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Abstract  

Determining protein-ligand interaction characteristics and mechanisms is critical in the drug 

discovery process. Here we review recent progress and successful applications of a systematic 

protein-ligand interaction fingerprint (IFP) approach for investigating proteome-wide protein-

ligand interactions for drug development. Specifically, we review the use of this IFP approach for 

revealing polypharmacology across the whole kinome, predicting promising targets from which to 

design allosteric inhibitors and covalent kinase inhibitors, uncovering the binding mechanisms of 

drugs of interest, and demonstrating resistant mechanisms of specific drugs. Together, we 

demonstrate that the IFP strategy is efficient and practical for drug design research and 

development in the current era of big data. 
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Introduction 

    Drug discovery is a time-consuming, costly, and complicated process. For this reason, in silico 

drug design has been a routine component used to decrease the cost and shorten the time period to 

drug launch 1,2. Success supports the advantage and efficiency of computational drug discovery 

strategies. For example, Table 1 lists 26 FDA-approved drugs, which were designed using 

computer-aided drug discovery approaches. 3-5 Most recently, advances in biomedical data science 

including the advent of machine/deep learning applications have made computational 

pharmacology even more important in facilitating drug discovery 6,7. 

    In the early stage of novel drug development, one of the most important tasks is to discover 

promising lead molecules able to withstand the subsequent rigor of clinical trials8. Computer-aided 

drug discovery can economically narrow the choices from a myriad of compound screening 

databases and reveal the relevant binding characteristics, used to explore libraries of drug-like 

compounds 9. Computer-aided drug screening can be loosely divided into three classes: receptor-

based, ligand-based, and protein-ligand-interaction-based methods 10,11. A receptor-based method 

uses the 3D structure of receptors, where the structural flexibility, the size and shape of the binding 

pocket, and the properties of binding affinity are utilized to facilitate drug discovery. The ligand-

based method is an approach that relies on the knowledge of ligand molecules and is used in cases 

where receptor 3D information is not available12,13. Protein-ligand-interaction-based methods 

combine the two 14,15. For example, in the process of computer-aided virtual screening, properties 

of ligand similarity 16 and molecular drug-like rules 17 such as molecular weight and the number 

of hydrogen bonds, are often applied to find lead candidates. With the advent of structure-based 

biomedical data science, a large number of protein structures and bioactive molecules have been 

compiled 18-21, providing a substantial basis for the development of protein-ligand interaction-
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based approaches, such as pharmacophore-based and interaction fingerprint-based methods 22-24. 

A pharmacophore-based scheme trains a receptor-ligand interaction model as the representative 

based on a set of bioactive ligands interacting with a given receptor 24. Given the representative 

binding pharmacophores, the virtual screening can be carried out for any candidate compound. By 

comparison, the scheme based on the protein-ligand interaction fingerprint (IFP) 22 is to encode 

the details of protein-ligand interaction into a binary string using a set of predefined interaction 

types (van der Waals, π–π stacking, hydrogen bond, electrostatic interaction, and so on) and criteria 

22. Using this encoded binary string, the binding features, given a ligand-bound complex, can be 

captured in great detail and easily manipulated. Since Deng et al. (2004) presented the structural 

interaction fingerprint (S-IFP) method 22, protein-ligand IFP strategies have been improved and 

applied to virtual screening 25-28, post-processing of dock poses 29,30, scoring functions 31-33, and so 

on 23,34. However, these applications have been restricted to use on the same receptor or a cluster 

of highly homologous protein structures 25.  

   To explore proteome-scale polypharmacology for personalized drug discovery, Zhao et al. 

provided a scheme, Fs-IFP 35, combining structural systems pharmacology 36 and a structural 

interaction fingerprint strategy 22. For Fs-IFP, first, the binding pockets of receptors are determined 

for the whole proteome. Second, every known complex for each binding pocket is encoded into a 

binary string using the interaction fingerprint strategy22. Finally, comparable interaction 

fingerprints are obtained by extracting the aligned “pocketome” and the corresponding fingerprint 

strings. Utilizing this Fs-IFP scheme, the authors have extended the structural interaction 

fingerprint strategy to multiple protein families, regardless of whether they are highly homologous 

or distant from each other, thus uncovering characteristics and nuances of binding. We introduce 

the specifics of the IFP and Fs-IFP protocols and provide applications of the method to rational 
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drug discovery. Finally, we discuss the prospective applications of this strategy by merging 

biomedical data science and machine/deep learning models.  

