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Abstract 

 
Machine learning is a useful tool for accelerating materials discovery, however it is a 
challenge to develop accurate methods that successfully transfer between domains while 
also broadening the scope of reaction conditions considered. In this paper, we consider how 
active- and transfer-learning methods can be used as building blocks for predicting reaction 
outcomes of metal halide perovskite synthesis. We then introduce a serendipity-based 
recommendation system that guides these methods to balance novelty and accuracy. The 
model-agnostic recommendation system is tested across active- and transfer-learning 
algorithms, using laboratory experiments for training and testing and a time-separated hold 
out that includes four different chemical systems. The serendipity recommendation system 
achieves high accuracy while increasing the scope of the synthesis conditions explored.  

 
Teaser 
 
• Serendipity recommendation system guides laboratory tests of perovskite synthesis 

experiments to success and exploration. 
 
MAIN TEXT 
 
Introduction 

Machine-learning provides many new tools for advancing experimental science.(1) One 
specific application involves autonomous experimentation systems (AES), in which 
algorithms specify an iterative sequence of new experiments. These experiments are 
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conducted in an automated fashion, and the results captured with minimal human 
intervention. Recent reviews discuss progress on AES in materials science,(2, 3), organic 
chemistry,(4) inorganic chemistry,(5) nanoscience,(6) biomaterials,(7) and 
formulations.(8) 
 
Beyond the significant software and hardware engineering challenges, better algorithms 
are needed for directing autonomous experimentation systems.(1) Such algorithms would 
ideally utilize historical information and physical theories to make more accurate 
predictions,(9) and use recommendation systems that use these models to determine 
experimental choices. To date, recommendation systems used in chemical domains have 
largely focused on achieving high recommendation accuracy,(10, 11) with a few focusing 
instead on encouraging exploration.(12, 13) However, advances in recommendation 
systems now allow for the balancing of objectives to capture the desire to explore the 
chemical space while simultaneously achieving high accuracy.(14, 15) 
 
Towards that end, this paper compares the performance of an exploitative 
recommendation system that optimizes solely based on accuracy, and a serendipity-based 
recommendation system, which balances between accuracy and diversity measure based 
on distances in the chemical space. Eleven candidate active-learning models were 
considered in a common laboratory test setting, tested across four different chemical 
systems that made up a hold-out test set. The AES used was an automated system for 
high-throughput inverse temperature crystallization (ITC) growth of halide 
perovskites.(16) In addition to general interest in metal halide perovskites for high-
performance photovoltaics and optoelectronic applications,(17) the relatively mild, 
solution-based syntheses for these materials make them amenable to high-throughput 
automated experimentation (reviewed in Ref. (18)). The ability to incorporate a different 
organic cations results in a vast, chemically diverse space to explore for new 
compounds.(19) The underlying problem of finding reaction conditions resulting in crystal 
formation is representative of a broad class of chemistry/materials optimization 
problems—controlling compositional variables in a highly non-ideal mixture to achieve a 
desired thermodynamic and kinetic goal, in the absence of a precise models with 
experimental noise in the reaction outcomes. All models were provided with the same 
initial data (including uniformly sampled historical data), and then had the ability to 
request a fixed budget of laboratory experiments as part of training of the active learning 
models. All models were evaluated using the exploitative recommendation system. Based 
on these results, four high-performing models and two baseline models were then given 
another fixed budget of laboratory experiments to recommend using the serendipity 
recommendation system. Independent of the tests, we acquired an experimental random 
baseline dataset for assessing the improvement of the algorithms. 
 
While exploitative recommendation systems often succeed in narrowly defined laboratory 
optimization tasks, they can get trapped in local minima and do not request a diverse set of 
experiments. This can result in missing potentially new phases—for example, we recently 
reported a morpholinium lead iodide system where small concentration changes result in 
phases with distinct structural and optical properties.(20) The serendipity-based 
recommendation system can be applied to any model to increase the recommendation 
diversity while keeping the probability of success high. Laboratory comparisons indicate 
that serendipity-directed recommendation improves the diversity of recommendations, 
which in turn improves the robustness of the recommendation against initialization 
conditions, without substantially degrading recommendation success. 
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Results  

The underlying modeling problem is of the following form: Given a chemical system 
comprised of a metal halide, one specific organoammonium halide salt (for brevity, we 
refer to this as the “amine”), a solvent, and an additive (e.g., formic acid)—find the set of 
concentrations for each of these species, that result in the formation of a large, high-quality 
single crystalline product via an inverse temperature crystallization reaction.(16, 21) 
Concentrations of the three solutes (metal halide, amine, and formic acid) define a 3-
dimensional space, and only compositions within the convex hull of the initial stock 
solutions are feasible.(22) Precision limits on the robotic liquid handler result in a discrete 
state set grid of approximately 20,000 feasible compositions within the composition space 
for each chemical system. The goal of the machine learning models is to predict which of 
these compositions result in crystal formation, and the subsequent goal of the 
recommendation system is to propose composition that result in crystal formation while 
also exploring the chemical space. 
 
