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ABSTRACT. We report a multivariate linear regression model able to make accurate predictions for the rate and regioselectivity of 

nucleophilic aromatic substitution (SNAr) reactions based on the electrophile structure. This model uses a diverse training/test set from 

experimentally-determined relative SNAr rates between benzyl alcohol and 74 unique electrophiles, including heterocycles with multiple 

substitution patterns. There is a robust linear relationship between the experimental SNAr free energies of activation and three molecular 

descriptors that can be obtained computationally: the LUMO energy of the electrophile; the average molecular electrostatic potential (ESP) at 

the carbon undergoing substitution; and the sum of average ESP values for the ortho and para atoms relative to the reactive center. Despite 

using only simple descriptors calculated from ground state wavefunctions, this model demonstrates excellent correlation with previously 

measured SNAr reaction rates, and is able to accurately predict site selectivity for multihalogenated substrates: 91% prediction accuracy across 

82 individual examples. The excellent agreement between predicted and experimental outcomes makes this easy-to-implement reactivity model 

a potentially powerful tool for synthetic planning.

Introduction 

Making reliable predictions about the reactivity of organic mol-

ecules under specific conditions is the cornerstone of organic 

synthesis.1 Every organic chemist learns to qualitatively predict 

and/or rationalize reactivity based on the properties of functional 

groups and substituents, and to use these predictions in designing 

effective syntheses.2,3 Quantitative predictions of reactivity and 

selectivity are generally more challenging to achieve, and rely on 

sufficient experimental data to build structure-reactivity correla-

tions, extensive theoretical calculations, or a combination of the 

two.4–9 Recent advances in this area combine techniques such as 

high-throughput experimentation, descriptor generation, multi-

variate statistical analysis, and machine learning to generate ro-

bust quantitative structure-reactivity relationships (QSRR) 

and/or quantitative structure-selectivity relationships (QSSR) for 

specific reactions.10–22 However, many significant challenges re-

main, including reliable data collection for a large enough set of 

chemical space, broad applicability of the resulting models be-

yond the specific training/test sets examined, and deployment in 

complex molecule synthesis planning and design.23–25 

One class of organic reactions for which accurate predictive 

models would be invaluable is nucleophilic aromatic substitution 

(SNAr). SNAr is one of the most important and well-studied trans-

formations in organic synthesis.26–29 It is extensively used in total 

synthesis of natural products,30–37 medicinal chemistry and agro-

chemistry,38–43 and manufacturing of active pharmaceutical and 

agrochemical ingredients.44–48 For example, SNAr reactions are 

particularly powerful for the synthesis and functionalization of 

N-heterocycles, which are among the most ubiquitous structural 

components in active pharmaceutical ingredients.49–51 

Because of its importance in synthesis, designing efficient 

and highly selective SNAr reactions involving complex mole-

cules is crucial. Substantial research over the past 100 years has 

been devoted to understanding the operative reaction mecha-

nisms, whether stepwise or concerted,26,52–54 and in collecting ex-

perimental reactivity and selectivity data for myriad substrate 

combinations. For example, Hammett55 and/or Mayr parameters4 

are often used as mechanistic probes and to correlate/predict 

SNAr reactivity (Fig. 1A).56–62  

Theoretical and computational methods have been used to 

develop predictive models for specific subsets of SNAr chemistry 

(Fig. 1B). Early work focused on stability of the σ-complex in-

termediates using Iπ-repulsion theory,63,64 or frontier molecular 

orbital considerations65 to explain and predict regioselectivity.66 

Baker and Muir67,68 as well as Brinck, Svensson, and co-work-

ers69–71 have published several works on predicting regioselec-

tivity for SNAr reactions using DFT-calculated transition state 

energies and/or stability of the σ-complex intermediates (SS).71  

Quantum chemical transition state calculations are undenia-

bly a powerful tool to explore reaction mechanisms and provide 

theoretical evidence to support experimental findings; however, 

the computational cost of performing transition state analyses re-

mains high, and the complexity and nuance of these calculations 

make them beyond the expertise of many synthetic research 

groups. More desirable from an end-user perspective are models 

built from easily obtained molecular descriptors. In addition to 

established electronic and steric descriptors,72,55,73 in 2016 

Brinck and co-workers introduced the local electron attachment 

energy (a concept similar to the local electron affinity) as a mo-

lecular descriptor for electrophilicity,74 and have applied it to-

ward reactivity/selectivity predictions for SNAr reactions.75 

While this descriptor correlates well with sets of experimental 

rates, and is able to provide qualitative selectivity predictions in 

multihalogenated systems, there is a need for new and more var-

ied data and descriptor sets as foundations to build broadly ap-

plicable models for synthetic planning.  
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Fig. 1  Approaches to developing quantitative structure-reactivity relationships (QSRR) for SNAr reactions. A) Empirical parameters derived from experimental data. B) Calculated 

descriptors from DFT analysis (FMO = frontier molecular orbital theory; TS = transition state). C) Recent hybrid DFT/ML approach. D) Bottom-up approach combining new experi-

mental data with simple calculated descriptors. 

