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ABSTRACT. We report a multivariate linear regression model able to make accurate predictions for the rate and regioselectivity of
nucleophilic aromatic substitution (SnAr) reactions based on the electrophile structure. This model uses a diverse training/test set from
experimentally-determined relative SnAr rates between benzyl alcohol and 74 unique electrophiles, including heterocycles with multiple
substitution patterns. There is a robust linear relationship between the experimental SnAr free energies of activation and three molecular
descriptors that can be obtained computationally: the LUMO energy of the electrophile; the average molecular electrostatic potential (ESP) at
the carbon undergoing substitution; and the sum of average ESP values for the ortho and para atoms relative to the reactive center. Despite
using only simple descriptors calculated from ground state wavefunctions, this model demonstrates excellent correlation with previously
measured SNAr reaction rates, and is able to accurately predict site selectivity for multihalogenated substrates: 91% prediction accuracy across
82 individual examples. The excellent agreement between predicted and experimental outcomes makes this easy-to-implement reactivity model

a potentially powerful tool for synthetic planning.

Introduction

Making reliable predictions about the reactivity of organic mol-
ecules under specific conditions is the cornerstone of organic
synthesis.! Every organic chemist learns to qualitatively predict
and/or rationalize reactivity based on the properties of functional
groups and substituents, and to use these predictions in designing
effective syntheses.?® Quantitative predictions of reactivity and
selectivity are generally more challenging to achieve, and rely on
sufficient experimental data to build structure-reactivity correla-
tions, extensive theoretical calculations, or a combination of the
two.4-° Recent advances in this area combine techniques such as
high-throughput experimentation, descriptor generation, multi-
variate statistical analysis, and machine learning to generate ro-
bust quantitative structure-reactivity relationships (QSRR)
and/or quantitative structure-selectivity relationships (QSSR) for
specific reactions.1-22 However, many significant challenges re-
main, including reliable data collection for a large enough set of
chemical space, broad applicability of the resulting models be-
yond the specific training/test sets examined, and deployment in
complex molecule synthesis planning and design.?3-2°

One class of organic reactions for which accurate predictive
models would be invaluable is nucleophilic aromatic substitution
(SnATr). SNAT is one of the most important and well-studied trans-
formations in organic synthesis.?%-2° It is extensively used in total
synthesis of natural products,3®-3" medicinal chemistry and agro-
chemistry,38-43 and manufacturing of active pharmaceutical and
agrochemical ingredients.**8 For example, SnAr reactions are
particularly powerful for the synthesis and functionalization of
N-heterocycles, which are among the most ubiquitous structural
components in active pharmaceutical ingredients.*%-51

Because of its importance in synthesis, designing efficient
and highly selective SnAr reactions involving complex mole-
cules is crucial. Substantial research over the past 100 years has

been devoted to understanding the operative reaction mecha-
nisms, whether stepwise or concerted,?652-54 and in collecting ex-
perimental reactivity and selectivity data for myriad substrate
combinations. For example, Hammett5® and/or Mayr parameters*
are often used as mechanistic probes and to correlate/predict
SNATr reactivity (Fig. 1A).56-62

Theoretical and computational methods have been used to
develop predictive models for specific subsets of SnAr chemistry
(Fig. 1B). Early work focused on stability of the s-complex in-
termediates using Ix-repulsion theory,%364 or frontier molecular
orbital considerations®® to explain and predict regioselectivity.5®
Baker and Muir®7:68 as well as Brinck, Svensson, and co-work-
ers®-71 have published several works on predicting regioselec-
tivity for SnAr reactions using DFT-calculated transition state
energies and/or stability of the c-complex intermediates (SS)."*