 

An overview of IFP methods 

Different descriptor schemes have been used to characterize protein-ligand interactions37-39. For 

example, an element-based descriptor scheme38,40, in which the protein-ligand interaction is 

described using a combination of the direct interacting atom pairs from protein and ligand 

separately based on the element types, e.g., C-N or C-O. Thus, every position of the fingerprint in 

this scheme represents a paired element type to describe the given protein-ligand interaction. Atom 

types can be described more specifically based on the protein environments. For example, the 

SYBYL scheme38 classifies the atoms into distinct subtypes based on their chemical atom 

properties. For example, there are 5 subtypes of carbon atom types: C1 (sp carbon), C2 (sp2 

carbon), C3 (sp3 carbon), Car (aromatic carbon), and Ccat (carbocation), which leads to 25 types 

of different C-C interaction descriptors instead of a single type.  

    One popular descriptor scheme is based on structural interaction fingerprints (IFPs)22,29. In 2004, 

Deng et al. proposed an IFP scheme, known as S-IFP, to structurally characterize protein-ligand 

interactions 22. The atom types were defined using the SMARTs definiation41. The S-IFP approach 

encodes protein-ligand interactions in a 1D binary string. Specifically, each residue, comprising 

the binding pocket, is encoded into a 7-digit binary substring (Figure 1a) using pre-defined 

geometric criteria. The 7-digit binary substring describes the contributions of each amino acid to 

the protein-ligand interaction and represents 7 types of interaction, whether existing or not, 

including (1) contact with the ligand, (2) involving main-chain atoms, (3) involving side-chain 

atoms, (4) polar interactions, (5) nonpolar interactions, (6) hydrogen bond interactions (amino acid 
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as acceptor), and (7) hydrogen bond interactions (amino acid as donor). For example, 1000010, 

where “1” indicates the interaction exists, and “0” indicates no interaction. Following the S-IFP 

method, a few variations have been developed such as r-IFP 42, and w-IFP 43. The r-IFP method 

also encodes the r-group or core-fragment of the ligand bearing the interactions with the specific 

amino acid of the target 42. The w-IFP method 43 encodes the interactions into IFPs with features 

of relative importance 43. Based on S-IFP, two additional interactions (aromatic and charged) were 

added in Stefan et al.’s method 44 creating a 9-digit binary substring describing the interactions 

between each residue and the ligand 44.  

Rognan et al. encoded the protein-ligand interactions into a 1D binary IFP string with an array 

of 11-bit substrings (Figure 1b), which describe how each amino acid interacts with the ligand. 

Each amino acid in the binding pocket is encoded into one 11-bit substring corresponding to 11 

types of interaction: i.e. (i) hydrophobic interaction, (ii) aromatic interaction (face-to-face), (iii) 

aromatic interaction (edge-to-face), (iv) hydrogen interaction (protein atom as acceptor), (v) 

hydrogen interaction (protein atom as donor), (vi) ionic interaction (protein atom with positive 

charge), (vii) ionic interaction (protein atom with negative charge), (viii) weak hydrogen 

interaction (protein atom as acceptor), (ix) weak hydrogen interaction (protein atom as donor), (x) 

π-cation interaction, and (xi) metal ionic interaction with the ligand. A variety of software is 

available for encoding the ligand-binding interaction fingerprints, such as PyPLIF 30 and IChem 

45. PyPLIF encodes the given protein-ligand complex into an IFP string using 7 types of interaction 

(i-vii), however, IChem can encode the IFPs for every residue using 11 types of interaction (i-xi).  

Another class of advanced IFPs are the extended connectivity fingerprints (ECFPs)46, which 

encode all of the local interactions between the ligand and the close protein atoms within the 

binding site47-50. Each ligand-protein atom pair is considered an interaction if the interatomic 
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distance is less than a predefined threshold, for example, 4.5 Å48. Every atom/bond type is defined 

within the ECFP and used as an identifier46. Currently, the ECFP-based IFP scheme has been 

applied to virtual screening and binding affinity predictions47,48,50. Compared to the early S-IFP 

method, the ECFP-based IFPs are protein fragment-based and encoded by iteratively hashing the 

interacting atom pairs into integers and then folding the virtual strings,47,50 whereas S-IFP-based 

IFPs are residue-based and encoded using the pre-defined 7-type geometric rules29. 

