (nthreads,
namely exhaustiveness in Vina) of the CPU pipeline. A typical value of exhaustiveness is 8. However, the number of
GPU threads is in the order of 10,000, which means the degree of parallelism is not properly utilized yet. Within our
expectation, the running time temporarily becomes longer compared with AutoDock Vina running on CPU. The main
cause is the lower single-thread capacity of GPU and the additional overhead of transferring data.

For conformations, the search space is determined by search width - the number of searching threads with different
initial poses, and search depth - the times of sampling in MC searches. Since the searching space is high-dimensional,
enough threads with random initialized poses are able to exploit possible outcomes and find poses with good scores.
This strategy is used and validated in Vina-GPU [23] with a consistent accuracy. Therefore, we change our searching
strategy from depth-first search to breadth-first search, utilizing the parallel capacity of GPU. Setting width of over
1000 threads, we limit the search depth to 10-40 steps without missing favorable poses in the search space. With these
threads running simultaneously on GPU, the searching speed is drastically improved. We note that the combination of
the number of threads per ligand (nthreads) and search depth (namely nsteps, max_evals in Vina) can significantly
affect speed and accuracy. Vina also provides user options to set exhaustiveness and max_evals to balance the
speed and accuracy of the docking process. The search depth of Vina is a heuristic value based on ligand properties
while exhaustiveness is given by users. Likewise, we test the accuracy and speed of various combinations of these
two parameters and we recommend three combination settings: fast, balanced, and detailed. We will discuss these
settings in detail with more experimental results in sec.3.

2.2 Stage II: Multiple ligands, multiple threads

In this stage, we perform searching on multiple ligands in one GPU batch with one kernel launch. Since the threads
used by one ligand in stage one are still far below the capacity of GPU, we put the processed data of ligands in an array,
and transfer it to GPU memory. Each thread can get the assigned input data. Most ligands have 20-40 atoms while
some might have more than 100 atoms, and the unit capacity of a fixed-length array is square to the max atom numbers
of ligands in a dataset. To maximize memory usage, we allocate memory by the required space of interacting forces
between atom pairs of each ligand.

In addition to computational improvement, Uni-Dock take fault tolerance into consideration as well. Various reasons
cause errors and faults to happen in large-scale virtual screening. One failed compound should not crash the docking of
other ligands. To be specific, we require few broken ligands in a batch not affect the others when it comes to GPU batch
mode in Uni-Dock. Therefore, we add error detection and recovery mechanisms in ligand parsing and searching. To
ensure enough GPU memory, we check available memory of GPU before MC searches.

The computation speed and user experience benefit from above modifications, since we calculate the most time-
consuming part in parallel with low error rate. GPU has a higher memory bandwidth compared with CPU; Therefore,
the more ligands we put in one batch, the higher the efficiency is.

The efficiency of the whole system can be further improved. Input ligands require memory to store its properties and
interaction maps. Since the memory size of GPU limits the maximum number of ligands in one batch, we fix the batch
size to about 200 to avoid out-of-memory failure. In addition, I/O expense and preprocessing calculations on the CPU
become new hotspots which take more than 60% of overall running time.

2.3 Stage III: Exploit GPU

We further exploit GPU memory and calculating ability in this stage.

Firstly, we move computationally intensive preprocessing to GPU by calculating interaction forces between atoms of
each ligand simultaneously on GPU with a higher throughput. This improvement also eliminates the large transfer of
preprocessed data from CPU to GPU.

Besides, we replace double-precision floating point numbers with single-precision ones. As a result, single-precision
data saves memory and speeds up arithmetic operations. Docking score is a rough prediction of experimental binding
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affinity [4] compared to other methods [26, 27], and the score is coarse-grained (for non-outliers, [−15.0, 0.0] with an
accuracy of 0.1). In single precision, we save more than 30% of kernel running time while preserving almost identical
energy scores and we can increase batch size by up to two times. As shown in fig.3, the correlation coefficient between
the result of end-to-end searching using double-precision float and the result of single-precision float is 0.87, tested on
eight targets from DUD-E dataset. The difference between single and double precision in scoring alone is negligible.

Figure 3: The correlation of docking scores under double precision float and single precision float.