Recently, Jorner, Brinck, Norrby, and Buttar reported the use 

of a hybrid DFT/machine learning (ML) approach to predicting 

experimental activation energies (Fig. 1C).21 This study collates 

more than 440 SNAr reaction rates from prior studies, and uses 

34 ground state and transition state descriptors as the training/test 

set. Notably, the DFT-calculated transition state energies are a 

crucial descriptor in the best-performing model. This hybrid ap-

proach is demonstrably powerful; however, a reliance on previ-

ously reported experimental rates means there are key gaps in the 

training data, such as an overemphasis on nitroarenes, and rela-

tively few heterocyclic electrophiles. It also still requires transi-

tion state calculations for maximum accuracy, especially if rela-

tively few data points are available. 

In this work, we consider the following three aspects of a pre-

dictive model to have equal importance: 1) the prediction accu-

racy the model provides, especially for new (external) predic-

tions; 2) the breadth of applicability the model affords across 

chemical space; and 3) the ease and simplicity of applying the 

model to new systems. In the previously described examples, re-

action rate/selectivity data used to train and validate the 

QSRR/QSSR models are taken from literature values, skewing 

the chemical space coverage toward well-studied systems. For 

our training/test dataset, we measured relative reaction rates for 

74 individual electrophiles – including many nitrogen heterocy-

cles relevant to pharmaceutical synthesis – using a competition 

experiment approach. Having control over the composition of 

our training set gives us the flexibility to have a varied and bal-

anced distribution of structural features, which is necessary to 

ensure both accuracy and applicability in making new predic-

tions. To make the model easy to implement, and to reduce the 

computational cost required, we combined simple and easy-to-

obtain ground state molecular descriptors with our own experi-

mentally determined SNAr rates. From this combination of fac-

tors, we have constructed a QSRR model for SNAr reactions with 

excellent performance in predicting reactivity trends and site se-

lectivity for many different electrophiles, including for multiple 

external test sets with significantly different molecular structures 

(Fig. 1D). 

Results and Discussion 

Creating the training/test set.  

An efficient approach to collect a large and diverse data set 

of reaction rates is critical to our bottom-up approach. To deter-

mine a large number of reaction rates in a timely manner, we 

followed a workflow of high-throughput competition experimen-

tation shown in Fig. 2. This experimental approach can be sum-

marized in three steps: first, we monitored the reaction progress 

of three touchstone reactions under pseudo first order conditions 

to determine absolute rate constants and free energies of activa-

tion (ΔG‡
SNAr) for SNAr between benzyl alkoxide and 2-chloro-

pyridine, 2-chloro-6-methylpyridine, or 2-chloro-5-methoxypyr-

idine as the electrophile (Fig. 2A). Next, we determined relative 

rate constants for the electrophile substrate library by a series of 

94 individual competition experiments under analogous condi-

tions (Fig. 2B, Table S2). Finally, we calibrated these relative 

rate constants using the touchstone reactions, giving absolute 

rate constants and the corresponding ΔG‡
SNAr values for the en-

tire array of SNAr reactions (Table S3). We used the absolute 

ΔG‡
SNAr value for the 2-chloropyridine touchstone reaction (88.8 

kJ mol-1) as the calibration point, with the other two touchstone 

reactions (2-chloro-6-methylpyridine, and 2-chloro-5-methoxy-

pyridine) used to confirm the validity of the competition deter-

mined ΔG‡
SNAr values. We obtain a percent difference between 

the competition values and touchstone values of <2% (Fig. S3). 