   Recently, the Fs-IFP method was developed for proteome-wide drug discovery 35. The 

motivation being profiling polypharmacology is necessary not only to reveal primary targets but 

also off-targets 51,52. Fs-IFP extends the IFP approach to the whole structural proteome by 

combining the IFP approach with sequence order-independent binding-site alignment to ultimately 

determine the polypharmacology of select inhibitors. The Fs-IFP method consists of four steps 

(Figure 1c). Step 1 is to construct the structural dataset including all the ligand-bound protein 

complexes, all of which can be downloaded from the Protein Data Bank (PDB) 18 or a PDB-binding 

database 19. Step 2 is to align all of the binding sites using a sequence order-independent binding-

site alignment method, for example, SMAP 53, which provides a sequence-order-independent 

secondary-structure alignment and outputs a corresponding matched-residues matrix. Using the 

binding site of the study target as a template, all other binding sites across the structural proteome 

can be aligned and presented as an alignment matrix of amino acids. In this residue matrix, every 

row of amino acids comprising the binding sites is extracted for every complex. Every column 

represents the aligned residues occurring in the same position within all the binding sites. Step 3 

encodes all of the protein-ligand interaction types in every complex into a 1D array of bit strings 

using off-the-shelf tools such as IChem 45. Specifically, each residue in the binding site of each 

complex is encoded into a 7-bit substring 29. The 7-bit substring represents 7 types of interaction 
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(i-vii) as described above between an amino acid and the corresponding ligand within the binding 

site. Thus, the 1D array of bit strings for every complex is composed of a series of 7-bit substrings 

30,54. Step 4 combines the aligned residue matrix of Step 2 with the 1D array of bit strings of every 

complex from Step 3. In other words, every amino acid in the residue matrix is replaced using the 

corresponding 7-bit interaction fingerprint for every binding site.  

 

Overview of drug discovery using the Fs-IFP approach 

     Revealing patterns of ligand binding across the proteome 

Polypharmacology makes it challenging to achieve the desired bioactivity and selectivity in 

targeted drug discovery 55,56. The Fs-IFP approach provides a practical means of exploring 

polypharmacology across the proteome. For example, we explored the polypharmacology and 

binding patterns of kinase inhibitors across the whole kinome 57 using the Fs-IFP approach. The 

human kinase family comprises more than 500 kinases many being drug targets for treating 

different diseases. It has been challenging to design specific kinase inhibitors because all kinases 

have a common ATP binding pocket 58. Thus exploring the polypharmacology of kinase inhibitors 

is mandatory in any assay seeking to discover new kinase inhibitors52. In the study in question we 

first collected 2383 complex structures from 208 kinases to use as a kinase dataset 35. Then, a set 

of comparable Fs-IFP-encoded interaction fingerprints from all kinase-ligand complexes were 

obtained following the Fs-IFP protocol (i.e., binding-site alignments, encoding the IFP of every 

complex, and systematic Fs-IFP fingerprints, Figure 1c). Subsequetly, the binding characteristics 

of diverse inhibitors in the ATP binding pocket and/or its vicinity could be classified across the 

whole human kinome. The kinase binding patterns could be clustered into 5 classes with 

corresponding binding features and positions (Figure 2a). 
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The largest group of kinase inhibitors are of type Cluster5, which occupy the ATP binding 

pocket (Figure 2b). This type of ATP-competitive inhibitor forms conserved interactions with the 

residues distributed in the Hinge region, β3, and β7 in the vicinity of the adenine moiety of ATP 

(Figure 2b). To achieve greater binding affinity than ATP, kinase inhibitors often occupy the 

Cluster5 region but also extend into other proximal clusters as shown in Figure 2a (Cluster1-4) 35. 