Quantum chemical transition state calculations are undenia-
bly a powerful tool to explore reaction mechanisms and provide
theoretical evidence to support experimental findings; however,
the computational cost of performing transition state analyses re-
mains high, and the complexity and nuance of these calculations
make them beyond the expertise of many synthetic research
groups. More desirable from an end-user perspective are models
built from easily obtained molecular descriptors. In addition to
established electronic and steric descriptors,”>%%7 in 2016
Brinck and co-workers introduced the local electron attachment
energy (a concept similar to the local electron affinity) as a mo-
lecular descriptor for electrophilicity,”* and have applied it to-
ward reactivity/selectivity predictions for SnAr reactions.”®
While this descriptor correlates well with sets of experimental
rates, and is able to provide qualitative selectivity predictions in
multihalogenated systems, there is a need for new and more var-
ied data and descriptor sets as foundations to build broadly ap-
plicable models for synthetic planning.
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Fig. 1 Approaches to developing quantitative structure-reactivity relationships (QSRR) for SnAr reactions. A) Empirical parameters derived from experimental data. B) Calculated
descriptors from DFT analysis (FMO = frontier molecular orbital theory; TS = transition state). C) Recent hybrid DFT/ML approach. D) Bottom-up approach combining new experi-

mental data with simple calculated descriptors.

Recently, Jorner, Brinck, Norrby, and Buttar reported the use
of a hybrid DFT/machine learning (ML) approach to predicting
experimental activation energies (Fig. 1C).%! This study collates
more than 440 SnAr reaction rates from prior studies, and uses
34 ground state and transition state descriptors as the training/test
set. Notably, the DFT-calculated transition state energies are a
crucial descriptor in the best-performing model. This hybrid ap-
proach is demonstrably powerful; however, a reliance on previ-
ously reported experimental rates means there are key gaps in the
training data, such as an overemphasis on nitroarenes, and rela-
tively few heterocyclic electrophiles. It also still requires transi-
tion state calculations for maximum accuracy, especially if rela-
tively few data points are available.

In this work, we consider the following three aspects of a pre-
dictive model to have equal importance: 1) the prediction accu-
racy the model provides, especially for new (external) predic-
tions; 2) the breadth of applicability the model affords across
chemical space; and 3) the ease and simplicity of applying the
model to new systems. In the previously described examples, re-
action rate/selectivity data used to train and validate the
QSRR/QSSR models are taken from literature values, skewing
the chemical space coverage toward well-studied systems. For
our training/test dataset, we measured relative reaction rates for
74 individual electrophiles — including many nitrogen heterocy-
cles relevant to pharmaceutical synthesis — using a competition
experiment approach. Having control over the composition of
our training set gives us the flexibility to have a varied and bal-
anced distribution of structural features, which is necessary to
ensure both accuracy and applicability in making new predic-
tions. To make the model easy to implement, and to reduce the
computational cost required, we combined simple and easy-to-
obtain ground state molecular descriptors with our own experi-
mentally determined SnAr rates. From this combination of fac-
tors, we have constructed a QSRR model for SnAr reactions with

excellent performance in predicting reactivity trends and site se-
lectivity for many different electrophiles, including for multiple
external test sets with significantly different molecular structures
(Fig. 1D).

Results and Discussion

Creating the training/test set.

An efficient approach to collect a large and diverse data set
of reaction rates is critical to our bottom-up approach. To deter-
mine a large number of reaction rates in a timely manner, we
followed a workflow of high-throughput competition experimen-
tation shown in Fig. 2. This experimental approach can be sum-
marized in three steps: first, we monitored the reaction progress
of three touchstone reactions under pseudo first order conditions
to determine absolute rate constants and free energies of activa-
tion (AG*snar) for SnAr between benzyl alkoxide and 2-chloro-
pyridine, 2-chloro-6-methylpyridine, or 2-chloro-5-methoxypyr-
idine as the electrophile (Fig. 2A). Next, we determined relative
rate constants for the electrophile substrate library by a series of
94 individual competition experiments under analogous condi-
tions (Fig. 2B, Table S2). Finally, we calibrated these relative
rate constants using the touchstone reactions, giving absolute
rate constants and the corresponding AG*snar values for the en-
tire array of SnAr reactions (Table S3). We used the absolute
AG#snar value for the 2-chloropyridine touchstone reaction (88.8
kJ mol?) as the calibration point, with the other two touchstone
reactions (2-chloro-6-methylpyridine, and 2-chloro-5-methoxy-
pyridine) used to confirm the validity of the competition deter-
mined AG¥snar values. We obtain a percent difference between
the competition values and touchstone values of <2% (Fig. S3).