Using this competition approach, we were able to rapidly 

build a reliable and self-consistent data set from a library of 74 

(hetero)aryl halides. This includes electrophiles with many diff- 

NO2

CN

CF3
Cl

BrH

CH3

OCH3

σpara

ΔG‡ 

by DFT

TS‡

+

C  Hybrid multivariate approaches

DFT/ML hybrid model

443 literature SNAr rates

34 ground state and TS‡ descriptors

0.63 0.57 0.56 0.98 0.07 0.17 0.12 0.16

0.02 0.00 0.02 0.02 0.35 0.64 0.71 0.26

0.50 0.70 0.66 0.99 0.19 0.52 0.66 1.00

0.51 0.63 0.66 1.00 0.00 0.83 0.77 0.67

0.39 0.39 0.43 0.73 0.18 0.75 0.83 0.40

0.00 0.12 0.00 0.05 0.19 0.77 0.74 0.46

0.00 0.83 0.82 0.86 0.00 0.00 0.00 0.00

0.00 0.91 0.90 1.00 0.26 0.00 0.25 0.00

0.00 0.90 0.80 0.95 0.00 0.37 0.62 0.29

0.00 0.58 0.08 0.41 0.00 0.00 0.00 0.00

0.92 0.93 0.93 1.00 0.15 0.00 0.00 0.00

0.00 0.69 0.64 0.82 0.00 1.00 0.99 0.68

R2 = 0.92

Three

descriptors

74 new 

experimental 

SNAr rates

LUMO            ESP             ΔG‡
SNAr

Reactive site

selectivity 

predictions: 

>90% accuracy

>80 examples

D  This work: bottom-up approach  

MAE = 1.9 kJ mol-1

FMO theory

A  Empirical approaches

SNAr major site, Fukui f+: 0.17

SNAr minor site

Fukui f+ : 0.07 

>1200 Nucleophiles

>300 Electrophiles

Mayr:

B  DFT-based approaches

SNAr major site 

SNAr minor site 

Electrophilicity 

Local electron attachment 

energy
Hammett: σ-Complex and/or

TS‡ energies

ΔΔG = SS



3 

 

Fig. 2.  Experimental approach to collecting free energies of activation for 74 SNAr reactions; Bn = benzyl. A) Touchstone reaction progress analysis under pseudo first order conditions. 

B) Competition experiments to establish relative rates across electrophile library. C) Quantitative reactivity scale for representative electrophiles. 

erent substitution patterns, and thus a variety of electronic ef-

fects. The reactivity of these substrates crosses a broad range, 

with the reaction rates spanning 6 orders of magnitude; a quanti-

tative reactivity scale for several representative electrophiles is 

shown in Fig. 2C. As an initial check on the validity of our data 

set, we assessed the general reactivity trends against the known 

features of SNAr reactivity. As expected, electron-deficient 

arenes react much faster than electron-rich ones; furthermore, the 

reactivity of the halides leaving groups follows the established 

trend, with rates decreasing as Ar–F >> Ar–Cl ~ Ar–Br.76 We 

also constructed Hammett plots for four sets of 2-X-pyridine sub-

strates (X = Cl, Br), giving linear correlations with rho values of 

~4-5 (Fig. S4-S7). Finally, we have prepared and isolated 5 rep-

resentative SNAr products (compounds S1-S5), and confirmed 

their structures using NMR spectroscopy and high-resolution 

mass spectrometry (Fig. S8-S17). 

 

Model generation and performance.  

Based on the known aspects of SNAr reaction mechanisms, 

and our prior work77 in applying ground state molecular de-

scriptors78 to reactivity predictions, we built a quantitative struc-

ture-reactivity model for SNAr electrophiles using only three de-

scriptors. These include a global descriptor in the LUMO energy 

of the electrophile, and two local descriptors based on average 

molecular electrostatic potentials (ESP).79–82 In addition to the 

ESP at the carbon undergoing substitution (ESP1), we also dis-

covered that the sum of ESP values for the ortho and para ring 

atoms is required for accurate predictions (ESP2) (Fig. 3A). 

 By building a multivariate linear correlation between these 

three ground state descriptors and our experimentally obtained 

ΔG‡
SNAr values, we have established a unified structure-reactiv-

ity model able to accurately predict SNAr rates for electrophiles 

with various structural features and leaving groups. There is an 

excellent linear correlation between the predicted and actual 

ΔG‡
SNAr values (R2 = 0.92) and a mean absolute error (MAE) of 

only 1.8 kJ mol-1 (0.43 kcal mol-1) (Fig. 3B). Performing a 

min/max normalization of the descriptors reveals their percent-

age contribution to the model, with ESP1 being most important 

(50%), followed by ESP2 (35%), and finally only a modest con-

tribution from the LUMO energy (15%). We note including ste-

ric-based descriptors was not necessary to obtain good correla-

tions for our data set.  

