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Abstract 

In structure-based virtual screening (SBVS), it is critical for machine-learning scoring 
functions (MLSFs) to capture protein-ligand atomic interaction patterns. We generated a 
cross-target generalization ability benchmark for protein-ligand binding affinity prediction to 
assess whether MLSFs could capture these interactions. By focusing on the local domains in 
protein-ligand binding pockets, we developed standardized pocket Pfam-based clustering 
(Pfam-cluster) approach for the generalization ability benchmark. Subsequently, 11 typical MLSFs 
were tested using random cross-validation (Random-CV), protein sequence similarity-based 
cross-validation (Seq-CV), and pocket Pfam-based cross-validation (Pfam-CV) methods. 
Surprisingly, all of the tested models showed decreased performance as they were evaluated from 
Random-CV to Seq-CV to Pfam-CV experiments, without showing satisfactory generalization 
capacity. Interpretable analysis revealed that predictions on novel targets by MLSFs were relying 
on buried solvent accessible surface area (SASA)-related features in complex structures. By 
combining buried SASA-related information with ligand-specific patterns that were only shared 
among structurally similar compounds, higher performance in Random-CV tests was attained for 
Random forest (RF)-Score. Based on these findings, we strongly advise assessing the 
generalization ability of MLSFs with the Pfam-cluster approach and being cautious with the 
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features learned by MLSFs. 
 

Introduction 

 Structure-based virtual screening (SBVS) has been increasingly applied to identify small 
molecular binders based on target structures in the field of drug discovery1–5. An accurate scoring 
function for estimating protein-ligand binding affinities is critical for the success of SBVS. 
Conventional scoring functions used in docking softwares are divided into force field–based 
scoring functions, empirical scoring functions, and knowledge-based scoring functions5–10. To 
develop a reliable scoring function, intensive efforts have been made in reproducing ligand crystal 
poses, discriminating between decoys and actives, and learning experimentally determined 
binding affinities11–14. Recently, with the rapid development of machine learning approaches, and 
more experimental protein-ligand binding complex structures available, machine-learning scoring 
functions (MLSFs) have been intensively studied for protein-ligand binding affinity prediction15–

17.  

Unlike conventional scoring functions, MLSFs are developed to automatically learn 
protein-ligand structural and interaction features from large protein-ligand complex datasets using 
different ML algorithms, such as random forest (RF)18–20, extreme gradient boosting (XGB)21, 
convolutional neural network (CNN)22–25, and graph neural networks (GNN)26–30. MLSFs have 
been demonstrated to achieve remarkable results in various benchmarking studies12,13,31. Moreover, 
MLSFs were also reported to assist in hit identification in practical virtual screening 
applications32–34. 

  However, generalization ability, referring to the ability to make correct and stable decisions 
on a previously unseen dataset, is the main concern in data-driven algorithms. Machine learning  
models having huge numbers of parameters, are in principle rich enough to memorize the training 
data35. Besides, machine learning models can achieve encouraging but deceptive scores on an 
independent and identically distributed dataset by learning dataset bias36,37. Models that learn the 
shortcuts or other unintended features from training datasets would be extremely sensitive to small 
dataset distribution shifts and would be incapable of making reliable predictions on the 
out-of-distributed datasets. This instability hinders their practical applications in the unseen, 
unsought and uncertain world. 

 In SBVS applications, the main challenge is to discover true binders with novel chemical 
scaffolds against new drug targets2,5, where the real testing datasets are out-of-distributed and 
require MLSFs to have sufficient generalization ability. An early attempt at evaluating 
generalization ability was the leave-cluster-out cross-validation experiment suggested by Kramer 
et al38. Entries in the PDBbind dataset were classified into different clusters based on protein 
sequence similarities, and the protein-ligand binding affinity prediction ability of RF-Score was 
found to decrease from Rp=0.76 on the PDBbind core set to Rp=0.46 on new targets. Thereafter, 
similar generalization assessments were carried out on many other MLSFs39, such as SFCscoreRF20, 
PotentialNet26, ACNN37, IGN27, and SG-CNN28. All of these MLSFs demonstrated worse scoring 
power on new targets than on the PDBbind core set. However, the widely used protein sequence 
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similarity-based cluster method is not reliable in protein binding-site classification, especially the 
inability to handle structurally similar proteins with low protein sequence similarity. In addition, 
those assessment studies were only conducted on limited numbers of MLSFs, and lack of 
interpretable analysis to explain the poor generalization ability. 

Here, we present a systematic study on the generalization ability of MLSFs. We proposed a 
more reliable data splitting approach, the pocket Pfam-based clustering (Pfam-cluster) approach. 
Then, 11 representative MLSFs were benchmarked with three, 3-fold cross-validation experiments 
on the latest version of PDBbind v2020 dataset: random cross-validation (Random-CV), protein 
sequence similarity-based cross-validation (Seq-CV), and pocket Pfam-based cross-validation 
(Pfam-CV). We found that all the assessed MLSFs showed declining binding affinity prediction 
performances from Random-CV to Seq-CV to Pfam-CV experiments, without showing a 
satisfying generalization ability. Further analysis of individual clusters revealed that all the models 
dominantly relied on the buried solvent accessible surface area (SASA) calculated in complex 
structures to make predictions on novel targets. The explicit descriptor of buried SASA was 
protein-ligand atomic interactions between carbon atoms (C-C interactions) in RF-Score. 
Moreover, we found that the remarkable binding affinity prediction ability of RF-Score in the 
Random-CV experiment was achieved by combining specific features that were only shared 
among structurally similar ligands.  