For example, Imatinib 59, a Type-II tyrosine kinase inhibitor used to treat several cancers, not only 

occupies the ATP-binding region (Cluster5) but also extends into the hydrophobic area close to 

the gatekeeper (Cluster1) and the region between the roof of the	β3 and DFG tripeptide (Cluster2, 

Figure 2a), the allosteric area (Cluster3, Figure 2a), and the area between the activation loop and 

C-Helix (Cluster4, Figure 2a). Similarly, the Type-I kinase drug Lapatinib (Figure 2c), an 

EGFR/HER2 inhibitor to treat breast cancer and other solid tumors60, mainly binds to the ATP 

binding site (Cluster5) but also extends into the hydrophobic region (Cluster1, Figure 2c). In 

contrast, the back cleft of the binding pocket close to the ATP binding site is used to design 

allosteric inhibitors. For example, the Type-III kinase drug Cobimetinib61 (Figure 2d), a MEK 

inhibitor to treat melanoma, binds mainly to the back cleft of the binding pockets which includes 

the main allosteric region (Cluster3) and the vicinal areas (Cluster1 and 2). Further, the piperidine 

group of Cobimetinib extends into the distal region of the ATP binding site (Cluster5).  

Another example involved antivirus drug discovery revealing the binding modes of 47 RNA 

viruses62; pertinent during a COVID-19-induced pandemic. We focused on RNA-dependent RNA 

polymerase found in 47 distinct RNA viruses, including SARS-CoV-2, obtaining the binding sites 

for further drug screening62. Using the same Fs-IFP approach, we obtained the features of the 

binding pockets for the 47 RNA viruses, classifying them into four classes. Virtual screening was 

then undertaken 63. 
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    Uncovering specific interaction features for designing precise inhibitors 

  Revealing specific intermolecular atomic interactions is an obvious advantage of interaction 

fingerprints 54. For example, when an electrostatic interaction occurs between an amino acid and 

an inhibitor within a binding site we can determine more detailed information about which atoms 

are involved in the interaction and how the interaction is formed within the binding site. In practice, 

Zhao et al. utilized the Fs-IFP approach to determine which cysteines are available across the 

human kinome to facilitate the discovery of covalent kinase inhibitors, knowing that covalent 

kinase inhibitors substantially improve the binding affinity and selectivity across the whole kinome 

64,65.  

To do so, the authors first collected 1599 complex structures belonging to 169 kinases that have 

at least one cysteine residue located within the binding sites. The authors then analyzed the 

interaction details between all these cysteines and their corresponding ligands. The analysis 

revealed that cysteines exhibit two kinds of interaction: hydrogen-bond interactions (21.4%) from 

the backbone atoms N and O and hydrophobic interactions (78.6%) from the other atoms: C, CA, 

CB, and SG (Figure 3a-b). Combined with the calculation of the potential energy surface between 

the cysteine thiol group and the warhead using ab initio DFT force fields, the authors demonstrated 

the orientation and reactivity of the thiol group for every cysteine. The authors verified the top 5 

easily-available regions: the roof region of β3, P-loop area, front-pocket area, the catalytic loop 

(called: Catalytic-2), and a position near the DFG peptide (called DFG-3) across the human kinome 

(Figure 3c). These insights into cysteine-related covalent reactivity enable the design and 

discovery of prospective covalent kinase inhibitors.  

As of April 2022, more than 70 small-molecule kinase drugs have been approved by the FDA 

including eight covalent drugs66,67; 5 target EGFR and 3 target BTK (Table 2). All of these drugs 
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form a covalent interaction with their respective targets in the front-pocket (Figure 3c). For 

example, Osimertinib68, an EGFR kinase inhibitor to treat patients with advanced T790M-

mutation-positive NSCLC69,70, forms two hydrogen bonds with Met793 in the Hinge region and 

has an electrophilic acrylamide group that forms an irreversible covalent interaction with Cys797 

in the front pocket of the ATP binding site (Figure 3d), leading to irreversible inhibition of the  

T790M-mutant EGFR with a nanomolar-level IC5071. Given the abundance of cysteines around 

the binding sites of kinase domains65, covalent kinase inhibitor development is promising and will 

likely attract further attention55. 