Using this competition approach, we were able to rapidly
build a reliable and self-consistent data set from a library of 74
(hetero)aryl halides. This includes electrophiles with many diff-
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Fig. 2. Experimental approach to collecting free energies of activation for 74 SyAr reactions; Bn = benzyl. A) Touchstone reaction progress analysis under pseudo first order conditions.
B) Competition experiments to establish relative rates across electrophile library. C) Quantitative reactivity scale for representative electrophiles.

erent substitution patterns, and thus a variety of electronic ef-
fects. The reactivity of these substrates crosses a broad range,
with the reaction rates spanning 6 orders of magnitude; a quanti-
tative reactivity scale for several representative electrophiles is
shown in Fig. 2C. As an initial check on the validity of our data
set, we assessed the general reactivity trends against the known
features of SnAr reactivity. As expected, electron-deficient
arenes react much faster than electron-rich ones; furthermore, the
reactivity of the halides leaving groups follows the established
trend, with rates decreasing as Ar-F >> Ar—Cl ~ Ar-Br.”® We
also constructed Hammett plots for four sets of 2-X-pyridine sub-
strates (X = ClI, Br), giving linear correlations with rho values of
~4-5 (Fig. S4-S7). Finally, we have prepared and isolated 5 rep-
resentative SnAr products (compounds S1-S5), and confirmed
their structures using NMR spectroscopy and high-resolution
mass spectrometry (Fig. S8-S17).

Model generation and performance.

Based on the known aspects of SnAr reaction mechanisms,
and our prior work? in applying ground state molecular de-
scriptors’® to reactivity predictions, we built a quantitative struc-
ture-reactivity model for SnAr electrophiles using only three de-
scriptors. These include a global descriptor in the LUMO energy
of the electrophile, and two local descriptors based on average
molecular electrostatic potentials (ESP).”-8 In addition to the
ESP at the carbon undergoing substitution (ESP1), we also dis-
covered that the sum of ESP values for the ortho and para ring
atoms is required for accurate predictions (ESP2) (Fig. 3A).

By building a multivariate linear correlation between these
three ground state descriptors and our experimentally obtained
AG#snar values, we have established a unified structure-reactiv-
ity model able to accurately predict SnAr rates for electrophiles
with various structural features and leaving groups. There is an
excellent linear correlation between the predicted and actual
AG*snar values (R? = 0.92) and a mean absolute error (MAE) of
only 1.8 kJ mol?! (0.43 kcal mol?) (Fig. 3B). Performing a
min/max normalization of the descriptors reveals their percent-
age contribution to the model, with ESP1 being most important
(50%), followed by ESP2 (35%), and finally only a modest con-
tribution from the LUMO energy (15%). We note including ste-
ric-based descriptors was not necessary to obtain good correla-
tions for our data set.

We have assessed the robustness of the model using cross-
validation with five different random 60/40 training/test set data
splits (Fig. 3C and Fig. S20-23) and one structured split (Fig.
S24). All of these regression analyses give essentially identical
results, with excellent correlation statistics as indicated by the
range of Q?values® from 0.86 to 0.93, and MAE values from 1.6
to 2.3 kJ mol? for the test sets. Finally, we also assessed the
model performance by analysing the distribution of residuals
across the data set, and identifying any possible outliers. As
shown in Fig. 3D, the residuals are randomly distributed, almost
exclusively in the range -5 to +5 kJ mol (i.e. within an order of
magnitude of the experimental rate). A box plot reveals only one
significant outlier (|residual| > 5 kJ mol): 2-(N-methylcarbox-
amide)-4-chloropyridine.
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Fig. 3. Quantitative model generation and performance. A) Molecular descriptors used in multivariate regression analysis, with percent contribution determined by min/max normali-
zation; Bn = benzyl. B) All data linear regression analysis for experimental versus predicted AG*snar with accompanying statistics (MAE = mean absolute error); linear correlation
uses non-normalized descriptors. C) One of five 60/40 training/test validations, with accompanying statistics. D) Predicted versus residuals plot for the 74 data points, with accompa-
nying box plot (right); one outlier is identified (|R| > 5 kJ mol, red point with accompanying structure).