We have assessed the robustness of the model using cross-

validation with five different random 60/40 training/test set data 

splits (Fig. 3C and Fig. S20-23) and one structured split (Fig. 

S24). All of these regression analyses give essentially identical 

results, with excellent correlation statistics as indicated by the 

range of Q2 values83 from 0.86 to 0.93, and MAE values from 1.6 

to 2.3 kJ mol-1 for the test sets. Finally, we also assessed the 

model performance by analysing the distribution of residuals 

across the data set, and identifying any possible outliers. As 

shown in Fig. 3D, the residuals are randomly distributed, almost 

exclusively in the range -5 to +5 kJ mol-1 (i.e. within an order of 

magnitude of the experimental rate). A box plot reveals only one 

significant outlier (|residual| > 5 kJ mol-1): 2-(N-methylcarbox-

amide)-4-chloropyridine. 
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Fig. 3. Quantitative model generation and performance. A) Molecular descriptors used in multivariate regression analysis, with percent contribution determined by min/max normali-

zation; Bn = benzyl. B) All data linear regression analysis for experimental versus predicted ΔG‡
SNAr with accompanying statistics (MAE = mean absolute error); linear correlation 

uses non-normalized descriptors. C) One of five 60/40 training/test validations, with accompanying statistics. D) Predicted versus residuals plot for the 74 data points, with accompa-

nying box plot (right); one outlier is identified (|R| > 5 kJ mol-1, red point with accompanying structure).  

The selection of these specific molecular descriptors was 

guided by the mechanistic features of nucleophilic aromatic sub-

stitution, as well as our previous work on a multivariate model 

for oxidative addition with (hetero)aryl halides.77 We also car-

ried out an iterative refinement of the included descriptors based 

on our experimental observations and model performance (Table 

S5). The following discussion provides more detail on creation 

and refinement of the model and its mechanistic basis. 

 A classic approach to describing nucleophile/electrophile re-

activity involves frontier molecular orbital (FMO) theory.84,85 At 

a basic level, a lower LUMO energy for the electrophile leads to 

smaller HOMO-LUMO gap between nucleophile and electro-

phile. This results in a lower energy transition state, and therefore 

a faster reaction. On the other hand, this simple connection be-

tween electrophilicity and LUMO energy is not necessarily valid 

for every system: in one recent example, Zipse, Ofial, and Mayr 

have demonstrated poor correlation between LUMO energy and 

electrophilicity for a series of Michael acceptors.86 This is at-

tributed to substituent effects that increase π-conjugation (lower-

ing LUMO energy), but decrease electrophilicity. Nevertheless, 

we included LUMO energies as a potential molecular descriptor 

for SNAr reactivity. We obtained these values by calculating each 

substrate’s electron affinity (EA), and applying the DFT-

Koopmans’s theorem approximation that the LUMO energy is 

the negative of the EA.87,88 We also investigated an operationally 

simpler approach to calculating LUMO descriptors using Entos 

Envision,89 an open online interactive platform for molecular 

simulation and visualization that performs rapid semi-empirical 

calculations using GFN1-xTB.90 We compared the LUMO ener-

gies computed in Envision with those from EA calculations at 

the B3LYP level, revealing a strong linear correlation (R2 = 0.90, 

Fig. S25) and a nearly identical linear regression model (Fig. 

S26) to that shown in Fig. 3B. While we retained the DFT-de-

rived LUMO energies for our subsequent validation and external 

predictions (vide infra), the values obtained from Envision could 

certainly be a rapid and easy to implement alternative. 

To account for substituent effects beyond those on FMO en-

ergies, we used average molecular ESP at individual aromatic 

ring atoms as a local descriptor.79–82 The extent of electron defi-

ciency at the reactive carbon is a key factor in determining SNAr 

rates, and the corresponding ESP is a quantitative descriptor of 

this molecular feature. Previously, we observed excellent corre-

lation between ESP-based descriptors and rates of Ar–X oxida-

tive addition to Pd(0),77 which shares mechanistic aspects with 

SNAr reactivity.91 All ESP calculations were performed using the 

freely available Multiwfn application (version 3.7).92,93 

We initially constructed a bivariate linear model using just 

two descriptors: LUMO energy and ESP1 (at the carbon under-

going substitution) (Fig. 4A). This model gives good predictions 

for halogenated pyridines and quinolines; however, it signifi-

cantly underestimates the reactivity of halogenated pyrimidines, 

and overestimates the reactivity of several non-heterocyclic 

haloarenes. The nature of these outliers led us to consider the 

electronic structure of the Meisenheimer intermediate and SNAr 

transition state more generally. During substitution, the excess  
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Fig. 4. Importance of ESP2 descriptor in predicting ΔG‡
SNAr for multiple substrate classes. A) Bivariate model incorporating only LUMO and ESP1 descriptors, with two sets of outliers 