    Developing novel inhibitors across the proteome 

Knowledge-based drug discovery is another application illustrating the potential of the Fs-IFP 

approach. Here we used the Fs-IFP approach to discover allosteric kinase inhibitors 72. Currently, 

different types of kinase inhibitors have been reported and occupy different areas of the binding 

pockets66,73. Type-I kinase inhibitors, also called ATP-competitive kinase inhibitors, occupy ATP 

binding areas located in the front cleft of the kinase binding site, specifically the space between 

the Hinge region, hydrophobic pocket, P-loop, and DFG peptide (Figure 4a)58. Type-II kinase 

inhibitors occupy the front cleft where ATP binds, but also extend into the nearby allosteric region 

(Figure 4b). The allosteric region is not so conserved as the ATP-binding pocket,55,74, thus, making 

exploiting kinase allosteric regions is one promising strategy for achieving desirable selectivity 

across the whole kinome75. Allosteric kinase inhibitors targeting MEK72, P38α76, BRAF77, and 

EGFR78 have been reported with most focus on mitogen-activated protein kinase (MEK). Indeed, 

as of now, all of the approved allosteric drugs are MEK-targeted73. Zhao et al. sought to explore 

the MEK-allosteric-inhibitor binding features intent on designing allosteric kinase inhibitors 

against other kinases besides MEK.  
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First, the authors studied the binding characteristics of all MEK-allosteric-inhibitor complexes 

from 29 PDB structures and their associated conformations from 1.2μs molecular dynamics 

simulation72. Then, binding characteristics were described using the Fs-IFP approach combined 

with pharmacophore modeling. The authors confirmed that MEK allosteric inhibitors always form 

two conserved interactions with residues S212 and K97 (Figure 4c). Moreover, the authors found 

that all conformations from the MEK MD trajectories contained a conserved short helix within the 

activation loop (Figure 4c). The PDB structures of P38α and BRAF (PDB ids 2yix, 4pp7, and 

4wo5) also contained a short helix within the same segment of the activation loop72. Based on 

these binding characteristics, the authors predicted which kinase targets hold promise for allosteric 

inhibitor design (Figure 4d). From those predictions, of the top 15 kinase targets, 10 including 

MEK belong to the STE group, 3 (MAST 1-3) from the AGC group, 1 (JAK3) from the TK group, 

and 1 (NRBP1) from the Other group, indicating promising targets in the search for Type-III 

allosteric kinase inhibitors. 

    Demonstrating drug-resistant mechanisms 

Targeted drug therapy is playing an increasingly important role in cancer treatment. For instance, 

lung cancer is one of the most common cancers worldwide, with 80-85% being non-small cell lung 

cancer (NSCLC) with 3-5% of those patients having gene fusions of anaplastic lymphoma kinase 

(ALK). Thus, targeting ALK is important in treating NSCLC79. However, due to acquired genetic 

mutations, drug resistance weakens the efficacy of anti-cancer drugs. Thus, revealing the 

mechanisms of drug resistance is crucial in facilitating the development of next-generation 

anticancer drugs. Here, we used the Fs-IFP scheme combined with the investigation of binding 

free energy surfaces to determine the drug’s mechanism of action80, facilitating the development 

of next-generation anti-cancer drugs.  
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Specifically, Crizotinib is a first-generation ALK drug to treat NSCLC, but the gatekeeper 

mutation (L1196) of ALK impacts the treatment of NSCLC in the clinic. We first aligned the 

Crizotinib-binding ALK PDB structures before and after L1196M mutation. The alignment of 

complexed structures shows that Crizotinib is a Type-I ALK inhibitor and that binding modes are 

similar before and after L1196M mutation (Figure 5a). Therefore, we explored the drug binding 

mechanism before and after residue mutations by calculating binding free energy surfaces. 

Subsequently, the atom-level Fs-IFPs were obtained for every conformation to investigate the 

differences in drug binding before and after mutation. Upon Fs-IFP analysis, the mechanism of 

L1196M-induced drug resistance was revealed. Crizotinib has significantly weaker interactions 

with A1123, A1125, and G1226 of the P-loop after L1196M mutation (Figure 5c). Thus, drug 

resistance of Crizotinib is associated with the change of residue interactions within a segment of 

the P-loop. Subsequently, using the same Fs-IFP method, we explored the binding mechanism of 

Ceritinib, which is a second-generation drug designed to overcome the L1196M mutation (Figure 

5b). Ceritinib is also a Type-I ALK inhibitor and we found that Ceritinib overcomes the L1196M 

mutation by strengthening the corresponding interactions with the P-loop residues (Figure 5d). 

Given this example, the systematic application of the Fs-IFP method combined with umbrella 

sampling and free energy calculations is a promising approach for revealing the mechanisms 

underpinning drug resistance.  