The selection of these specific molecular descriptors was
guided by the mechanistic features of nucleophilic aromatic sub-
stitution, as well as our previous work on a multivariate model
for oxidative addition with (hetero)aryl halides.”” We also car-
ried out an iterative refinement of the included descriptors based
on our experimental observations and model performance (Table
S5). The following discussion provides more detail on creation
and refinement of the model and its mechanistic basis.

A classic approach to describing nucleophile/electrophile re-
activity involves frontier molecular orbital (FMO) theory.8485 At
a basic level, a lower LUMO energy for the electrophile leads to
smaller HOMO-LUMO gap between nucleophile and electro-
phile. This results in a lower energy transition state, and therefore
a faster reaction. On the other hand, this simple connection be-
tween electrophilicity and LUMO energy is not necessarily valid
for every system: in one recent example, Zipse, Ofial, and Mayr
have demonstrated poor correlation between LUMO energy and
electrophilicity for a series of Michael acceptors.®® This is at-
tributed to substituent effects that increase mt-conjugation (lower-
ing LUMO energy), but decrease electrophilicity. Nevertheless,
we included LUMO energies as a potential molecular descriptor
for SNAr reactivity. We obtained these values by calculating each
substrate’s electron affinity (EA), and applying the DFT-
Koopmans’s theorem approximation that the LUMO energy is
the negative of the EA.87:88 We also investigated an operationally
simpler approach to calculating LUMO descriptors using Entos
Envision,® an open online interactive platform for molecular
simulation and visualization that performs rapid semi-empirical

calculations using GFN1-xTB.%® We compared the LUMO ener-
gies computed in Envision with those from EA calculations at
the B3LYP level, revealing a strong linear correlation (R? = 0.90,
Fig. S25) and a nearly identical linear regression model (Fig.
S26) to that shown in Fig. 3B. While we retained the DFT-de-
rived LUMO energies for our subsequent validation and external
predictions (vide infra), the values obtained from Envision could
certainly be a rapid and easy to implement alternative.

To account for substituent effects beyond those on FMO en-
ergies, we used average molecular ESP at individual aromatic
ring atoms as a local descriptor.”®-82 The extent of electron defi-
ciency at the reactive carbon is a key factor in determining SnAr
rates, and the corresponding ESP is a quantitative descriptor of
this molecular feature. Previously, we observed excellent corre-
lation between ESP-based descriptors and rates of Ar—X oxida-
tive addition to Pd(0),”” which shares mechanistic aspects with
SnATr reactivity.®? All ESP calculations were performed using the
freely available Multiwfn application (version 3.7).9293

We initially constructed a bivariate linear model using just
two descriptors: LUMO energy and ESP1 (at the carbon under-
going substitution) (Fig. 4A). This model gives good predictions
for halogenated pyridines and quinolines; however, it signifi-
cantly underestimates the reactivity of halogenated pyrimidines,
and overestimates the reactivity of several non-heterocyclic
haloarenes. The nature of these outliers led us to consider the
electronic structure of the Meisenheimer intermediate and SnAr
transition state more generally. During substitution, the excess
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negative charge in the intermediate/TS* is distributed via reso-
nance to the ortho and para positions relative to the reactive site;
the degree to which these atoms can stabilize this negative charge
should therefore affect the reaction rate. Thus, we included the
ESP2 descriptor to account for these additional electronic effects,
giving the superior model shown in Fig. 3B.