Computational methods 

1. PDBbind Dataset (Version 2020) 

PDBbind is a comprehensive dataset to curate experimentally determined binding affinity data 
for the protein-ligand complexes deposited in the Protein Data Bank (PDB)40. The general set 
contains 19,443 protein-ligand complexes and the corresponding experimental binding affinity 
data, the refine set includes 5,316 high-quality complexes from the general set, and the core set is 
constructed with 266 representative complexes from the refine set based on protein sequence 
similarity clustering.   

2. Data splitting methods 

Random cross-validation (Random-CV). After removing complexes with ligand molecular 
weight greater than 1,000 Da, the PDBbind general set was randomly and equally divided into 
three subsets. Any two subsets were split into training and validation sets at an 80/20 ratio and the 
remaining subset was used for testing. This process was repeated ten times. 

Sequence similarity-based cross-validation (Seq-CV). In Seq-CV, the dataset used in the 
Random-CV experiment was first clustered according to protein sequence similarity and ligand 
similarity. Pairwise2.align.globallxx module in biopython41 was used to calculate 
all-chain-against-all-chain sequence identity and then protein similarity was determined by the 
result of dividing sequence identity by the longer sequence length. The ligand similarity was 
measured based on RDKit topological fingerprints42. The cutoff of protein similarity was set to 0.5, 
or 0.4 if the ligand similarity was over 0.9, as suggested previously24. The following steps were 
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the same as the steps in the Random-CV experiment, except that the complexes in the same cluster 
were grouped into the same subsets. 

Pocket Pfam-based cross-validation (Pfam-CV). The protein sequences were systematically 
clustered into families and domains in Pfam database43. Sets of Pfam entries that are 
evolutionarily related are grouped into clans44. Pfam entries were assigned to each protein 
structure in the Protein Data Bank (PDB)45. As one protein may have several different Pfam 
entries, we only collected the Pfam entry that shared the most residues with the ligand-binding 
pocket defined by the residues within 7 Å of the crystal ligand, and this Pfam entry was named 
pocket Pfam. To group the proteins without a pocket Pfam entry into correct clusters, the protein 
sequences were collected and iteratively aligned to the Pfam sequences of other proteins with the 
help of the jackhammer search method and HMMER software46. Finally, the protein cluster results 
were manually annotated according to Pfams, clans, alignment results, and pocket structures. The 
Pfam-cluster returned three hierarchies: Pfam, clan, and cluster. The next processes were the same 
as the Random-CV experiment. 

3. Models 

 Total of 11 open-source and representative MLSFs were benchmarked. The models and their 
reported Pearson correlation coefficient (Rp) on the PDBbind core set are summarized in Table 1.   

Table 1: Summary of MLSFs 

Name Year Model Features 
Training 
dataset 

Test set Rp 

LR::V* - LR 6 descriptors 
Refine 2007  

(1,105) 
Core 2007 

(195) 
0.62 

LR::VR1* - LR 42 descriptors - - - 

RF-Score*47 2015 RF 42 descriptors 
Refine 2007  

(1,105) 
Core 2007 

(195) 
0.80 

XGB::VR1* - XGB 42 descriptors - - - 

NNScore*48 2011 
Ensemble 

MLP 
350 descriptors - - - 

Pafnucy23 2018 CNN 3D voxels 
General 2013 

(11,906) 
Core 2016 

(262) 
0.78 

OnionNet49 2019 CNN 

Distance-based 
contacts and 

pharmacophore 
features 

General 
2016\Refine\

Core 

Core 2016 
(290) 

0.82 

SGCNN28 2021 GCN 
Graph (Distance 

info) 
General 2016 

(11,308) 
Core 2016 

(290) 
0.78 

IGN27 2021 GCN 
Graph (Distance + 

angle info) 
General 2016 

(8,298) 
Core 2016 

(262) 
0.84 

SIGN30 2021 GCN 
Graph (Distance + 

angle info) 
Refine 2016 

(4,057) 
Core 2016 

(290) 
0.80 
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GraphBAR29 2021 GCN 
Graph (Distance 

info) 
Refine 2016 

(3,319) 
Core 2016 

(290) 
0.75 

*The source code of these models is available at 
https://github.com/hnlab/generalization_benckmark 
 
LR::V and LR::VR1. To make a fair comparison with other MLSFs, two easier linear functions 
were tested in this study. In LR::V, the weighting factors of six Vina terms (gauss1, gauss2, 
repulsion, hydrophobic, hydrogen bonding, and the number of rotation bonds) were refitted. 
Except for six Vina features, 36 RF-Score features (described below) were also considered to 
construct LR::VR1. Here, six Vina features and 36 RF-Score features were computed from the 
protein-ligand complex structures with the ODDT toolkit50. 

RF-Score. RF is a representative ensemble ML algorithm, the final decision of which is 
determined by each decision tree in the RF18. RF-Score is an RF algorithm implementation in 
SBVS to predict protein-ligand binding affinity47. Briefly, four protein heavy atoms (C, N, O, S) 
and six ligand heavy atoms (C, N, O, F, P, S, Cl, Br, I) were selected to generate 36 dense atom 
pair features, representing the occurrence counts of intermolecular contacts between elemental 
specific atom pairs within 12 Å. Moreover, six Vina features were also considered in RF-Score. 
The RF model was constructed using the scikit-learn package51. All parameters were the defaults 
except that the number of estimators was set to 500 (n_estimators=500) and the number of 
features to consider when looking for the best split was set to 7 (max_features=7). These two 
parameters were determined by a grid hyperparameter search on the PDBbind core set. 

XGB::VR1. XGBoost is another representative ensemble ML algorithm that uses gradient 
boosting algorithms to speed up computation21. The features used in XGB::VR1 were the same as 
in LR::VR1 and RF-Score. The XGBoost model was constructed with the XGBoost python 
package21. The number of gradient boosted trees was set to 300 (n_estimators=300) and the 
maximum tree depth for base learners was set to 6 (max_depth=6) based on a grid hyperparameter 
search on the PDBbind core set. 