Eleven active learning models were assigned the initial prediction task:  Bayesian Additive 
Regression Trees with Transfer Learning (BART),(23, 24) PLATIPUS (PLT),(21, 25) 
Bayesian Optimization using Gaussian Processes (BGP),(26) Falcon (FAL), Falcon GPBO 
(G),(26, 27) Falcon DNGO (D),(28) Gryffin (GR),(29) Gaussian Process with Transfer 
Acquisition Functions (TA)(30), and Falcon with Historical Data (FH), as well as active 
learning k-Nearest Neighbors (KNN)(31, 32) and Decision tree (DT)(33) models which 
serve as a baseline for model performance. (See Methods for a complete description of 
each model.) Data and code are available in the Supporting Information. 
 
Fig. 1 shows an overview of the experimental campaign designed to evaluate the model 
recommendations. The general structure of the campaign, including the historical dataset, 
experimental details, and performance of the PLATIPUS model were previously described 
in Ref. (21). The campaign is split into model training and refinement, active learning, and 
recommendation phases. In the initial model training and refinement phase (Fig. 1A), each 
model has access to prior historical data comprised of 1722 total reactions on 19 amines 
(see Table S1). In addition to the raw experimental description of concentrations and 
outcomes, the input features are augmented with physicochemical properties and 
cheminformatics descriptors relevant to the amine for a total of 54 input features per 
reaction (Table S2). Models could use this historical information for training and 
hyperparameter tuning as desired, as well as augment the input features with custom 
transfer learned features (in the case of BART). Subsequent phases test the ability of each 
model to operate new, time-separated hold-out chemical systems, specifically four amines 
(4-chlorophenethylamine, 4-chlorophenylamine, 4-hydroxyphenethylamine, 
dimethylamine) absent from the historical dataset. To establish a statistical baseline, we 
first collected experimental data for 96 experiments drawn uniformly from the feasible 
stateset for each new amine. Success rates for these randomly selected reactions are shown 
in Table 1. To initialize the active learning phase (Fig. 1B), each model was provided with 
the same set of 10 initialization samples, drawn randomly from the statistical baseline data. 
To study the robustness of model performance with respect to initialization samples, each 
model is provided with two draws of initialization data.  This results in a total of 
11	 × 	4	 × 2 = 88 total amine-specific models evaluated in the campaign. Each model is 
then allowed 10 sequential active learning experiment requests. At each iteration, the 
model identifies one new stateset point, with maximum uncertainty for classification 



Science Advances                                               Manuscript Template                                                                           Page 4 of 26 
 

models (KNN, DT, PLT and BART) and a combination of crystal score and model 
uncertainty for regression models (FAL, G, D, GR, TA, FH) to aid in the active learning 
training. Details related to query selection are provided in the methods section. The 
requested experiments are performed in the laboratory, and then each model is updated 
with the new result that it requested. The number of initialization and sequential 
experiments is intentionally small, as this allows us to assess the feasibility of these 
algorithms for future non-automated experiments. After completing the iterative active 
learning, each model enters a recommendation phase where it is allowed to request 9 
reactions, to be run in parallel. 
 
Recommender systems in their simplest form, generate a ranked list that tries to predict the 
most relevant items based on a user or application’s constraints.(34)  One common way to 
create a recommendation system focused on exploitation is to select the experiments with 
the highest predicted probability of success based on the underlying model; we term this 
recommendation system exploitative (Fig 1C). The serendipity-based recommendation 
system (Fig 1D) we develop is based on the idea of balancing exploitation with 
exploration. From an information retrieval perspective, the fraction of recommended 
reactions that successfully result in crystal formation in the laboratory (denoted success 
fraction) corresponds to item relevance or accuracy. Recommendation serendipity 
quantifies the joint combination of relevance and surprise;(14) the latter is quantified by the 
distance from other examples in the data-item feature space. (See Methods.) 
 
Exploitation Recommender. The accuracy (success fraction) of each model’s exploitation 
recommendations can be measured either globally (over all 8 tasks), on a per-amine basis, 
or on each draw of initialization data for each amine. (See Table 1.) Evaluating the 
accuracy in each of these divisions gives a useful perspective on the model's applicability 
to experimental tasks. Global success fraction gives a sense of how well models perform 
generally on 9	 × 4	 × 2 = 72 total recommendations, and thus the best sense of overall 
recommendation quality over a wide range of problems. Globally, Falcon (FAL, 0.83) gave 
the best recommendations, followed closely by Bayesian Additive Regression Trees 
(BART, 0.79) and Bayesian Optimized Gaussian Processes (BGP, 0.75). In general, all 
models performed better in the global task than random sampling (0.36), except for the 
decision tree (DT, 0.22) and KNN baselines (KNN, 0.08). 
 