To highlight the importance of ESP2 in making accurate pre-
dictions for multiple electrophile classes, we examined the two
largest outliers from the bivariate model on either side of the dis-
tribution. We paired these two outliers with halopyridines that
have very similar ESP1 values, but significantly different ob-
served AG¥snar (Fig. 4B). In the first case, the faster than pre-
dicted outlier 4-chloro-6-morpholinopyridine has very similar
LUMO energies and nearly identical ESP1 values to 4-chloro-2-
methylpyridine; however, these two electrophiles have a
AAGHsnar = 10.9 kJ mol (~100 fold rate difference at 298 K).
These two electrophiles have strikingly different ESP2 character-
istics, with the pyrimidine exhibiting a substantially larger nega-
tive value due to the additional nitrogen in the ring. The same
situation is observed for the slower than predicted outlier 1-

bromo-3,5-bis(trifluoromethyl)benzene and 2-chloro-5-(trifluo-
romethyl)-pyridine (AAG*snar = 11.3 kJ mol?): both substrates
have nearly identical LUMO and ESP1 descriptor values, but a
more than 120 kJ mol-* difference in ESP2.

Site selectivity in multihalogenated heterocycles.

One of the most powerful applications of quantitative models
in synthesis is to predict selectivity for one product over another.
Many prior efforts in SnAr reactivity prediction focused on ex-
actly this problem, developing qualitative and quantitative mod-
els for site selectivity involving multihalogenated electro-
philes. 216371747594 \Within our 74-member substrate training li-
brary are several electrophiles with multiple reactive positions.
The reactivity of these substrates provides an opportunity to test
the model’s applicability for quantitative selectivity predictions,
despite not being explicitly trained for this purpose. Importantly,
the major contributors to the model (ESP1 and ESP2) are local
descriptors, which is key to enabling differential predictions for
each reactive site.%
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Fig. 5 Site selectivity in multihalogenated heterocycles that are part of the training set.

For the 13 multihalogenated substrates in our library, we de-
termined the experimental site selectivity and compared the re-
sulting AAGYsnar to that predicted by our descriptor-based
model. We also calculated AAG*snar values for 5 of the sub-
strates from DFT analysis of the corresponding transition states
(Fig. 5). In every case, using the three-descriptor model from Fig.
3B to independently predict AG*snar for each site correctly iden-
tifies the most reactive position, with reasonable quantitative ac-
curacy that is comparable to that obtained via transition state
analysis; however, the model-predicted AAG*snar between sites
does appear to be systematically low (i.e. selectivity is consist-
ently underestimated).
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Fig. 6 FMO analysis of SnAr selectivity with 2,4-dichloropyridine, revealing orbital sym-
metry effects in the substrate (LUMO versus LUMO+1) and transition states (HOMO con-
tributions from ortho and para sites); Bn = benzyl.

To identify possible reasons for this systematic underestima-
tion, we considered that our global LUMO energy descriptor may
not be optimal in these cases, and chose the first three substrates
from Fig. 5 for further investigation. To assess the FMOs in-
volved in these specific regioselective SNAr reactions, we exam-
ined the symmetries of the LUMO and LUMO+1 orbitals of the
substrates, and calculated the structures and energies of the SnAr
transition states (Fig. 6 and Fig. S27-S36). In each case, we could
not locate a Meisenheimer-type intermediate along the reaction
coordinate when using an implicit solvent model (DMSO), but
could locate transition states consistent with concerted SnAr re-
actions.2%:53549 As shown for 2,4-dichloropyridine in Fig. 6, the
relevant electrophile FMO for attack at C4 is the LUMO, whereas
for attack at C2 it is the LUMO+1; this is evident from the
LUMO/LUMO+1 symmetries of the substrate, and the HOMO
symmetries of two transition states. Taking the calculated
LUMO/LUMO+1 gap into account when applying the model
from Fig. 3B for C4 versus C2 predictions of the first three sub-
strates does give increased accuracy, with errors of 0.3-1.5 kJ
mol* for AAG¥snar.

External case study #1: SNAr rate correlations.