NNScore. NNScore is an ensemble multilayer perceptron to fit 5 Vina terms (without including 
the number of rotational bonds) and 345 BINANA descriptors simultaneously48. These features 
were extracted using the ODDT toolkit. In total, 1,000 models were trained every time and the top 
20 models on the validation set were obtained. The details of the input and model were described 
previously48. 

OnionNet. OnionNet is a two-dimensional convolutional neural network (2D-CNN) for 
protein-ligand binding affinity prediction49. Similar to RF-Score features, the features of OnionNet 
are also based on atom pair contacts between ligands and protein atoms. But these contacts are 
further grouped into different distance ranges to cover both the local and nonlocal interactions 
between the ligand and the protein. Altogether, 3,840 features were generated and reshaped to a 
matrix to mimic image data, followed by two-dimensional CNNs to engineer features.  

Pafnucy. Three-dimensional CNN (3D-CNN) has been widely employed in object recognition 

https://github.com/hnlab/generalization_benckmark
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because of its spatial representation advantage. Recently, many 3D-CNN models were proposed 
for protein-ligand binding affinity prediction as 3D-CNN implicitly represents pairwise 
protein-ligand interactions based on their relative positions in 3D voxel grids22–24. Typically, in 
3D-CNN representation, each voxel grid contains atom information, such as atom type, partial 
charge, and atom radius. Then several 3D convolutional layers are followed to extract hierarchical 
features before fully connected neural networks, which are used to fit binding affinities. Here we 
chose Pafnucy23 as the representation of 3D-CNN for benchmarking. 

SG-CNN, GraphBAR, IGN, and SIGN. In graph-based neural networks, both proteins and 
ligands are represented in graphs using one-hot embedding atom feature vectors and an adjacency 
matrix that contains relationships to the neighboring atoms. Then the atom information is updated 
according to the neighboring atoms and bond types. After recursive atom feature updating, a 
read-out function is used to aggregate protein-ligand complex features and the fully connected 
neural networks are followed to identify and learn protein-ligand binding affinities. Owing to 
different updating, aggregation, read-out functions, and other model training strategies, a variety 
of graph neural networks have been proposed. Four graph-based models were considered here and 
each model has specific characteristics. Briefly, SGCNN utilizes a distance-aware graph attention 
algorithm to update atom features28. The atomic features in GraphBAR are fed into different graph 
convolution layers based on adjacency matrix type29. Instead of utilizing a ligand-based atom sum 
aggregation approach, IGN takes the sum of the edges as a readout27. SIGN considers not only the 
distance-based protein-ligand pairwise atomic interactions but also angle-related atom 
information30. Moreover, SIGN employs both supervised learning and unsupervised learning 
strategies. 

4. Interpretable tool: Shapley Additive exPlanations 

Shapley Additive exPlanations (SHAP) is a useful interpretable approach for understanding 
model behavior52. It decomposes the model output into base values and feature importance values 
(also called SHAP values). The base value is the mean prediction given by a model and is 
determined by training dataset distribution. Both the main and feature interaction effects are 
considered in SHAP values, and the positive or negative SHAP values represent the positive or 
negative contributions to model output. 

5. Evaluation metrics 

For all cross-validation schemes, Pearson correlation coefficient (Rp), mean absolute error 
(MAE), and coefficient of determination (R2) were calculated between experimental binding 
affinities and predicted ones. As the dataset was split into three subsets, the overall performance 
was determined by the averaged results of the three subsets. In terms of the cluster performance, 
three test sets on one repetition were merged and individual cluster scores were calculated.   

Results 

1. Protein sequence similarity-based clustering 
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MLSF performances on the PDBbind core set have been considered overoptimistic. To 
evaluate model behavior objectively, many studies conducted Seq-CV experiments, where protein 
targets were clustered with certain protein sequence similarity cutoffs (commonly 0.5). However, 
we found that this protocol had certain drawbacks in protein clustering. Especially, proteins that 
shared low sequence similarities but contained conserved ligand-binding pockets were classified 
into different clusters. Therefore, some similar complexes were used for training, rendering the 
cross-target tests unreliable. Typical examples of misclassification by protein sequence 
similarity-based clustering (Seq-cluster) approach are illustrated in Figure 1. 

It is well known that the kinase ATP-binding pocket is highly conserved among the kinase 
family53. However, the calculated pairwise sequence similarity between casein kinase Ⅱ subunit 
alpha54 (CK2α) and epidermal growth factor receptor55 (EGFR) was only 0.36 (Figure 1A). 
Similarly, two ribonucleases56,57 with similar ligand-binding pockets only shared 0.39 protein 
sequence similarity (Figure 1B). As a result, these similar kinases and ribonucleases were divided 
into different clusters with a protein sequence similarity cutoff of 0.5. 

The next two misclassifications were the results of sequence lengths. The protein sequence 
similarity was determined by the result of dividing sequence identity by the longer sequence 
length. The computed protein sequence similarity would be misleading if one protein's sequence 
length was significantly longer than the other. For example, 63/99 residues in HIV-1 protease 
chain A58 were mapped to renin59. Despite this, because renin was much longer than HIV-1 
protease chain A, the protein sequence similarity between them was only 0.18 (Figure 1C). The 
conserved ligand-binding pockets were also shared by the human GPCR Angiotensin II type 2 
receptor60 and the β1-adrenoceptor61 (Figure 1D), although the protein sequence similarity was 
0.35 due to the inappropriate similarity calculating approach.  