highlighted in red. B) Comparison of substrate pairs with very similar LUMO and ESP1 values but significantly different ΔG‡
SNAr values, revealing the importance of ESP2 in differen-

tiating reactivity. ESP maps for each substrate structure are shown, with colour gradient indicating local ESP (red = maximum positive; green = 0; blue = maximum negative). 

negative charge in the intermediate/TS‡ is distributed via reso-

nance to the ortho and para positions relative to the reactive site; 

the degree to which these atoms can stabilize this negative charge 

should therefore affect the reaction rate. Thus, we included the 

ESP2 descriptor to account for these additional electronic effects, 

giving the superior model shown in Fig. 3B.  

To highlight the importance of ESP2 in making accurate pre-

dictions for multiple electrophile classes, we examined the two 

largest outliers from the bivariate model on either side of the dis-

tribution. We paired these two outliers with halopyridines that 

have very similar ESP1 values, but significantly different ob-

served ΔG‡
SNAr (Fig. 4B). In the first case, the faster than pre-

dicted outlier 4-chloro-6-morpholinopyridine has very similar 

LUMO energies and nearly identical ESP1 values to 4-chloro-2-

methylpyridine; however, these two electrophiles have a 

ΔΔG‡
SNAr = 10.9 kJ mol-1 (~100 fold rate difference at 298 K). 

These two electrophiles have strikingly different ESP2 character-

istics, with the pyrimidine exhibiting a substantially larger nega-

tive value due to the additional nitrogen in the ring. The same 

situation is observed for the slower than predicted outlier 1-

bromo-3,5-bis(trifluoromethyl)benzene and 2-chloro-5-(trifluo-

romethyl)-pyridine (ΔΔG‡
SNAr = 11.3 kJ mol-1): both substrates 

have nearly identical LUMO and ESP1 descriptor values, but a 

more than 120 kJ mol-1 difference in ESP2. 

 

Site selectivity in multihalogenated heterocycles.  

One of the most powerful applications of quantitative models 

in synthesis is to predict selectivity for one product over another. 

Many prior efforts in SNAr reactivity prediction focused on ex-

actly this problem, developing qualitative and quantitative mod-

els for site selectivity involving multihalogenated electro-

philes.21,63–71,74,75,94 Within our 74-member substrate training li-

brary are several electrophiles with multiple reactive positions. 

The reactivity of these substrates provides an opportunity to test 

the model’s applicability for quantitative selectivity predictions, 

despite not being explicitly trained for this purpose. Importantly, 

the major contributors to the model (ESP1 and ESP2) are local 

descriptors, which is key to enabling differential predictions for 

each reactive site.95 
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Fig. 5  Site selectivity in multihalogenated heterocycles that are part of the training set.  

For the 13 multihalogenated substrates in our library, we de-

termined the experimental site selectivity and compared the re-

sulting ΔΔG‡
SNAr to that predicted by our descriptor-based 

model. We also calculated ΔΔG‡
SNAr values for 5 of the sub-

strates from DFT analysis of the corresponding transition states 

(Fig. 5). In every case, using the three-descriptor model from Fig. 

3B to independently predict ΔG‡
SNAr for each site correctly iden-

tifies the most reactive position, with reasonable quantitative ac-

curacy that is comparable to that obtained via transition state 

analysis; however, the model-predicted ΔΔG‡
SNAr between sites 

does appear to be systematically low (i.e. selectivity is consist-

ently underestimated).  

 

Fig. 6  FMO analysis of SNAr selectivity with 2,4-dichloropyridine, revealing orbital sym-

metry effects in the substrate (LUMO versus LUMO+1) and transition states (HOMO con-

tributions from ortho and para sites); Bn = benzyl.  

