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ABSTRACT: Chirality of helical objects, exemplified by nanostructured inorganic particles, has 

unifying importance for many scientific fields. Their handedness can be determined visually, but 

its identification by analysis of electron microscopy images is fundamentally difficult because 

(1) image features differentiating left- and right-handed particles can be ambiguous and ancillary, 

and (2) three-dimensional particle structure essential for chirality is 'flattened' into two-

dimensional projections. Here we show that deep learning algorithms can reliably identify and 

classify twisted bowtie-shaped microparticles in scanning electron microscopy images with 

accuracy as high as 94.4% having been trained on as few as 180 images. Furthermore, after training 

on bowtie particles with complex nanostructured features, the model can recognize other chiral 

shapes with different geometries without re-training. These findings indicate that deep learning 

can potentially replicate the visual analysis of chiral objects by humans and enable automated 

analysis of microscopy data for accelerated discovery of chiral materials.  

 

 

Introduction 

The unique optical, biological, and electrical properties of chiral nanostructured particles 

strongly depend on the helicity of their nano-, meso,- and microscale shapes.1–7 Unlike similarly-

sized chiral objects of (bio)organic origin, the shapes of chiral inorganic particles can be readily 

identified from electron microscopy (EM) images, which markedly streamlines the research 

process. However, the chiral nanostructures are polydispersed, necessitating simultaneous 

assessment of their chirality, size, shape, and variability.8,9 Methods and tools for computational 

analysis of sizes and polydispersity are abundant, but the same is not true for chirality, which is 

fundamentally more difficult. Analysis of EM images for chirality is tedious and the 'manual' 

image processing is subject to experimentalist bias. 

While visual recognition of helical objects by humans was developed over many years of 

evolution, the same task for machine vision is problematic and has not been solved so far. The first 

problem is that the image attributes differentiating left- and right-handed enantiomers in EM 

images are subtle and can be ambiguous. Other image features represented, for instance, by 

nanoscale structuring of the particles, often dominate the feature space. The second problem is that 

the vast majority of EM images are two-dimensional (2D) projections of three-dimensional (3D) 

objects, which results in a large amount of information specific to chirality being lost. 3D versions 

of EM techniques are rapidly developing, but the acquisition of such images is non-trivial and, in 

fact, impossible for many substances because of electron beam damage.10 Furthermore, the long 

time required for 3D EM scans makes this method currently unsuitable for statistical evaluation of 

chiral shapes and calculation of their enantiomeric excess. 2D EM data are much more prevalent 

and, when obtained with sufficient quality and quantity, can potentially provide the required 

information. 
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Implementation of machine learning (ML) algorithms is transforming EM methods11,12 

enabling, for example, automated detection and analysis of size and shape distributions of 

nanoparticles from transmission electron microscopy (TEM),13,14 scanning electron microscopy 

(SEM),15–17 helium ion microscopy,18 and scanning tunneling microscopy19 images. However, 

chirality detection requires a more potent methodology of deep learning (DL) – a subfield of ML 

that employs neural networks to solve complex human-like image recognition problems. DL has 

been widely employed in computer vision20 and is even more advantageous in EM by improving 

signal-to-noise ratio, aberration correction, and reducing specimen drift21–28 thereby increasing the 

resolution of SEM,29–31 STEM,32 and TEM.33 Other emerging applications of DL include image 

labelling for identifying different image regions34–38 and semantic segmentation classifying pixels 

into discrete categories.39–42 However, until now most ML and DL applications in EM have 

focused on nanoparticles that are shape-similar. Recognition of chirality in nanostructures using 

DL has not been realized yet. Detection and classification of chiral nanostructures from EM images 

screening multiple left/right nanoscale geometries will provide game-changing tools for the 

development of chiral nanostructures for photonics and other technologies. 

Here, we developed DL models to detect a diverse spectrum of chiral nanostructures on 

SEM images and classify them based on their handedness. We used nanostructured particles with 

bowtie shapes because they can be synthesized with right-/left-handed twists as well as with 

different length, width, thickness, and twist angle. We applied DL algorithms to 2D SEM images 

where the twist in bowties can be easily recognized by the human eye and potentially be used to 

characterize their 3D chirality. Two DL algorithms were tested to overcome the intrinsic 

limitations of exceptionally large databases comprising thousands and millions of images 

previously required for successful models training. We show that a realistic database with as small 

as 180 SEM images is sufficient for achieving an accuracy of bowtie detection in SEM images as 

high as 94.4%. One of the algorithms was able to classify bowties on right-/left-handed with 79% 

accuracy. Furthermore, we tested our models on SEM images of chiral inorganic particles with 

different geometries that they had not 'seen' before. Without re-training, our models can detect 

novel chiral structures with an accuracy as high as 93%, indicating the biomimetic learning 

abilities of the employed neural networks. The developed algorithms can be further expanded to 

accommodate analysis of other parameters relevant for fundamental and technological applications 

of chiral nanostructures and be integrated with complementary microscopy and spectroscopy 

methods. 