As the performances of MLSFs are significantly related to similar samples in the training 
dataset62–64, generalization evaluation results with the Seq-cluster approach would be misleading.  
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Figure 1. Typical examples of misclassification by Seq-cluster approach. A. structure alignment between casein kinase 

Ⅱ alpha subunit (CK2a, yellow, PDB code: 5mo8) and epidermal growth factor receptor (EGFR, red, PDB code: 1xkk). B. 

structure alignment between Ribonuclease A (yellow, PDB code: 2g8r) and Onconase (red, PDB code: 2gmk). C. structure 

alignment of Renin (yellow, PDB code: 2v12) and HIV-1 protease (red: chain A, blue: chain B, PDB code: 1ec1). D. structure 

alignments between two GPCRs: β1-adrenoceptor (yellow, PDB code: 6h7m) and Angiotensin II (red, PDB code: 5xjm). All the 

images are rendered in CHIMERA65. 

 

2. Pocket Pfam-based clustering 

Previous studies have suggested new approaches to overcome the limitations of the 
Seq-cluster approach, including using fold classification and the hidden Markov model to find 
sequences of distantly related samples66,67. Here, we clustered protein targets according to the 
Pafm entry as described in the methods section. Instead of only assembling proteins with high 
protein sequence similarity, pocket Pfam-based cluster (Pfam-cluster) approach focuses on the 
domains in binding pockets. 

From Pfam-cluster results (Table S1), the PDBbind v2020 general set consisted of 939 
clusters, among which 39 clusters contained more than 100 members. Figure 2A shows the 
distributions of clusters with more than 300 members. Protein kinase (Pkinase) superfamily, the 
biggest cluster, accounted for 15%. Peptidase also contributed a lot to PDBbind, with 
peptidase_AA, peptidase_PA, and peptidase_MA making up 5%, 5%, and 2%, respectively. 
However, based on the Seq-cluster results, the general set was classified into 2,359 clusters, 86.4% 
of which contained less than ten members. 

The great advantage of the Pfam-cluster approach was that the small clusters in the 
Seq-cluster results were able to be grouped due to belonging to the same protein superfamily and 
containing similar pocket domains. For example, the Pfam-cluster approach classified 3,017 



9 
 

proteins from the kinase superfamily as Pkinase, whereas the Seq-cluster divided Pkinases into 83 
different clusters, and divided 987 peptidase AA complexes into 7 clusters. In the Pkinase cluster, 
pairwise protein sequence similarities ranged from 0 to 1, with the majority around 0.4 (Figure 2B 
and Figure S1A). Proteins in Peptidase_AA cluster mainly contained RVP (retroviral aspartyl 
protease, 475/987) and Asp (Aspartate protease, 464/987) Pfam domains with pairwise similarities 
ranging from 0.16 to 1. However, the protein sequence similarities between these RVP and Asp 
Pfam domains were around 0.2 (Figure 2C and Figure S1B). The protein sequence similarity 
distributions in Pkinase and Peptidase_AA indicated that Seq-cluster approach was incapable of 
categorizing the structurally similar proteins correctly when the protein sequence similarity was 
lower than 0.5. Based on the Pfam-cluster results, we conducted a cross-target generalization 
ability benchmark for 11 MLSFs.  

 

Figure 2. Pfam-cluster results. A. Pfam-cluster results of PDBbind dataset. Only the clusters with more than 300 

complexes were shown and other clusters were merged into “others” in the figure. B and C. Pairwise protein sequence similarity 

distribution among Pkinase and Peptidase_AA cluster. 

 

3. Evaluation of the generalization ability of MLSFs 

Following other studies , we tested the performances of every model on the PDBbind v2020 
core set using the PDBbind general set as the training dataset. The results are summarized in 
Figure 3 and Table S2. All MLSFs except two linear functions achieved excellent performances on 
the core set, with Rp ranging from 0.74 to 0.81, MAE ranging from 1.07 to 1.21, and R2 ranging 
from 0.51 to 0.61. Two linear regression functions yielded Rp=0.61, MAE=1.54, R2=0.16 for 
LR::V, and Rp=0.67, MAE=1.44, R2=0.28 for LR::VR1. It was not surprising that more 
complicated MLSFs outperformed simple linear functions on the core set. However, whether these 
MLSFs capture the true protein-ligand interaction patterns remains a crucial concern. A robust and 
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reliable scoring function is supposed to be predictive in novel targets. To explore the cross-target 
generalization ability of MLSFs, we conducted three different cross-validation experiments: 
Random-CV, Seq-CV, and Pfam-CV experiments. The benchmark results were discussed from two 
aspects: the overall generalization ability on the PDBbind general set, and the individual cluster 
performances. Here, the average Rp, MAE, and R2 on 3 testing folds in 3-fold cross validation 
experiment were used as the overall generalization ability evaluation metrics. As different clusters 
have different ranges of binding affinity, only the Rp metric was comparable on individual cluster 
performance analysis. The cluster Rp on three experiments was calculated on 3 merged testing 
folds, thus no training data was included.  

3.1 Overall generalization ability comparison 

Benchmark results on the PDBbind general set for MLSFs are shown in Figure 3 and Figure 
S2, where the models were sorted in order of the median Rp and MAE on ten repetitions in 
Random-CV experiments (Tables S3, S4). First, comparing the results of three cross-validation 
tests on the same model, the Rp of complicated MLSFs declined from core set to the Random-CV 
experiments to Seq-CV to Pfam-CV. In contrast, the linear regression model with six Vina terms 
behaved (LR::V) stably, with median Rp changing from 0.47 (Random-CV) to 0.45 (Seq-CV) to 
0.46 (Pfam-CV).  The reduced performance suggested that the scoring power of MLSFs would 
be significantly affected by similar structures, while simpler linear functions were stable and 
independent to the sample similarity, which was consistent with previous findings62–64. 
Furthermore, the reduced performance from Seq-CV to Pfam-CV highlighted the necessity of a 
more precise and rigorous protein clustering method, which would more reliably represent scoring 
functions’ generalization ability on novel targets.  