With our three descriptor model performance validated
against internal data, we sought to assess its performance and
generality when applied to new predictions beyond the training
set. To challenge the scope of applicability to SnAr reactions
with different solvents and/or nucleophile classes, we first exam-
ined several correlations between predicted AG¥snar values from
the model and three sets of experimental AG¥snar values from the
literature (Fig. 7).56°7:%8 |n these experimental data sets, a variety
of (hetero)aromatic halides (F, Cl, and Br as leaving groups) are
reacted with either alkoxide (Fig. 7A) or amine (Fig. 7B and 7C)
nucleophiles. While the absolute AG¥snar values from the pre-
diction model are specific to the reaction conditions of the train-
ing set, we do obtain good to excellent correlation between the
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1c (outlier 6C excluded)

predicted AG*snar and experimental AG#values (R2=0.72-0.99). (Fig. 7C), there are several substrates containing acidic or basic
This is remarkable considering only two of the 34 electrophiles  functional groups where the initial correlation between experi-
from these data sets are included in our training data (compounds mental and predicted reactivity is poor (Fig. 7C, substrates 4C,
3B and 4B in Fig. 7B), and these reactions are conducted with  11-13C, red points). Given that these functional groups will hy-
different nucleophiles, solvents, and temperatures. drogen-bond with the piperidine solvent, significantly altering

Notably, we are able to account for solvation effects on elec-  the electronics of the substrate, we included one explicit solvent
trophile reactivity during descriptor generation. In data set C molecule and recalculated the ESP descriptors for these four



electrophiles.” Using these revised ESP values, we obtain excel-
lent linear correlation across the entire substrate set.

In addition to the success in applying the ESP/LUMO model
beyond the training set, and in identifying solvation effects on
reactivity, we can also identify potential experimental outliers.
For example, the data set in Fig. 7A exhibits excellent correlation
between experimental and predicted AG¥snar with the exception
of substrate 3A. However, that substrate almost certainly will un-
dergo solvolysis of the —OAc group rather than SnAr. Perform-
ing an experimental check on the reaction between 3A and Na-
OMe/MeOH at 50 °C confirms this, with 4-chlorophenol as the
only observed product (Fig. S37). A second example is identified
in Fig. 7C, where there is also one significant outlier (6C). In this
case, 6C has two potentially reactive positions (Ar—-Br and Ar—
F). We have experimentally confirmed that reacting 6C with pi-
peridine leads to a mixture of the two SnAr products, in a 1.5:1
ratio, slightly favouring Ar—Br substitution (Fig. S38).

External case study #2: site selectivity predictions.

To further examine the potential applicability of our
ESP/LUMO model beyond the training set, we assessed 63 ex-
ternal examples of site selectivity in SnAr reactions under a va-
riety of conditions. We first applied predictions to three data sets
previously used as a testing ground for site selectivity predictions
using other approaches (Fig. 8-10).5%7175 These data sets also
contain experimentally-determined rates, providing an additional
opportunity to test the model’s performance.

The first data set involves 7 multiply fluorinated arenes un-

dergoing substitution with ammonia, where 5 substrates have po-
tential for regioisomer formation (Fig. 8).% In each case, the pre-
dicted major site based on the ESP/LUMO model matches the
experimental site. Furthermore, the predicted AGisnar values
correlate well with the experimental In (k) values for these 5 sub-
strates (R? = 0.95). Notably, In (k) for substrates 8b and 8d do
not correlate; this exact situation was noted by Stenlid and
Brinck, who also observed these two substrates as significant
outliers when correlating In (k) with the local electron attachment
energy.”> While these authors attributed this discrepancy be-
tween prediction and experiment to steric effects, there may be a
different underlying reason considering the small size of both the
nucleophile (ammonia) and the cyano group in 8d.
The second data set also involves multiply fluorinated arenes,
this time undergoing SnAr with the methoxide anion as the nu-
cleophile in methanol solvent (Fig. 9).1% Across these 10 sub-
strates, 5 have the potential to form regioisomers. In each of these
cases, the ESP/LUMO model correctly predicts the major site of
reaction. For substrate 9d, the predicted second most reactive site
is incorrect (C2) based on experimental observation (C3); how-
ever, for 9e the predicted reactivity order from first to third site
is correct. While we again observe an underestimation of selec-
tivity based on predicted AG*snar values, we do observe excel-
lent linear correlation with experimental In (k) across the entire
substrate set. This is notable in the context of Stenlid and
Brinck’s prior work with local electron attachment energy,
where the experimental In (k) for 9g-j does not correlate with that
descriptor. Here, the ESP/LUMO model correctly predicts that
these four substrates should have similar SnAr rates (within a
factor of 10 of each other).
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Fig. 8 Site selectivity predictions and rate correlation for SnAr between fluorinated arenes
and ammonia. Experimental data from ref 99.