 

Summary and discussion 

The Fs-IFP approach shows promise in drug design and discovery35,62,64,72,80,81. Specifically, the 

approach encodes the interaction features of any given protein-ligand complex into a bit string, 

facilitating large-scale data analyses. Furthermore, the binding-site alignments are based on a 
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sequence-order-independent structure comparison method, which allows us to explore similar 

targets but with different sequences across the proteome82. The comparable binary IFPs, based on 

the matched residues within the binding sites, offer a convenient means to analyze binding modes 

and train machine/deep learning models32,38. 

Drug resistance is a major limitation in which the efficacy of targeted drug therapy is 

significantly attenuated in clinical trials and beyond. Uncovering the different protein-ligand 

interactions of wild-type and mutants at the atomic level provides a pragmatic strategy for 

determining drug binding and/or drug-resistant mechanisms. Using interaction fingerprints before 

and after the conferral of drug resistance is an effective approach for developing next-generation 

anti-resistant drugs through a combination of the Fs-IFP approach combined with other approaches, 

such as free energy surface calculations. 

Current drug discovery requires analysis of complicated drug-target-disease interaction 

networks and is thus omics in scale. The Fs-IFP approach provides omics level data through 

aligned interaction fingerprints revealing details of target-drug interaction networks. As illustrated 

here, for kinase drug discovery, selectivity across the whole kinome remains challenging even 

though huge advances have been made leading to more than 70 FDA-approved kinase-targeted 

drugs 73. The next challenge would seem to be combining comparable fingerprints via the Fs-IFP 

approach with machine/deep learning models to predict polypharmacology. In so doing, we 

anticipate that early-stage drug discovery will be faster and more effective. 

It is worth noting that the S-IFP-related approaches, including Fs-IFP, rely on pre-existing 

protein-ligand complex resources. The quality and quantity of available protein-ligand complexes 

directly effects the analysis and application of structure-activity relationships for given targets. 

With the development of structural biology technologies, such as Cryo-EM83 and AlphaFold284, 
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more protein structures will be available to support the application of the IFP method. A further 

limitation of S-IFP methods is how to accurately detect and encode the protein-ligand interactions. 

Currently, detecting whether or not protein-ligand interaction patterns exist is based on pre-defined 

geometric rules. The pre-defined geometric criteria limit means some interaction types are not 

counted, such as metal interactions. Pre-defining more interaction patterns is needed. Recently an 

extended connectivity fingerprint (ECFP) has been applied to encode all atom/bond interaction 

types based on every pair of interatomic interactions between ligand and protein substructures47-

51. The ECFP-based IFPs are costly to apply to determine polypharmacology across the structural 

proteome due to their enormous fingerprint sizes47. Another geometric limitation of S-IFP-related 

methods is the geometric rules to pre-define the hydrogen-bond interaction, electrostatic 

interaction, and so on.29 For example, using a Euclidean distance ≤ 4.0 Å as the threshold to detect 

intermolecular ionic interactions29. Simplistic, yet hard cut-off rules may ignore some marginal 

interactions. This is offset to some extent by undertaking molecular dynamics (MD) simulation to 

provide flexible ligand-binding features80. By collecting all the interaction fingerprints of every 

conformation along with the MD trajectories, the IFP is more robust since minor interactions 

around the cut-off boundary will be detected due to the flexible protein-ligand interactions80.  
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Legend:  

Figure 1. (a) 7 types of interactions encoded for every binding pocket residue using the S-IFP 

approach. (b) 11 types of interactions encoded in the IFP approach from the Rognan group. “1” 

indicates the interaction exists and “0” indicates no interaction with the residue. (c) A flowchart 

of the Fs-IFP approach. 

 

Figure 2. (a). The binding clusters mapped to the tyrosine kinase Imatinib (green) complex (PDB 

id: 4CSV) (b). Residues with conserved interactions with bioactive ligands. The spheres 1-5 

correspond to residues in the Hinge region, β3, and β7 (PDB id: 4AN2). (c). The binding clusters 

of the Type-I kinase Lapatinib (red) complex (PDB id: 3BBT). (d) The binding clusters of Type-

III kinase drug Cobimetinib (red) complex (PDB id: 7JUS). 