In summary, SIGN, a GCN model embedding both protein-ligand atom pair distance and 
angle information, obtained the best performance (Rp=0.72 and MAE=1.02) in Random-CV 
experiments, but the performance on novel targets was discouraging (Rp=0.53 and MAE=1.31). 
IGN, which demonstrated better than average performance in Random-CV tests (Rp=0.68 and 
MAE=1.06), showed a worse Rp score than LR::VR1 on novel targets (IGN on Pfam-CV: 
Rp=0.47 and MAE=1.35; LR::VR1 on Pfam-CV: Rp=0.49 and MAE=1.62). Moreover, OnionNet 
had the top two ranked scores on Random-CV tests (Rp=0.71 and MAE=1.03) and performed 
similarly with LR::VR1 on Pfam-CV tests. Interestingly, RF-Score, a random forest model 
featuring 36 distance-based descriptors and six Vina terms, behaved better. The Rp of RF-Score 
decreased from 0.70 on Random-CV to 0.58 in Pfam-CV experiments and the MAE changed from 
1.06 to 1.21. These results indicated that models containing too many parameters were more likely 
to overfit training data. The complex overfitted models performed worse than the simpler model in 
the out-of-distribution dataset. 
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Figure 3. Cross-validation tests results of 11 MLSFs. A. The Rp on the PDBbind core set (only repeated once) and the 

average Rp performances on three folds (10 repetitions). MLSFs are sorted by the median Rp on Random-CV experiments. B. 

The same as panel A but the metric is MAE.  

 

3.2 Individual cluster performance comparison 

Here we selected LR::V, RF-Score, Pafnucy, and SIGN as the representative LR, traditional 
ML-based, 3D-CNN-based, and GCN-based scoring functions to investigate the individual cluster 
performances. Figure 4 shows the maximum, minimum, and averaged cluster Rp in ten repetitions 
of these models; the results of other models are included in Figure S3. All the models showed 
fluctuating performances, with smaller fluctuations in LR models and RF-Score compared to 
Pafnucy and SIGN. These observations represent model uncertainty. As the RF is an ensemble 
model, the output of which is related to the average prediction of every tree, its performance was 
more robust. Moreover, compared to the fluctuations between Pfam-CV and Random-CV 
experiments, the cluster Rp in Pfam-CV tests changed more significantly because the training and 
testing datasets were distributed differently in Pfam-CV experiments.   

In addition, each model's cluster performance varied from target to target, with Rp ranging 
from -0.40 to 0.80. The varied cross-target cluster performances were reported previously20,38. 
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Moreover, different models shared many well-predicted clusters. The top five predicted clusters 
(Alk_phosphatase, Cyclophil-like, POLO_box, Calcineurin, and S5) in the RF-Score Pfam-CV 
test are highlighted as black dots in Figure 4. Except for Pafnucy, which had an unstable 
prediction on the Calcineurin cluster, the other models performed well. In particular, LR::V, 
RF-Score, Pafnucy, and SIGN achieved more than Rp scores of 0.8 on the Cyclophil-like cluster 
in Pfam-CV tests. Even the simplest LR::V scoring function also demonstrated outstanding 
binding affinity prediction ability on these targets (Calcineurin: Rp=0.87, POLO_box: Rp=0.82, 
Cyclophil-like: Rp=0.80 and Alk_phosphatase: Rp=0.72). We hypothesized that these clusters 
contains the simplest samples, whose binding affinities could be predicted using a few basic 
properties, and that all of the MLSFs had captured these features from other proteins in the 
training dataset. 

To understand how similar protein-ligand complexes influence model behavior, we also 
compared the individual cluster performances between Random-CV and Pfam-CV tests (Figure 5 
and Table S5). Consistent with the above observation, performances of the easier linear functions 
(LR::V and LR::VR1) were independent of whether similar structures existed in the training 
dataset or not; the individual cluster performance of Pfam-CV tests was almost the same as that in 
Random-CV tests (Figure 5A). Surprisingly, no significant improvement was observed in other 
complicated MLSFs when adding similar complexes to the training dataset. For example, Figure 
5B showed the comparison results of RF-Score in the first repetition, where the cluster 
performance changes were small between two cross-validation tests, and the Rp was 0.86. In 
detail, RF-Score only achieved significantly better scores on clusters Avidin, Sialidase, una_570, 
and APC in Random-CV tests. Overall, the Rp between cluster performance on two 
cross-validation tests for all the models and all the repetitions ranged from 0.45 to 1.00 (Figure 
5C). The comparable cluster performances between Random-CV tests and Pfam-CV tests 
indicated that the features learned by Random-CV models and Pfam-CV models were similar. 
However, on some targets, similar complexes helped Random-CV models behave better. 

Interpretable analysis was a useful tool for us to identify the basic features captured by 
MLSFs and determine the target-specific features captured from similar targets. As RF-Score 
showed relatively stable cluster performances and was easier to interpret, we took it as an example 
to address these questions. 
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Figure 4. Individual cluster performances (Rp) in Random-CV and Pfam-CV experiments. The maximum, mean and 

the minimum cluster performance (Rp) on 10 repetitions were plotted. The annotated 5 black dots were the top 5 clusters in 

RF-Score Pfam-CV experiments: Alk_phosphatase, Cyclophil-like, POLO_box, Calcineurin, and S5 
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Figure 5. Cluster performance (Rp) comparison between Pfam-CV and Random-CV experiments. A. Individual 

cluster performance (Rp) achieved by LR::V on the first Random-CV and Pfam-CV experiments. The red lines are Y=X+0.1 and 

Y=X-0.1. B. The same as A except the model is RF-Score. C. Rp between Pfam-CV and Random-CV cluster performances on 

ten repetitions.  