The third data set contains 18 multiply fluorinated nitrogen
heterocycles undergoing SnAr with ammonia, with 15 examples
where regioisomers can be formed (Fig. 10).%9%:10%102 |n every
case ESP/LUMO model correctly predicts the major site of reac-
tion, and in all but one case (10I) it also predicts the second site
of reaction. The quantitative selectivity predictions are also
much closer to the experimental values within this data set. We
again observe excellent linear correlation between experimental
In (k) and predicted AG*snar. Note that substrate 10r, which has
a rate “too fast ... to measure”,19? is estimated to have an ~10°-
fold larger rate constant than 10d; this estimated data point is not
included in the linear correlation.

Finally, to challenge the qualitative accuracy of the model,
we applied it toward a series of more complex SnAr examples
with a wider variety of nucleophiles (Fig. 11). Sets A-D were
previously collated and categorized by Brinck, Svensson, and co-
workers and categorized depending on the nature of the nucleo-
phile/electrophile pairing.”%192-120 Using only the structure of the
electrophile, our ESP/LUMO model is able to correctly predict
the major site of reaction in 26 of the 32 cases. Within sets A and
C — (hetero)aryl halides reacting with anionic nucleophiles — the
two incorrect predictions are for relatively non-polar fluorinated
arenes. For sets B and D, which employ neutral nucleophiles, the
incorrect examples all involve secondary amine nucleophiles. In
these cases, steric effects appear to play a significant role in over-
riding the electronic nature of the electrophile; for example, pen-
tachloropyridine reacts preferentially at C4 (as predicted)
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Fig. 9 Site selectivity predictions and rate correlation for SnAr between fluorinated arenes
and methoxide. Experimental data from ref 100.

with alkoxide or ammonia nucleophiles, but switches to C2 se-
lectivity with diethylamine. We also applied predictions to 6
mixed halide electrophiles reacting with a variety of nucleophiles
in set E (Fig. 11E), drawn from examples in medicinal/agro-
chemical discovery.'?1-126 The model is able to correctly identify
the major site of reactivity for each example, except for a case
where the predicted site is at an Ar—F, and the observed reactivity
is at a 2-Cl-pyridine site.

External case study #3: complex molecule synthetic planning.
As a test of the ESP/LUMO model’s potential utility in real-
world synthetic planning, we sought to validate its predictions
against SnAr reactions used to prepare clinical candidate active
pharmaceutical ingredients (APIs). These include recent reports
on branebrutinib,*?” an EGFR T790 M inhibitor,*?® a Nav1.7 in-
hibitor,*?° a tyrosine kinase inhibitor,*° an SRI/5-HT2a antago-
nist,*3! an RoRy inverse agonist,'3? and merestinib33 (Fig. 12).
The first four examples concern site selective SNAr to generate a
variety of targets from structurally complex substrates. In each
of these cases, the ESP/LUMO model is able to predict the cor-
rect reactive site. Thus, applying these predictions during syn-
thetic design would help pharmaceutical process chemists to pro-
ceed with confidence that selective substitution is feasible. In
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Fig. 10 Site selectivity predictions and rate correlation for SnAr between fluorinated het-
erocycles and ammonia. Experimental data from refs 99, 101, and 102.