To fit maximum docking computation on GPU, we need to know the peak memory usage (a priori), ahead of GPU
computation before data transfer to GPU. A linear regression model for memory usage is developed on ligand properties
and docking settings to achieve such a goal. Our regression function of vina/vinardo scoring function based on NVIDIA
V100 32G GPU is:

memory = 0.011978×
batch_size∑

i=1

atom_number2i + 1.214869× batch_size+ 0.003852× thread+ 20017 (1)

Here, memory (in MB) is the predicted peak global memory usage on GPU, atom_numberi is the number of atoms in
the i-th ligand in current batch, batch_size is the number of ligands put in one batch to be searched in parallel, thread
is the overall number of MC thread in this batch, which equals to nthreads× batch_size, and the constant stands for
temporary memory usage during MC searches. The memory function of ad4 scoring function is slightly different due to
the complex energy terms of ad4, which is:

memory = 0.079216×
batch_size∑

i=1

atom_number2i + 1.911645× batch_size+ 0.003910× thread+ 20052 (2)

We put ligands into one batch until the predicted memory hits hardware limitation. The R2 of our regression reaches
0.999 on real data, which enables Uni-Dock to predict peak memory usage accurately. With this method, we make
use more than 95% of the GPU memory with appropriate batch size. We apply this method to NVIDIA T4 16G GPU
and get accurate memory usage predictions as well. Uni-Dock can automatically choose the correct memory function
according to GPU architecture and parameters.

3 Results

3.1 Performance of Uni-Dock with typical parameter combinations

The application of molecular docking software in different scenarios has different requirements for accuracy and speed.
For example, high efficiency is often required in virtual screening of large-scale databases, while high precision is
required in binding mode prediction.
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To meet the requirements of different scenarios, We recommend three combinations of hyperparameters controlling
calculation speed and precision, namely fast mode (nthreads is 128 and nsteps is 20), balanced mode (nthreads is
384 and nsteps is 40) and detailed mode(nthreads is 512 and nsteps is 40).

To demonstrate the performance of Uni-Dock under different hyperparameter combinations, we test the docking power
(i.e., the ability to predict the native ligand binding pose) and screening power(i.e., the ability to find bio-active ligands
among a pool of bio-active ligands and decoys) of Uni-Dock using CASF-2016 dataset and DUD-E dataset with vina
scoring function, respectively. Docking power is calculated by calculating the proportion of the total that the RMSD
of the binding pose given by Uni-Dock and crystal structure is less than the threshold. Screening power is calculated
by calculating the proportion of the total that the enrichment factor given by Uni-Dock is lager than the threshold.
For 285 targets in CASF-2016 dataset, cocrystallized ligand for each is docked. For 102 targets in DUD-E dataset,
active and decoy sets for each are docked. The receptor structures and ligands were processed on the web service
Hermite™(https://hermite.dp.tech). Ligands are set flexible during docking, receptor is rigid.

Figure 4: Performance of Uni-Dock with typical parameter combinations. Uni-Dock detailed mode can achieve the
best docking performance on both docking power and screening power.

As shown in fig. 4, Uni-Dock detailed mode can achieve the best performance on both docking power and screening
power. In the docking power task, the RMSD of binding pose predicted by Uni-Dock detailed mode from the crystal
structure is within 2Å in 68.07%(194/285) of targets in CASF-2016 dataset, and within 1Å in 46.67%(133/285) of
targets in CASF-2016 dataset. In screening power task, the enrichment factor carried out by Uni-Dock detailed mode
is larger than 2 in 72.55%(74/102) of targets in DUD-E dataset, and larger than 4 in 31.37%(32/102) of targets in
DUD-E dataset. The performance of Uni-Dock balanced mode is slightly worse than Uni-Dock detailed mode, so
as fast mode than Uni-Dock balanced mode. On the other hand, the success ratio of EFtop10% ≥ 2 for Uni-Dock
fast mode reaches 68.63%, only 3.92% smaller than the score of Uni-Dock detailed mode, which indicates Uni-Dock
fast mode can perform as well as Uni-Dock detailed mode on many systems that Uni-Dock detailed mode has good
performance on.

Figure 5: Performance of Uni-Dock using different scoring functions tested on DUD-E dataset. The vina and vinardo
scoring function are similar, resulting in analogous running time, while ad4 scoring has more complex energy terms and
costs more time.
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Different hyperparameter combinations also mean different calculation speeds. As shown in fig. 5, with vina scoring
function, the average time cost for docking each ligand is around 0.10 seconds for Uni-Dock fast mode, around
0.32 seconds for Uni-Dock balanced mode, and around 0.38 seconds for Uni-Dock detailed mode. Different scoring
functions also have an impact on speeds. Since vina and vinardo scoring functions share similar energy terms, the
performance of calculation speed is very similar. And ad4 scoring function has more energy terms, so the average time
cost for each ligand is slightly larger, around 0.46 seconds for Uni-Dock fast mode, around 0.79 seconds for Uni-Dock
balanced mode, and 0.89 seconds for Uni-Dock detailed mode. While using AutoDock Vina 1.2 with exhaustiveness
equal to 8, the average time cost for docking each ligand is 124.56 seconds using vina scoring function, 149.99 seconds
using vinardo scoring function, and 335.89 seconds for ad4 scoring function, respectively.