 

4. Interpretable analysis on RF-Score 

We first conducted SHAP analysis on RF-Score Pfam-CV and Random-CV models on the 
training dataset to explore the basic features and then compared clusters with different 
performances between Pfam-CV and Random-CV tests to identify the target-specific features. 

4.1 Basic features: from C-C interactions to buried SASA 

The beeswarm plots in Figures 6A and Figure S4 are an overview of the seven most 
important features of RF-Score on Pfam-CV and Random-CV tests, where the SHAP values of the 
seven features of every sample from the training dataset are plotted. Two models, Pfam-CV and 
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Random-CV RF-Score, shared many important features: protein carbon-ligand carbon interaction 
(C-C), protein nitrogen-ligand carbon interaction (N-C), and four Vina terms (gauss1, gauss2, 
hydrophobic, and the number of rotation bonds). It was acceptable that Pfam-CV and Random-CV 
RF-Score learned similar features because their training datasets were both sampled from the 
PDBbind dataset. Based on these findings, we used the RF-Score interpretable results in Pfam-CV 
tests as examples to investigate feature importance in detail. 

Larger values of feature N-C interaction, C-C interaction, gauss1, gauss2, and hydrophobic 
terms represented the greater positive contributions to the final scores (Figure 6B, Figure S5, S6). 
In terms of ligand rotation bond number, the model gives higher scores to complexes containing 
ligands with increasing numbers of rotation bonds ranging from 0 to 10. However, the model 
penalizes the complexes with rotation bonds more than ten (Figure 6C). The mean absolute SHAP 
values of other features are represented in Figure 6D (Pfam-CV) and Figure S4 (Random-CV). It 
was clear that the pair interactions between protein atoms and ligand phosphorous atom (feature 
X-P), bromine atom (feature X-Br), and iodine atom (feature X-I) did not affect the model's output. 
It is likely that these atom pairs account for an extremely low percentage in crystal structures and 
thus models were insensitive to these features. Our studies also showed that the feature interaction 
effects (off-diagonal values in Figure 6D) had a minor impact on the final scores. Thus, the sum of 
single feature and feature interaction SHAP values was used to analyze feature importance, unless 
specifically annotated. 

 

Figure 6. SHAP analysis of RF-Score on Pfam-CV training set. A. The most important 7 features learned by RF-Score 

in Pfam-CV test. Every dot represents a sample and the color means the relative feature value (red high, blue low). The diagonal 

SHAP values are single feature importance and the off-diagonal SHAP values are the feature interaction effect. B. Correlations 

between C-C interaction feature value and C-C interaction SHAP values on Pfam-CV training set. C. Correlations between ligand 

rotation bonds number and ligand rotation bonds number SHAP values on Pfam-CV training set. D. The mean absolute SHAP 

value of 42 features and feature interaction effects in Pfam-CV experiment.  
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The SHAP analysis results highlighted the importance of protein carbon-ligand carbon (C-C) 
interaction (the protein carbon-ligand carbon pair counts within 12 Å) on both Pfam-CV and 
Random-CV experiments on RF-Score. In terms of physical properties, the feature of C-C 
interaction corresponds to the buried SASA of the protein-ligand complex. The Rp between 
feature C-C values and buried SASA was 0.84 in the PDBbind dataset (Figure 7A). Thus, we 
speculated that buried SASA was the basic feature learned by RF-Score and other models. To test 
this hypothesis, we compared the cluster Rp scores calculated with only buried SASA and the 
cluster Rp predicted by models. Interestingly, all models showed high positive correlations 
between buried SASA scores and model predicted scores in three cross-validation experiments and 
the average Rp for ten repetitions ranged between 0.40 and 0.91 (Figure 7B). Compared with the 
cluster performances on Random-CV experiments, the buried SASA scores–model scores 
correlations were higher in Seq-CV and Pfam-CV experiments.  

Moreover, linear models showed higher correlations to buried SASA scores compared with 
other models. Here, we took RF-Score in the first Pfam-CV experiment as an example to analyze 
the relationship between model cluster performance and buried SASA cluster performance (Figure 
7C) and similar scatterplots of other models and other cross-validation experiments are shown in 
Figure S7. The Rp between buried SASA cluster scores and Pfam-CV RF-Score cluster scores was 
0.66. It was clear that RF-Score could only make clear predictions on clusters with high binding 
affinity-buried SASA correlations. For example, the experimental binding affinity increased with 
larger buried SASA in the SH2-like cluster and the model gave higher scores to complexes with 
larger protein-ligand interfaces (Figure 7D). However, in terms of clusters without a binding 
affinity-buried SASA correlation like Peripal_BP, models were incapable of making predictions 
(Figure 7E). RF-Score assigned higher labels to complexes with high buried SASA, however, the 
experimental binding affinity did not increase as buried SASA increased, and the model performed 
poorly.  
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Figure 7. Correlations between models predicted cluster performance and buried SASA calculated cluster 

performance. A. Correlation between complexes buried SASA and C-C interaction feature on PDBbind dataset. B. Pearson 

correlation coefficients of 11 MLSFs in 3 CV experiments on 10 repetitions. C. Correlation between RF-Score predicted 

individual cluster performances on Pfam-CV experiment and buried SASA-calculated cluster performances. D and E. Specific 

RF-Score predicted binding affinities, experimental binding affinities, and buried SASA of complexes in SH2-like and 

Periplas_BP cluster.  