 To identify possible reasons for this systematic underestima-

tion, we considered that our global LUMO energy descriptor may 

not be optimal in these cases, and chose the first three substrates 

from Fig. 5 for further investigation. To assess the FMOs in-

volved in these specific regioselective SNAr reactions, we exam-

ined the symmetries of the LUMO and LUMO+1 orbitals of the 

substrates, and calculated the structures and energies of the SNAr 

transition states (Fig. 6 and Fig. S27-S36). In each case, we could 

not locate a Meisenheimer-type intermediate along the reaction 

coordinate when using an implicit solvent model (DMSO), but 

could locate transition states consistent with concerted SNAr re-

actions.29,53,54,96 As shown for 2,4-dichloropyridine in Fig. 6, the 

relevant electrophile FMO for attack at C4 is the LUMO, whereas 

for attack at C2 it is the LUMO+1; this is evident from the 

LUMO/LUMO+1 symmetries of the substrate, and the HOMO 

symmetries of two transition states. Taking the calculated 

LUMO/LUMO+1 gap into account when applying the model 

from Fig. 3B for C4 versus C2 predictions of the first three sub-

strates does give increased accuracy, with errors of 0.3-1.5 kJ 

mol-1 for ΔΔG‡
SNAr.  

 

External case study #1: SNAr rate correlations.  

With our three descriptor model performance validated 

against internal data, we sought to assess its performance and 

generality when applied to new predictions beyond the training 

set. To challenge the scope of applicability to SNAr reactions 

with different solvents and/or nucleophile classes, we first exam-

ined several correlations between predicted ΔG‡
SNAr values from 

the model and three sets of experimental ΔG‡
SNAr values from the 

literature (Fig. 7).56,97,98 In these experimental data sets, a variety 

of (hetero)aromatic halides (F, Cl, and Br as leaving groups) are 

reacted with either alkoxide (Fig. 7A) or amine (Fig. 7B and 7C) 

nucleophiles. While the absolute ΔG‡
SNAr values from the pre-

diction model are specific to the reaction conditions of the train-

ing set, we do obtain good to excellent correlation between the  
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Fig. 7  Model validation through assessing correlations between experimental ΔG‡ values and predicted ΔG‡
SNAr for three external data sets. Outliers are highlighted in red. 

predicted ΔG‡
SNAr and experimental ΔG‡

 values (R2 = 0.72-0.99). 

This is remarkable considering only two of the 34 electrophiles 

from these data sets are included in our training data (compounds 

3B and 4B in Fig. 7B), and these reactions are conducted with 

different nucleophiles, solvents, and temperatures. 

Notably, we are able to account for solvation effects on elec-

trophile reactivity during descriptor generation. In data set C 

(Fig. 7C), there are several substrates containing acidic or basic 

functional groups where the initial correlation between experi-

mental and predicted reactivity is poor (Fig. 7C, substrates 4C, 

11-13C, red points). Given that these functional groups will hy-

drogen-bond with the piperidine solvent, significantly altering 

the electronics of the substrate, we included one explicit solvent 

molecule and recalculated the ESP descriptors for these four 
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electrophiles.75 Using these revised ESP values, we obtain excel-

lent linear correlation across the entire substrate set. 

 In addition to the success in applying the ESP/LUMO model 

beyond the training set, and in identifying solvation effects on 

reactivity, we can also identify potential experimental outliers. 

For example, the data set in Fig. 7A exhibits excellent correlation 

between experimental and predicted ΔG‡
SNAr with the exception 

of substrate 3A. However, that substrate almost certainly will un-

dergo solvolysis of the –OAc group rather than SNAr. Perform-

ing an experimental check on the reaction between 3A and Na-

OMe/MeOH at 50 °C confirms this, with 4-chlorophenol as the 

only observed product (Fig. S37). A second example is identified 

in Fig. 7C, where there is also one significant outlier (6C). In this 

case, 6C has two potentially reactive positions (Ar–Br and Ar–

F). We have experimentally confirmed that reacting 6C with pi-

peridine leads to a mixture of the two SNAr products, in a 1.5:1 

ratio, slightly favouring Ar–Br substitution (Fig. S38). 

 

External case study #2: site selectivity predictions.  

To further examine the potential applicability of our 

ESP/LUMO model beyond the training set, we assessed 63 ex-

ternal examples of site selectivity in SNAr reactions under a va-

riety of conditions. We first applied predictions to three data sets 

previously used as a testing ground for site selectivity predictions 

using other approaches (Fig. 8-10).69–71,75 These data sets also 

contain experimentally-determined rates, providing an additional 

opportunity to test the model’s performance. 