fact, the chemists at Pfizer used an internal prediction tool (based
on Fukui indices) to help guide their synthetic planning toward
the EGFR T790 M inhibitor (second example in Fig. 12).128

A particularly powerful aspect of in silico reactivity predic-
tions is the ability to evaluate multiple options in substrate design
before committing experimental resource. We have examined
three examples where the substitution pattern of the SnAr elec-
trophile affects the site selectivity or reactivity. In the first case,
synthesis of the target SRI/5-HT2a antagonist requires a site se-
lective SNAr to install an aryl ether ortho to a carbonyl function-
ality.*3! This was initially performed using an aldehyde moiety;
however, the relatively poor site selectivity meant column chro-
matography was required to purify the intermediate. Further
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Fig. 11 Qualitative site selectivity predictions for combinations of (hetero)aryl halides with anionic (A and C) and neutral (B and D) nucleophiles, and for mixed halide aromatics (E).

process developments identified an N-methylamide as a more se-
lective alternative that retained key functionality for progressing
to the target API. This improved selectivity is predicted by the
ESP/LUMO model. A second case involves choice of either an
Ar—F or Ar—Cl electrophile for SnAr with an alkoxide nucleo-
phile.13 Experimental evaluation of each revealed that both sub-
strates are viable, with the Ar—Cl version requiring slightly
higher reaction temperature than the Ar—F analogue. The
ESP/LUMO model predicts that the F for CI switch would result
in a relatively modest reactivity decrease, indicating both should
be suitable substrates.

The final example concerns an intramolecular SnAr to gen-
erate an indazole en route to merestinib.'3® The final API con-
tains a methoxy group para to the indazole nitrogen; however,
attempts to perform the intramolecular SnAr with this strong
electron donating group para to the substitution site were not
successful. Instead, the researchers installed a nitro group to en-
able the SnAr to proceed, but which would require multiple func-
tional group interconversions. The substantial difference in reac-
tivity between —OMe and —NO2 derivatives is conceptually ob-
vious (and borne out by the ESP/LUMO model); however, the
orders-of-magnitude difference in predicted rate between the two
means that the more desirable —OMe substrate could be ruled out

10
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Fig. 12 Example applications of SnAr predictions to route development for investiga-
tional API synthesis, including regioselectivity for specific substrates, and comparison of
potential substrate regioselectivity/reactivity.

earlier on in synthetic development. Furthermore, additional hy-
pothetical substrates that retain the required oxygen (such as a
sulfonate) could be evaluated using the prediction model (the —
OM s derivative has a predicted AG*snar halfway between the —
NO2 and —OMe derivatives).

Conclusions

We have demonstrated an effective bottom-up approach to de-
veloping a quantitative structure-reactivity model for nucleo-
philic aromatic substitution reactions. By curating a diverse li-
brary of (hetero)aromatic electrophiles, and determining their
corresponding SnAr reaction rates through a series of competi-
tion experiments, we rapidly assembled a reliable and diverse

data set as an experimental foundation. Pairing this set of reac-
tivity data with simple ground state molecular descriptors —
LUMO energy and molecular electrostatic potentials — results in
a robust multivariate linear correlation between rate and molec-
ular structure.

Importantly, even though the model was trained using only
one set of reaction conditions, it is suitable for making correla-
tions and predictions about SnAr reactivity for a wide variety of
nucleophiles, solvents, and temperatures. These include a >90%
success rate in predicting the major reaction site for multihalo-
genated arenes (>80 cases), and examples where substrate design
for active pharmaceutical ingredient synthesis can be informed
by predicted reactivity. Thus, this simple and easy-to-apply
model can generate rapid and accurate predictions with the po-
tential to improve and augment computer-assisted synthesis de-
sign, and is complementary to ongoing efforts in machine learn-
ing approaches to reactivity prediction. Further work to incorpo-
rate nucleophile descriptors, including steric effects, is currently
underway in our laboratories.
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