 

4.2 Binding affinity-buried SASA correlation in the PDBbind dataset 

It is not surprising that RF-Score and other models assign higher scores to complexes with 
larger protein-ligand binding interfaces. It is common in medicinal chemistry studies that 
improved ligand binding affinity is always coupled with increased molecular size during the 
ligand optimization process. The binding affinity-buried SASA correlation coefficient is 0.26 in 
the PDBbind dataset (Figure S8) and 0.39 if only considering complexes with ligands of less than 
1,000 Da (Figure 8A); the Rp of most clusters ranges between 0.2 and 0.6 (Figure 8B). However, 
a significant binding affinity-buried SASA correlation was identified in some clusters, such as 
SH2-like (Rp = 0.77, Figure 8C), and Cyclophil-like (Rp =0.87, Figure 8D), and Calcineurin (Rp 
= 0.87, Figure 8E). The fragment-to-lead strategy was applied when designing nonpeptidic 
inhibitors in the SH2-like cluster68–70. The ligands in Calcineurin are large toxins or fragments 
identified by fragment-based screening71–75. The Cyclophil-like cluster includes peptides, 
macrocycle, and simplified macrocycles76–79. As a result, all the models, even LR::V, demonstrate 
excellent binding affinity prediction performances in these clusters.  

 

 

Figure 8. Experimental binding affinity-buried SASA correlation. A. Overall Rp between buried SASA and 

experimental binding affinity in PDBBind dataset (ligand molecular weight < 1000Da). B. Experimental binding affinity-buried 
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SASA correlations of individual clusters in PDBbind dataset. Only the clusters with more than 20 members were plotted. For 

overall clarity, the biggest Pkinase cluster was not plotted (cluster size=2973, Rp between binding affinity and buried SASA 

=0.43). C, D and E. Details of binding affinities, buried SASA, and ligand molecular weight of complexes in SH2-like, 

Cyclophil-like, and Calcineurin cluster. 

 

4.3 Target-specific features 

From the above analysis, we knew that the individual cluster performances were mainly 
achieved by learning buried SASA-related information. Nevertheless, we also observed that the 
cluster performances in Random-CV experiments were slightly better than that in Pfam-CV 
experiments, which indicated that similar complexes made a difference in protein-ligand binding 
affinity prediction. So, we next focused on three clusters (Avidin, Sialidase, and Peptidase AA), of 
which the cluster performances were steadily improved in RF-Score Random-CV tests and the 
complex numbers were sufficient (more than 50), to interpret the target-specific features (Figure 
S9).  

Most of the ligands in the Avidin cluster were biotins and epi-biotins, which formed the 
strongest known non-covalent interactions with avidins and showed bioactivities at a range 
between 4 and 14 pKd in PDBbind dataset. However, RF-Score predicted relatively weaker 
binding affinities on biotin-avidin complexes on Pfam-CV test because of small values of ligand 
size-related features (biotin MW= 240 Da and buried SASA = 5.56 Å2, Figure 9A). For example, 
the penalties was 0.29 pKd for low C-C interaction values and 0.19 pKd for low N-C interaction 
values on one testing avidin-biotin complex (PDB code: 1swp) and the final predicted label was 
6.63 pKd (Figure 9B). As the similar biotin-avidin complexes were presented in the training 
dataset on Random-CV test, RF-Score recognized the specific features of these complexes and 
assigned them with reasonable labels. Comparing the SHAP analysis results of 1swp between two 
tests, the features of C-S, O-S, and N-S interactions made much more positive contributions to the 
final predictions in the Random-CV model, indicating that the local environment of the S atom in 
the biotin was highlighted by the Random-CV model (Figure 9C). Interestingly, when 
decomposing C-C interactions importance into feature interaction effects, we found the low C-C 
interactions value also made huge negative contributions to the final scores in the Random-CV 
model. However, the positive interaction effects between C-C interactions and other features, such 
as C-S, O-S, and gauss2, offset these negative effects (Figure 9D). 
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Figure 9. RF-Score important features in Avidin. A. Experimental binding affinities and RF-Score predicted binding 

affinities in Avidin cluster. Avidin-biotin complexes were circled. B and C. SHAP analysis of 1swp on RF-Score Pfam-CV and 

Random-CV experiments. Exp represents experimentally determined binding affinity, Pred means RF-Score predicted label, and 

E[f(x)] is the base value of SHAP analysis. D. Decomposed C-C interactions SHAP value into single C-C interaction importance 

and feature interaction effect between C-C interactions and other features on 1swp. 

 

In terms of Sialidase and Peptidase_AA cluster, SHAP analysis results also demonstrated that 
the improvements in Random-CV tests were tightly related to shared features between similar 
complexes. In Sialidase cluster, RF-Score could roughly discriminate the stronger complexes from 
weaker complexes (Rp=0.65) in Random-CV tests, while assigned them with similar binding 
affinities (Rp=0.27) in Pfam-CV because of similar buried SASA (Figure 10A and S10). Some 
similar complexes with ligand RDKit topological fingerprint similarities more than 0.8 were 
annotated in Figure 10A and these complexes all formed strong hydrogen bond interactions. For 
example, in 3ti5, hydrogen bonds were identified between ligand carboxyl group and three protein 
Arginines, and between ligand guanidyl group and carbonyl groups in protein backbone (Figure 
10B). Random-CV RF-Score recognized these patterns from similar structures in the training 
dataset and assigned greater importance to the Vina hydrogen term compared with the SHAP 
values in the Pfam-CV RF-Score. Moreover, the specific C-N and N-N interactions from the 
ligand guanidyl group were also essential in the final scores (Figure 10C and 10D). From these 
patterns in the training dataset, the Random-CV RF-Score assessed that the binding affinity range 
of these complexes was higher than the average one and predicted them with higher values. 
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Figure 10. RF-Score important features in Sialidase. A. RF-Score predicted labels on Sialidase in Pfam-CV and 

Random-CV experiments. Complexes with highly similar ligands to 3ti5 ligand were annotated. B. 3ti5 binding pocket. G and H. 