The first data set involves 7 multiply fluorinated arenes un-

dergoing substitution with ammonia, where 5 substrates have po-

tential for regioisomer formation (Fig. 8).99 In each case, the pre-

dicted major site based on the ESP/LUMO model matches the 

experimental site. Furthermore, the predicted ΔG‡
SNAr values 

correlate well with the experimental ln (k) values for these 5 sub-

strates (R2 = 0.95). Notably, ln (k) for substrates 8b and 8d do 

not correlate; this exact situation was noted by Stenlid and 

Brinck, who also observed these two substrates as significant 

outliers when correlating ln (k) with the local electron attachment 

energy.75 While these authors attributed this discrepancy be-

tween prediction and experiment to steric effects, there may be a 

different underlying reason considering the small size of both the 

nucleophile (ammonia) and the cyano group in 8d. 

The second data set also involves multiply fluorinated arenes, 

this time undergoing SNAr with the methoxide anion as the nu-

cleophile in methanol solvent (Fig. 9).100 Across these 10 sub-

strates, 5 have the potential to form regioisomers. In each of these 

cases, the ESP/LUMO model correctly predicts the major site of 

reaction. For substrate 9d, the predicted second most reactive site 

is incorrect (C2) based on experimental observation (C3); how-

ever, for 9e the predicted reactivity order from first to third site 

is correct. While we again observe an underestimation of selec-

tivity based on predicted ΔG‡
SNAr values, we do observe excel-

lent linear correlation with experimental ln (k) across the entire 

substrate set. This is notable in the context of Stenlid and 

Brinck’s prior work with local electron attachment energy, 

where the experimental ln (k) for 9g-j does not correlate with that 

descriptor. Here, the ESP/LUMO model correctly predicts that 

these four substrates should have similar SNAr rates (within a 

factor of 10 of each other). 

 

Fig. 8  Site selectivity predictions and rate correlation for SNAr between fluorinated arenes 

and ammonia. Experimental data from ref 99. 

 The third data set contains 18 multiply fluorinated nitrogen 

heterocycles undergoing SNAr with ammonia, with 15 examples 

where regioisomers can be formed (Fig. 10).99,101,102 In every 

case ESP/LUMO model correctly predicts the major site of reac-

tion, and in all but one case (10l) it also predicts the second site 

of reaction. The quantitative selectivity predictions are also 

much closer to the experimental values within this data set. We 

again observe excellent linear correlation between experimental 

ln (k) and predicted ΔG‡
SNAr. Note that substrate 10r, which has 

a rate “too fast … to measure”,102 is estimated to have an ~105-

fold larger rate constant than 10d; this estimated data point is not 

included in the linear correlation. 

 Finally, to challenge the qualitative accuracy of the model, 

we applied it toward a series of more complex SNAr examples 

with a wider variety of nucleophiles (Fig. 11). Sets A-D were 

previously collated and categorized by Brinck, Svensson, and co-

workers and categorized depending on the nature of the nucleo-

phile/electrophile pairing.70,102–120 Using only the structure of the 

electrophile, our ESP/LUMO model is able to correctly predict 

the major site of reaction in 26 of the 32 cases. Within sets A and 

C – (hetero)aryl halides reacting with anionic nucleophiles – the 

two incorrect predictions are for relatively non-polar fluorinated 

arenes. For sets B and D, which employ neutral nucleophiles, the 

incorrect examples all involve secondary amine nucleophiles. In 

these cases, steric effects appear to play a significant role in over-

riding the electronic nature of the electrophile; for example, pen-

tachloropyridine reacts preferentially at C4 (as predicted)  
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Fig. 9  Site selectivity predictions and rate correlation for SNAr between fluorinated arenes 

and methoxide. Experimental data from ref 100. 

with alkoxide or ammonia nucleophiles, but switches to C2 se-

lectivity with diethylamine. We also applied predictions to 6 

mixed halide electrophiles reacting with a variety of nucleophiles 

in set E (Fig. 11E), drawn from examples in medicinal/agro-

chemical discovery.121–126 The model is able to correctly identify 

the major site of reactivity for each example, except for a case 

where the predicted site is at an Ar–F, and the observed reactivity 

is at a 2-Cl-pyridine site. 

 

External case study #3: complex molecule synthetic planning. 

 As a test of the ESP/LUMO model’s potential utility in real-

world synthetic planning, we sought to validate its predictions 

against SNAr reactions used to prepare clinical candidate active 

pharmaceutical ingredients (APIs). These include recent reports 

on branebrutinib,127 an EGFR T790 M inhibitor,128 a Nav1.7 in-

hibitor,129 a tyrosine kinase inhibitor,130 an SRI/5-HT2A antago-

nist,131 an RoRγ inverse agonist,132 and merestinib133 (Fig. 12).  