 

Results and Discussions 

1. Particle Chirality and Machine Learning 
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Despite the ubiquity and importance of chiral structures around us, the nexus between 

chiral objects and machine learning (ML) is an unexplored territory. This work is intended to make 

inroads in this direction, specifically for microscopy images of chiral nanostructured 

microparticles, which can be subsequently extended both to chiral objects both at smaller and 

larger scales. The foundational hypothesis for this study is that trained deep learning (DL) 

algorithms will enable automatic identification of right- and left-handed versions of mirror 

asymmetric particles. As an experimental model, we used nanostructured right- or left-handed 

particles of bowtie shape because their DL-based recognition and classification can be verified by 

independent image processing, and these particles have strong polarization rotation, high surface 

area, and other technologically attractive properties. Furthermore, particles with shapes containing 

twisted elements can be made from a variety of materials,5,43–46 and their length, width, thickness, 

and twist angle can vary widely for different materials. 

Besides the 2D nature of the SEM images that makes identification of chirality 

fundamentally challenging, DL-based analysis of particle images also has additional challenges. 

First, typical DL-based approaches for computer vision require tens of thousands of images to 

properly train the model.47,48 Although theoretically feasible, such large number of images is 

prohibitive for any EM technique, including SEM. Second, the handedness of the bowties is 

determined by their twist, which is mostly observed in the center of the nanostructured bowtie 

(Figure 1a). Closer to the periphery of the bowtie, the twist becomes less pronounced, being 

replaced with a rich spectrum of nanoscale features that are nearly identical for the left- and right-

handed particles. This means that the relatively small area of the bowtie (Figure 1a, blue rectangle) 

is responsible for its classification. In some circumstances (e.g., bowties overlapping), this specific 

feature of chiral shapes can make it even more difficult to quantify. Third, the directionality of the 

twist in 3D space reconstructed by our brains is the main criterion of the visual assessment of 

handedness of helical objects. However, rotation of the bowties by 90° leads to chiral structures 

with seemingly opposite handedness in 2D (Figure 1b). The same is true for many other helicoids. 

Also, this effect can complicate training and testing datasets, especially when particles have a 

different aspect ratio fitting, for example, a square and rectangle, leading to erroneous 

classification of their handedness. To address these problems, we applied two approaches based 

on Siamese learning (Section 2.1) and synthetic data generation (Section 2.2). 
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Figure 1. Challenges for the chirality determination of chiral nanostructured bowties associated 

with: (a) localization of the twisted area of bowties carrying the most information about their 

chirality (blue rectangle) (b) perception of bowtie chirality due to rotation of bowties by 90°, which 

leads to chiral structures of seemingly opposite handedness in 2D images. Scale bars: 1 µm. 

 

2. Methods for Chirality Recognition by Deep Learning 

 

2.1 Siamese learning 

Artificial neural networks (ANNs) utilizing Siamese learning algorithms are widely used for 

image recognition,49 natural language processing,50 drug development,51 medicine,52 and 

theoretical physics.53 ANNs with Siamese learning generally are class-agnostic51,54 meaning that 

a trained ANN can theoretically identify a variety of objects with similar key feature(s), which is 

particularly suitable for chirality. 

Furthermore, Siamese learning algorithms can be trained with minimal supervision – data 

labeling – that can be exceptionally time-consuming. Relaxing the supervision requirements is 

achieved by using combinations of target elements (images, texts, etc.) – pairs55 or triplets,56 

depending on the optimization function used – for training. For example, if there are two classes 

in the dataset, each having 100 samples, it is possible to create 10,000 pairs by combining every 

sample from one class with every sample of another class. 
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In case of nanostructured microparticles with bowtie shapes, we use triplets: groups of three 

images (Figure 2), one of which is the anchor, another is from the same class as the anchor 

(positive), and the third is from a different class (negative). Then, the two classes are the images 

that contain bowties and images that do not. Each image from the triplet is passed through the 

ANN that converts it to feature vectors – a one-dimensional array of floating-point numbers. As a 

result, for every triplet, we get three feature vectors. We calculate after that the value of the 

optimization function – triplet loss.57 This function determines whether (1) images from different 

classes are far enough in the feature space (and thus can be recognized) and (2) images from the 

same class are close (and thus can be classified). The better the calculated feature vectors satisfy 

these conditions, the smaller the value of the triplet loss. The aim of the network training is to 

ensure that feature vectors will be similar for images of the same class (e.g., bowties) and very 

different for images of different classes. 