 

Figure 3. (a) The six non-hydrogen atoms of cysteine. (b). The contribution of each atom to ligand 

interactions. (c) The locations of top 5 easily-available cysteines (PDB template: 3BYU). (d). The 

covalent binding mode of Osimertinib (PDB id: 6JXT). 

 

Figure 4. (a) The binding mode of Type-I kinase inhibitors (PDB id: 4w9x, a JAK-Baricitinib 

complex structure). (b) The binding mode of Type-II kinase inhibitors (PDB id: 4CSV, an SRC-

ABL-Imatinib complex). (c) The binding modes of allosteric inhibitors targeting MEK (PDB id: 

4AN2). (d). The top 15 predicted kinases targets suitable for allosteric inhibitor design using the 

TREEspot software (www.discoverx.com). 
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Figure 5. (a). The similar binding characteristics of Crizotinib in the ALK binding site before and 

after the L1196M mutation (PDB ids: 2XP2 and 2YFX). (b) Ceritinib-bound ALK complex (PDB 

ID: 3MKC). (c) The changes of Fs-IFPs in the Crizotinib-bound state before and after L1196M 

mutation in the ALK-Crizotinib system. (d) The changes of Fs-IFPs in the Ceritinib-bound state 

before and after L1196M mutation in the ALK-Ceritinib system. An asterisk indicates a significant 

difference (p-value <0.001). 
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Table 1. The approved drugs by using computer-aided drug discovery strategies.  

DRUGS DISEASES TARGETS 

ALISKIREN Hypertension Renin 

AMPRENAVIR AIDS HIV-1 protease 

BETRIXABAN Cardiovascular disease Serine protease factor Xa 

BRIGATINIB Non-small cell lung cancer Anaplastic lymphoma kinas 

BOCEPREVIR Hepatitis C virus Proteases 

CAPTOPRIL Hypertension or high BP Angiotensin-converting enzyme 

CRIZOTINIB Non-small cell lung cancer Anaplastic lymphoma kinas 

DORZOLAMIDE Glaucoma Carbonic anhydrase II 

ENFUVIRTIDE HIV-1 infection HIV protein 

GRAZOPREVIR Hepatitis C virus NS3/4a protease 

INDINAVIR AIDS Proteases of HIV1 and HIV 2 

LOSARTAN Hypertension Angiotensin II antagonist 

NELFINAVIR AIDS HIV-1 protease 

NILOTINIB Chronic myeloid leukemia Bcr-Abl tyrosine kinase 

NORFLOXACIN Urinary tract infections and 
prostatitis DNA gyrase 

OSELTAMIVIR Influenza Neuraminidase 

RALTEGRAVIR AIDS HIV integrase 

RITONAVIR AIDS Proteases of HIV1 and HIV 2 

RUCAPARIB Advanced ovarian cancer Poly(ADP-ribose) polymerase 

SAQUINAVIR AIDS Proteases of HIV1 and HIV 2 

SUNITINIB Gastrointestinal stromal tumor Vascular endothelial growth factor 
receptor 

TIROFIBAN Blood clots Fibrinogen 

VABORBACTAM Gram-negative bacteria β-lactamase 

VALSARTAN High blood pressure, heart failure, 
and diabetic kidney disease Angiotensin receptor II antagonist 

ZANAMIVIR Influenza A and influenza B Neuraminidase 

ZOLMITRIPTA Migraine Serotonin receptor agonist 
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Table 2. The FDA-approved covalent kinase inhibitors until April 2022. 
 

Drugs Approved 
Date 

Primary 
targets 

Nucleophilic 
residues 

Locations of 
nucleophilic 
residues 

PDB 
IDs 

Afatinib 2013/07 EGFR Cys797 Frontpocket 4G5J 

Ibrutinib 2013/11 BTK Cys481 Frontpocket 5P9J 

Osimertinib 2015/11 EGFR Cys797 Frontpocket 6JXT 

Acalabrutinib 2017/10 BTK Cys481 Frontpocket - 

Neratinib 2017/06 EGFR Cys797 Frontpocket 2JIV 

Dacomitinib 2018/09 EGFR Cys797 Frontpocket 4I24 

Zanubrutinib 2019/11 BTK Cys481 Frontpocket 6J6M 

Mobocertinib 2021/09 EGFR Cys797 Frontpocket - 

 
 

 