The first four examples concern site selective SNAr to generate a 

variety of targets from structurally complex substrates. In each 

of these cases, the ESP/LUMO model is able to predict the cor-

rect reactive site. Thus, applying these predictions during syn-

thetic design would help pharmaceutical process chemists to pro-

ceed with confidence that selective substitution is feasible. In  

 

Fig. 10  Site selectivity predictions and rate correlation for SNAr between fluorinated het-

erocycles and ammonia. Experimental data from refs 99, 101, and 102. 

fact, the chemists at Pfizer used an internal prediction tool (based 

on Fukui indices) to help guide their synthetic planning toward 

the EGFR T790 M inhibitor (second example in Fig. 12).128 

A particularly powerful aspect of in silico reactivity predic-

tions is the ability to evaluate multiple options in substrate design 

before committing experimental resource. We have examined 

three examples where the substitution pattern of the SNAr elec-

trophile affects the site selectivity or reactivity. In the first case, 

synthesis of the target SRI/5-HT2A antagonist requires a site se-

lective SNAr to install an aryl ether ortho to a carbonyl function-

ality.131 This was initially performed using an aldehyde moiety; 

however, the relatively poor site selectivity meant column chro-

matography was required to purify the intermediate. Further  
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Fig. 11  Qualitative site selectivity predictions for combinations of (hetero)aryl halides with anionic (A and C) and neutral (B and D) nucleophiles, and for mixed halide aromatics (E).  

process developments identified an N-methylamide as a more se-

lective alternative that retained key functionality for progressing 

to the target API. This improved selectivity is predicted by the 

ESP/LUMO model. A second case involves choice of either an 

Ar–F or Ar–Cl electrophile for SNAr with an alkoxide nucleo-

phile.132 Experimental evaluation of each revealed that both sub-

strates are viable, with the Ar–Cl version requiring slightly 

higher reaction temperature than the Ar–F analogue. The 

ESP/LUMO model predicts that the F for Cl switch would result 

in a relatively modest reactivity decrease, indicating both should 

be suitable substrates. 

The final example concerns an intramolecular SNAr to gen-

erate an indazole en route to merestinib.133 The final API con-

tains a methoxy group para to the indazole nitrogen; however, 

attempts to perform the intramolecular SNAr with this strong 

electron donating group para to the substitution site were not 

successful. Instead, the researchers installed a nitro group to en-

able the SNAr to proceed, but which would require multiple func-

tional group interconversions. The substantial difference in reac-

tivity between –OMe and –NO2 derivatives is conceptually ob-

vious (and borne out by the ESP/LUMO model); however, the 

orders-of-magnitude difference in predicted rate between the two 

means that the more desirable –OMe substrate could be ruled out  
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Fig. 12  Example applications of SNAr predictions to route development for investiga-

tional API synthesis, including regioselectivity for specific substrates, and comparison of 

potential substrate regioselectivity/reactivity. 

earlier on in synthetic development. Furthermore, additional hy-

pothetical substrates that retain the required oxygen (such as a 

sulfonate) could be evaluated using the prediction model (the –

OMs derivative has a predicted ΔG‡
SNAr halfway between the –

NO2 and –OMe derivatives). 

Conclusions 

We have demonstrated an effective bottom-up approach to de-

veloping a quantitative structure-reactivity model for nucleo-

philic aromatic substitution reactions. By curating a diverse li-

brary of (hetero)aromatic electrophiles, and determining their 

corresponding SNAr reaction rates through a series of competi-

tion experiments, we rapidly assembled a reliable and diverse 

data set as an experimental foundation. Pairing this set of reac-

tivity data with simple ground state molecular descriptors – 

LUMO energy and molecular electrostatic potentials – results in 

a robust multivariate linear correlation between rate and molec-

ular structure.  

Importantly, even though the model was trained using only 

one set of reaction conditions, it is suitable for making correla-

tions and predictions about SNAr reactivity for a wide variety of 

nucleophiles, solvents, and temperatures. These include a >90% 

success rate in predicting the major reaction site for multihalo-

genated arenes (>80 cases), and examples where substrate design 

for active pharmaceutical ingredient synthesis can be informed 

by predicted reactivity. Thus, this simple and easy-to-apply 

model can generate rapid and accurate predictions with the po-

tential to improve and augment computer-assisted synthesis de-

sign, and is complementary to ongoing efforts in machine learn-

ing approaches to reactivity prediction. Further work to incorpo-

rate nucleophile descriptors, including steric effects, is currently 

underway in our laboratories. 
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