Unlike the previously used methods of Siamese learning by neural networks,58 we used one 

network that generated feature vectors for all inputs instead of using two identical branches with 

shared weights that are combined into the distance metric. We experimentally acquired 180 SEM 

images, served as inputs for the neural network training. Of them, 90 images contained bowties 

and 90 did not. From these experimental images, we generated 11,888 triplets and split them into 

training and validation sets of 10,112 and 1,776 triplets, respectively. We applied random 

transformations (e.g., vertical and horizontal flips, rotation, brightness, and sharpness changes) to 

input images during training to prevent the neural network from overfitting.59 

As a target neural network for feature vectors generation, we used EfficientNet60 Python 

module since it is one of the state-of-the-art models for image processing because it provides the 

best combination of quality and training speed based on our data with bowtie particles (Section S1 

of Supporting Information). We used the EfficientNet B4 without a classification head, so the 

model outputs a vector of size 1,792. We added two linear layers connected via the GELU 

activation function61 to reduce the feature space size. As a result, the final model produces a vector 

of size 256. During the experimental evaluation, we tried the model that generates vectors of size 

512, but it provided considerably worse performance due to the larger feature space. 
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Figure 2. Siamese learning protocol for chiral microparticles. Anchor (blue), positive (green), and 

negative (red) images are passed through the ANN that outputs corresponding vectors of length N. 

The vector represents the position of the image in the N-dimensional embedding space. The closer 

the images are in the embedding space, the more similar they are from the ANN point of view. 

The goal of training is to bring images of the same class close to each other while keeping images 

of different classes far apart. 

 

We trained the algorithm for six epochs using a batch size of 16, the Adam optimizer62 and 

one cycle learning rate scheduler63 for improved model convergence. The combination of 

minimum learning rate of 1e-4 and maximum learning rate of 1e-3 demonstrated the best results 

during hyperparameter tuning. For the triplet loss, the margin of 50 showed the best performance 

overall – lower values did not produce enough distinction between classes in the feature space; for 

higher values, the model struggled to distribute samples in the feature space properly. 

To test the performance of the final model, we generated feature vectors for the training data 

and created a nearest centroid classifier64 using them. After that, we applied the classifier to the 

test samples – 18 images (nine with bowties, nine without) that were not used in training. Precision 

as high as 94.4% was obtained with the distribution of train and test samples in the search space 

(Figure S1). We applied the t-SNE algorithm65 to reduce the number of dimensions from 256 to 

2 and plot the feature vectors. We can see that samples form two distinct groups and all test samples 

except for one correctly fit into their respective groups. 

Bowtie detection is first in chirality analysis, with handedness determination coming second. 

To better understand the perception of SEM images by ANN, saliency maps of backpropagation 

gradients were analyzed after passing images through the model (Figure 3). These maps show 

which input image pixels contribute the most to the model's output and are widely used for the 

performance assessment of convolutional neural networks.66,67 We can see that the network 

successfully distinguished pixels of bowties (Figure 3a, Figure 3b) and other parts of the image 

without the chiral object of interest (Figure 3c). These saliency maps confirmed the correctness 

of the model training, but they also demonstrated the challenge that the ANN faces. When trying 
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to identify left- and right-handed bowties, ANN has to locate small areas of difference (Figure 1a) 

without knowing where they are during training. Additionally, there can be bowties of different 

handedness in the same image, which would make it quite difficult for the neural network to 

classify the chiral objects. 

 

 
Figure 3. SEM images (top) and corresponding saliency maps (bottom) for a sample triplet: (a) 

anchor, (b) positive, (c) negative. Scale bars: 1 µm. 

 

2.2.Generation of synthetic SEM images 

To identify the handedness of the bowties, we developed the second DL model based on creating 

a synthetic dataset from a small set of real images. This approach is used for a variety of 

applications,68–70 and, according to MIT Technology Review, is one of ten Breakthrough 

Technologies 2022.71 With respect to analysis of SEM images,16,72 the methodology of synthetic 

datasets is not only novel but also powerful because it addresses one of the key problems – the 

limited amount and high cost of original data.  