Above on, for high-throughput virtual screening tasks, we recommend using Uni-Dock fast mode, since it can perform
well on most of the targets that Uni-Dock detailed mode performs good, while the speed is over 2 multiple faster
than Uni-Dock detailed mode. And for the binding pose prediction task, we recommend using Uni-Dock detailed
mode, since the Uni-Dock detailed performs best. The Uni-Dock balanced mode has moderate performance in both
precision and speed, which is suitable for virtual filtering on small datasets.

3.2 Virtual screening on ultra-large dataset using Uni-Dock

To demonstrate the advantages of Uni-Dock in high-throughput screening, we conducted a high-throughput virtual
screening of the recently popular drug target, KRAS G12D (PDBID: 7RPZ), using Enamine Diverse REAL drug-like
set [9] containing 38.2 million ligands.

In order to take into account both speed and precision, we adopt a hierarchical virtual screening approach. We first
applied Uni-Dock fast mode to dock the 38.2 million ligands of Enamine Diverse REAL drug-like set. Then, take out
the top 10% of the ligands (3.82 million ligands) obtained in the previous step, and apply the Uni-Dock balanced mode
for docking. Finally, take out the molecules with a score of 10% (∼ 382, 000 ligands) obtained in the previous step, and
apply Uni-Dock detailed mode for docking to obtain the final results.

Figure 6: Time cost of hierarchical virtual screening approach on Enamine Diverse REAL drug-like set against KRAS
G12D target with Uni-Dock using 100 NVIDIA V100 GPUs.

We use a GPU cluster with 100 NVIDIA V100 GPUs for the hierarchical virtual screening approach described above.
As shown in fig.6, the docking step using Uni-Dock fast mode on 38 million molecules took 7.88 hours, accounting
for 69.92%, the docking step using Uni-Dock balanced mode on 3.8 million molecules took 2.52 hours, accounting for
22.36%, and the docking step using Uni-Dock detailed mode on 0.38 million molecules took 0.87 hours, accounting
for 7.72%.

Figure 7: Distribution of docking score of top 1000 ligands for subsets from 38 million molecules dataset.
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To demonstrate the advantage of virtual screening on ultra-large molecule dataset, we randomly sampled 1% and 10%
of molecules in the 38 million dataset and calculated the docking score distribution of the top 1000 molecules after they
were sorted by docking score. We can see that as the number of molecules increases, the docking score of the head
molecule is lower, which means that the head molecule we find has a stronger binding ability to the target.

Above all, it took in total 11.27 hours to complete hierarchical virtual screening approach on 38 million molecules
with Uni-Dock using a GPU cluster with 100 NVIDIA V100 GPUs, which means that rapid high-throughput virtual
screening of extremely large molecular libraries is possible.

3.3 Influence of hyperparameters and ligand properties on speed

Based on the experiments above, the regression equation of running time with respect to the settings of hyperparameters
and properties of input ligands is obtained. The equation is first proposed on the basis of our algorithm’s time complexity
analysis and then refined with huge amount of real data. We finally achieve an accurate prediction of running time
(R2 = 0.946).

We first realize that the running time of MC search on GPU roughly goes linear with the product of nthreads and
nsteps if other settings remain the same. Moreover, complex and large ligands take more time to mutate, move, and
calculate energy in MC searches. We also need a storage on GPU in O(n2) to save precalculated interactions between
each atoms, in which n is the number of atoms of ligand. In each iteration of MC search, operation complexity roughly
goes linear with the square of number of atoms of the ligand, since we calculate the interaction between each pair of
atoms in the ligand. Furthermore, there are operations outside MC search such as initialization of GPU kernel, result
collection and memory copy between host and device. Last but not least, IO on host and constant time in the workflow
takes approximately fixed time.

Based on above analysis, we collect running time data from screening experiments using Vina scoring function. The
raw data is aggregated for about every 10,000 ligand docking sample since we put them in one Uni-Dock job. We then
perform OLS regression and successfully fit running time with R2 = 0.946:

time = 7.23× 10−8 ∗ nthreads ∗ natoms2 + 1.86× 10−8 ∗ nthreads ∗ nsteps ∗ natoms2 − 0.007984 (3)

where time stands for the average end-to-end running time of docking one ligand in a batch, nthreads is the number
of threads, natoms is the number of atoms of ligand, and nsteps is the number of steps. Note that we have to put
enough ligands in one batch to fully utilize the power of GPU and we recommend putting no less than 10,000 ligands in
the command line and let Uni-Dock divide them into appropriate batches. Since our dataset mainly consist of ligands
with less than 50 atoms, our function might be inaccurate in the case of much heavier ligands.