SHAP analysis results on 3ti5 in Random-CV and Pfam-CV tests. 

 

In Peptidase_AA, RF-Score performed similarly on complexes with experimental binding 
affinities lower than 8 pKd in Pfam-CV and Random-CV tests. In terms of other complexes, the 
predicted labels were much higher in Random-CV test than Random-CV test (Figure 11A). It was 
not surprising that these well predicted complexes had a highly similar ligand in the training 
dataset. For example, the proteins of annotated complexes in Figure 11A were HIV proteins and 
the ligands were darunavir (DRV) or were similar to DRV (Figure 11B). We discovered that 
though the most critical features of 6oou (one of DRV-HIV complexes) were identical in two 
cross-validation tests: C-C interaction, N-C interaction, and gauss2 (Figures 11C and 11D), the 
weights were slightly different. These characteristics contributed more positively in Random-CV 
test. Besides, several specific interactions with ligand S atom, such as C-S, N-S, and O-S 
interactions, were also captured in Random-CV test. According to the unique characteristics of 
DRV-HIV, RF-Score allocated specific weights to these characteristics in Random-CV test and 
performed better predictions on these complexes. 
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Figure 11. RF-Score important features in Peptidase_AA. A. RF-Score predicted labels on Peptidase_AA in Pfam-CV 

and Random-CV tests. The HIV-DRV complexes were annotated. B. 2D structure of DRV. C and D. SHAP analysis results on 

6oou in Random-CV and Pfam-CV experiments. 

 

Conclusion and Discussion 

In this work, we first investigated the limitations of the protein sequence similarity-based 
cluster approach and established the first standardized protein cluster method for evaluating 
generalization ability of MLSFs. The Pfam-cluster approach rigorously and clearly assembled 
proteins with similar ligand-binding pockets based on the pocket Pfam domains. Thus, we highly 
recommend considering the Pfam-cluster approach when evaluating MLSF performances on novel 
targets.  

The generalization ability benchmark results showed that the cross-target scoring power of 
MLSFs was far from satisfying, though both the PDBbind dataset and model algorithms improved 
a lot. In addition, the further interpretable analysis indicated that MLSFs mainly relied on buried 
SASA-related information to make decisions on novel targets, with higher predicted binding 
affinities on complexes with larger protein-ligand interfaces. The intrinsic property that larger 
ligands performing higher binding affinities of PDBbind dataset accounts for this preference. 
Besides, the ligand sizes-binding affinities correlations were especially noticeable when targeting 
the protein targets, such as Cyclophil-like, SH2-like, and Calcineurin. Data-driven algorithms 
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preferred such a hidden correlation and relied on it to make decisions. This is consistent with 
statistical knowledge-based SFs, such as PMF@DS, DrugScore, and Convex-PL, which also 
showed a strong preference for ligands with larger protein-ligand interfaces in CASF virtual 
screening benchmarks80.    

It was difficult to conclude in terms of whether buried SASA-related information was useful 
or not in SBVS. Unfortunately, we did not identify any reliable features when interpreting similar 
complexes. When randomly splitting the PDBbind dataset, both similar proteins and similar 
ligands were added to the training dataset. RF-Score made better predictions on the Random-CV 
test by recognizing the specific feature combinations of similar ligands, such as the ligand S atom 
environment in Avidin-biotin complexes and HIV-DRV complexes, the high hydrogen-bonding 
interactions in Sialidase, and the ligand guanidyl group in some Sialidase complexes. Combining 
these specific features with the basic buried SASA-related features, RF-Score remembered the 
experimental binding affinity ranges of these highly similar structures and predicted better scores. 
Nevertheless, most of these patterns lack physical knowledge and were nonsensical.  

According to our benchmark and interpretable analytical results, the implementations of the 
MLSFs on real SBVS scenarios were concerning. It is critical to build an unbiased dataset and 
rigorously evaluate MLSFs in order to generate reliable and robust MLSFs. Because the PDBbind 
dataset only contains crystal structures of true binders, it revealed a significantly positive binding 
affinity-buried SASA connection in some clusters. However, in practice, the observation that 
larger molecules have higher binding affinities does not always hold true. Thus, adding more 
negative data to the dataset helps to dilute this artificial link. The ChEMBL database has more 
than 17 million samples with experimentally determined binding affinities81,82. The 3D structures 
would be achieved by proper docking and modeling methods. Additionally, artificially redocked 
poses also help models minimize the importance of ligand size. Many attempts have been made to 
distinguish between crystal and decoy poses, as well as to predict binding affinity with redocked 
poses24,83–86. However, considerable care should be taken in loss function and model design 
because of data imbalance. Models could iteratively train the hard samples and be more robust in 
unseen datasets by combining these augmented datasets with some specific methodologies, such 
as active learning, adversarial learning, and uncertainty evaluation87. 

Although the underlying assumption of ML algorithms is that training data is distributed 
identically to the testing data, this assumption would never hold in real-world applications. This is 
particularly true in the scenario of SBVS, the main challenge of which is to discover true binders 
with novel chemical scaffolds against new drug targets. As a result, it is crucial to assess MLSF 
generalization capacity and improve it through data augmentation and model optimization. Our 
generalization benchmark was designed from the beginning as an open-access benchmark. The 
complete Pfam-cluster approach, 3-fold dataset split, and SHAP analysis processes are available 
on https://github.com/hnlab/generalization_benckmark.  
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