The first step in this algorithm is to create the database consisting of (1) background images 

without any particles and (2) particles images cut out from the background (Figure 4).  From every 

SEM image, the algorithm precisely cuts particles (Figure 4b) and fills the image with substrate 

patches, so it looks like no particles were present (Figure 4b, bottom). The images of extracted 

particles are mirrored to obtain representations of both right- and left-handed objects (Figure 4b, 

top). Compared to Siamese learning, this method can be considered as supervised. However, once 
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the object database is created, the chirality and location of bowties are already known, so there is 

no need to do it manually. Also, depending on the number of objects extracted and their 

transformation, it is possible to generate any number of images. We note, however, that this 

method is the best for objects that can be extracted from the microscopy images. Its applicability 

to other chiral nanostructured and biological materials, such as fibrils, nets, can be limited, but it 

can be successfully overcome by Siamese learning. 

 

 

Figure 4. Generation of synthetic datasets from SEM images for ANN training: (a) example of 

original SEM image of bowties, (b) extracted bowties and backgrounds, and (c) example of 

generated SEM image and bounding box with information about particles in the image. 

 

The second step is the generation of synthetic EM images (Supporting Information, 

Section S2), which provides the control over the number of particles in the image and their 

positions, sizes, and handedness. The algorithm outputs the information about particles in the 

image along with the image itself (Figure 4c). The first number is the class of the bowtie (0 is 

right-handed, 1 is left-handed), the following two numbers are relative positions of the center of 

the particle bounding box, and the last two numbers are relative sizes of the particle bounding box. 

This is the format required for the specific model that is commonly used in experiments. 

Depending on the task at hand, the format and properties extracted (e.g., width, height) can be 

different. 

The third step is the training of the neural network. We used the YOLOv573 – a state-of-the-

art algorithm capable of finding objects in images and classifying them. This algorithm is also 

known for its fast execution speed, making it a perfect candidate for embedded imaging systems 

like microscopes. YOLOv5s variant was implemented in this work because it is the fastest from 

this family of DL models (Supporting Information, Section S3). For our experiments, 10,200 

images were generated for the training dataset and 1,500 images for the validation dataset. The 
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model reached a 99% f1 score and 99% mean average precision, which means that the model 

successfully learned how to determine chiral particles. 

To test the algorithm performance on real data, we ran the detection on 195 original SEM 

images of bowtie particles that did not use during the training (Figure 5). Nevertheless, the DL 

algorithm can detect and classify bowties of different sizes, orientations, and aspect ratios, which 

can then allow it to automatically calculate the enantiomeric excess and other parameters of 

corresponding samples. The model yielded 91% precision for identifying the chiral particles and 

79% precision for identifying their handedness. 

 

Real SEM images 

 
 

Synthetic SEM images 

 

Figure 5. Examples of classification of bowties on right-handed and left-handed using real (a, b) 

and synthetic (b-e) SEM images. 

 

3. Detection and classification of new chiral objects 

To test the neural networks described in Section 2, we prepared datasets of geometrically 

different chiral and achiral structures that neural networks have not 'seen' before. Here, we want 

to understand the potential of developed models trained on particular chiral structures for the 

detection and classification of new chiral particles with potentially different shapes. The novel 
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structures included chiral Au-S 'twisted bundle' particles,1 achiral Au-S 'kayak' particles,1 and 

achiral 'pancake stack' particles made similar to bowties but using amino acid racemate74. The 

classifier based on the Siamese learning model detected these chiral objects previously unseen by 

the neural network with 82.5% accuracy, indicating that employed neural networks learned the 

concepts of chiral particles which are hierarchically organized. The t-SNE plot presented in 

Figure S3 shows that most novel structures are distributed across bowties. We believe that the 

distinct shape of such hierarchically organized particles is one of the most critical factors for the 

model to detect and classify them. Therefore, achiral 'pancake stack' structures, which have a very 

clear shape in SEM images, were classified closer to the bowties. 