4 Procedure

This is a short user guide of Uni-Dock which demonstrates a typical docking procedure from setup to result collection.

First we install Uni-Dock and set up the environment. Either building from source or using docker works. Uni-Dock
requires an NVIDIA GPU supporting CUDA version ≥ 11.2. We have made a good adaptation to common GPUs such
as V100 32G and T4 16G and we recommend using machine with more than 10 GB global memory to achieve better
performance.

Next, we prepare the input files and pocket information. Uni-Dock can take either pdbqt file or grid maps generated
by AutoGrid or Vina as protein receptor. The ligands should be in pdbqt format as well. Therefore, if input files are
in other formats such as SMILES, sdf, pdb or mol2, they should be converted to pdbqt format before. The size and
position of pocket are provided by the user. The recommended box size is around 22.5Å × 22.5Å × 22.5Å. So far, we
support rigid and semi-flexible docking, which means ligands can have rotatable bonds but the receptor must be rigid.

To launch a Uni-Dock job using vina or vinardo scoring function, the most important parameters are as follows:

--receptor: filepath of the receptor (pdbqt file)

--gpu_batch: filepath of the ligands to dock with GPU (pdbqt files), process multiple at a time, separated with space

--search_mode: computational complexity, choice in fast, balanced, or detailed as described in sec.3.

If there are too many ligands to be put into one command line, it might exceed the maximum command
line length of linux. We recommend saving your ligands path in a file (separated by spaces) and use
--ligand_index <ligands path file> in place of --gpu_batch or save your command in a shell script like
run.sh, and run the command by bash run.sh. Here is an example of Uni-Dock command line:
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unidock --receptor <receptor.pdbqt > \
--gpu_batch <lig1.pdbqt > <lig2.pdbqt > ... <ligN.pdbqt > \
--search_mode balanced \
--scoring vina \
--center_x <center_x > \
--center_y <center_y > \
--center_z <center_z > \
--size_x <size_x > \
--size_y <size_y > \
--size_z <size_z > \
--dir <save dir >

In the case of ad4 scoring function, Uni-Dock only accept AutoGrid map as receptor. Thus we should generate map using
AutoGrid4 or similar tools (e.g. [28, 29]),and then change command line option --receptor <receptor.pdbqt> to
--map <receptor>.

5 Conclusion

In this work, we proposed Uni-Dock, a GPU-accelerated molecular docking program supporting vina, vinardo and
ad4 scoring functions. The significant high efficiency greatly reduced the time and computation resource cost of the
high-throughput virtual screening on ultra-large molecular databases.

We implemented parallel MC search threads in CUDA to cover search space, and took the strategy of increasing
the number of MC search threads and reducing the number of search steps of each MC search thread. At the same
time, we implemented the parallel docking of multiple ligands with dynamically batch processing based on accurate
memory space prediction, thereby making full use of the graphical memory space and computing power. In addition,
we reduced the amount of data transfer from the CPU to GPU through the migration of the process. We also replaced
double-precision float with single-precision float, reducing the memory space of data to achieve more ligands to
calculate in parallel.

Studies on large benchmarks demonstrate that Uni-Dock keeps comparable docking accuracy to AutoDock Vina 1.2, and
the average time cost of docking each molecule is reduced to 0.1 seconds for vina and vinardo scoring function and to
0.5 seconds for ad4 scoring function on one NVIDIA V100 GPU. We conducted a hierarchical virtual screening against
a recently popular drug target, KRAS G12D, on Enamine Diverse REAL drug-like set containing 38.2 million ligands
using a GPU cluster of 100 NVIDIA V100 GPUs with Uni-Dock. All calculations completed within 12 hours, which
showed Uni-Dock making the high-throughput virtual screening on ultra-large molecular databases more user-friendly.

We will continue to promote the development of Uni-Dock in the following aspects: 1) optimize the performance of
Uni-Dock on different kinds of GPUs. 2) optimize the data structure and data stream during the Uni-Dock calculation
process, to further reduce the time and memory consumption. 3) optimize the interface of the scoring function, assuring
the efficient search of Uni-Dock can be compatible with more scoring functions, such as machine learning-based scoring
functions.
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