The YOLOv5 model was also able to differentiate between chiral and achiral Au-S structures 

with 93% accuracy. Simultaneously, it did not recognize 'pancake stack' particles as a chiral 

structure, which is equally important. Thus, twist is likely to be the key element enabling the 

recognition of chiral particles, which is quite similar to human perception of the 3D chiral 

geometries (Figure 6). The DL algorithm was able to classify Au-S structures on left and right 

with 64% accuracy, which is quite remarkable considering that these particles had a different 

morphology than bowties and the model was not trained on these particles. Further training can 

certainly increase this accuracy to the values similar to bowties, but at this point, it was important 

that the model was able to recognize left- and right chirality as a common feature in different types 

of particles without specific training on particles with different chiral shapes. 
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Figure 6. Examples of classification of chiral Au-S particles on left-handed (a, c) and right-handed 

(b, d) in SEM images. Detection of achiral structures in SEM images: achiral 'kayak' particles (e) 

and achiral 'pancake stack' structures (f). 

 

Conclusions 

Chiral nanostructured microparticles offer solutions for biomedicine, optoelectronics, and 

photonics due to their outstanding optical properties, high chiroptical activity, and enantioselective 

interaction with biological objects.75 DL-based analysis of electron microscopy images of chiral 

inorganic particles allows for the establishment of their chiral configuration, which will not only 

dramatically hasten their characterization but provide a powerful methodology for the accelerated 
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discovery of chiral nanostructures for a variety of materials needs. DL-based algorithms that can 

find chiral nanostructured microparticles of bowtie shape in SEM images and classify them as 

right- or left-handed depending on their chirality. Our results and the high processing speed (20 - 

30 ms per image) open a realistic perspective of the practical application of these methods for 

automatic real-time analysis of electron microscopy images at scale, which can greatly simplify 

their property optimization and technological translation. 

Methods described in the paper help overcome the need for collecting large datasets of 

microscopy images by using image triplets (Section 2.1) or synthetic images (Section 2.2) in 

algorithm training. Nevertheless, the increase of dataset size is likely to further increase accuracy 

of the DL classifications and should be pursued for their further development. For Siamese 

learning, the number of potential triplets scales non-linearly – going from 2 to 4 classes with 100 

images in each will increase the number of triplet combinations six times. For synthetic image 

generation, the increase in the potential number of training samples increases even more because 

there is no hard limit in the number of images that can be generated from one dataset. We will 

need to further develop strategies for training datasets creation such that they (1) preserve 

reasonable training time and (2) ensure that the training dataset is diverse enough to keep the 

models generalizable. 

The second problem to be aware of is the complexity of data. When we add more and more 

particle types to the training dataset, it may become increasingly challenging for the models to 

distinguish them. At some point, the base models that we used in this paper (EfficientNet B4 and 

YOLOv5s) may need to be replaced with even more sophisticated ANNs.  The larger and more 

complex versions – EfficientNet B5-B7 and YOLOv5m-x will be tested to accommodate a greater 

variety of chiral scales and nanoscale features.  We perform scaling down the embedding vector 

to 256. Moreover, in Siamese learning. In addition to the use of these networks, it is possible to 

increase the size of the resulting vector (512, 1024, or original size) to create a larger embedding 

space that can fit more particle types. Described changes will further increase the training time but 

create room for automated analysis of a wide variety of microscopy images. 

We also expect that it is hard to visually determine object properties (size, chirality) or even 

separate different objects themselves, which is typical for complex images containing nanofibrils, 

nanoclusters, or dendritic nanostructures. A comprehensive database for synthetic images 

generation will be more difficult to create for such raw data. 

In perspective, further development of DL for chirality can be used to predict microparticle 

properties based on their chiral shapes and nanoscale morphology that would be complementary 

to electromagnetic and quantum mechanical calculations. 
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Materials and Methods 

SEM data 

Structures of bowtie shape and 'pancake stack' shape were synthesized in an approach similar to 

that described in Ref.74 with some modifications. Au-S structures were synthesized in an approach 

similar to Ref.1 An FEI Nova 200 Nanolab Dual Beam SEM was used for SEM imaging. 

Deep learning models training 

Both models used in this research were developed using the PyTorch (https://pytorch.org/) 

framework of version 1.10 with GPU support. We performed the training in the Google Colab 

environment (https://colab.research.google.com/) on NVIDIA P100 and V100 GPU accelerators. 

Regarding the YOLOv5s training process, we followed official guidelines and used scripts 

provided by the library developers [https://github.com/ultralytics/yolov5/wiki/Train-Custom-

Data]. The batch size was set to 32, resized image size (used to preserve uniformity of the input 

images) was set to 800 pixels, and the number of epochs was 2000. 
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