Per-amine success fraction for each model allows us to see how well models fare in tasks 
of varying difficulty, as the underlying base rate of success for a random reaction differs 
for these systems on 18 recommendations. No single model was a clear winner, but BART 
performed best for two amines (dimethylamine and 4-chlorophenylamine), whereas Falcon 
with historical data (FH) did best on 4-chlorophenethylamine, and BGP did best for 4-
hydroxyphenethylamine. In general, BART is always among the top-3 models for all four 
amines tested; the other models are not as consistent, and FAL and BGP are only in the 
top-3 for two of the four amines. Several of the models—KNN, Falcon DNGO (D), Gryffin 
(GR) and Gaussian Process with Transfer Acquisition function (TA)—failed to recommend 
successful reactions for at least one of the tested amines. As the per-amine results consist of 
a limited sample of 18 requests, we also quantified the uncertainty by computing the 
conjugate prior estimate of the success rate given these observations, i.e., the distribution of 
success rates consistent with the finite observation;(21) results are shown in Fig. S1.  
 
Per-draw success fraction tells us about the sensitivity to the initialization data provided to 
initiate the active learning cycle, evaluated on 9 recommendations each. An ideal model 
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should be robust, i.e., capable of recommending some successful reactions independent of 
the chemical system or the initialization data. On a per-draw basis, 6 out of the 11 models 
fail to recommend at least one success for a given draw. Curiously, this includes the Falcon 
(FAL) model, which despite the highest global success was unable to successfully identify 
crystal growth conditions for a single draw of 4-Chlorophenylamine, yet made perfect 
recommendations in the other draw of this amine. A closer examination of the data showed 
that Falcon recommended the same experiment as the successful experiment it requested 
during the sequential active learning stage, as well as other experiments that were 
immediately adjacent in the stateset. However, none of these recommendations resulted in 
crystal formation during the recommendation stage during this trial. A similar result was 
observed with Falcon GPBO (G) having a high average success fraction of 0.736 but was 
unable to predict successful reaction for a single draw of 4-Chlorophenethylamine, despite 
being successful in 6 of the 9 recommendations for the other draw of the amine.  
 
Recommendation diversity is important in scientific discovery tasks, but an exploitation-
focused recommender does not incorporate this as a criterion. As a representative example, 
the successful experiments predicted by different models using the exploitation 
recommender for 4-Hydroxyphenethylamine are shown in Fig. 2, where the axes are the 
concentration of different chemical components used in the experiment. Many models, 
including BART, BGP, FAL, FALGP and GRYF, are clustered together in chemical space. 
This is expected, as the exploitation recommender optimizes for experiments with the 
highest probability of success, which tend to have similar experimental conditions to those 
already sampled during the initialization and active learning phases. Further, each model 
mentioned above has two clusters of points corresponding to the initialization experiments 
used to train the model. Thus, these models not only explore a small fraction of the 
chemical space but also cluster in various parts of the space owing to the sensitivity to 
initialization samples. We selected a subset of the models for further study and 
experimental testing, specifically the best performing models (FAL, BART, BGP and PLT) 
and the two baseline models (KNN and DT). To assess the fraction of the chemical space 
explored, we consider the volume fraction—the volume of the compositional space that 
these experiments cover normalized by the total volume of the achievable convex hull. Fig. 
3 shows each model’s volume fraction explored versus how successful it was in predicting 
crystallization averaged over all amines. We see that these models demonstrate an 
exploration versus exploitation tradeoff; the high-performing models (BART, FAL, and 
BGP) explore a smaller fraction of space but achieve high success (consistent with our 
observations regarding Fig. 2), the low-performing models (DT and KNN) better explore 
the space but perform poorly, and PLT finds an intermediate point in this trade-off. We use 
this as a baseline to observe the change in success fraction and volume explored when the 
serendipity recommender is applied to the same models with the goal of better balancing 
success and volume fraction.  
 
Serendipity recommender. Incorporating the serendipity constraint in the recommendation 
increases the volume of compositional space explored, while not decreasing the success 
fraction (Table 2). Fig. 4A shows the volume fraction versus success fraction for the 
experiments selected by the exploitation recommender and serendipity recommender. In 
general, the average volume of chemical space explored increases when the serendipity 
recommender is applied to all models except for DT where the average volume fraction 
decreases. Despite increasing the range of chemical space, the success fraction increases 
for the DT and KNN baseline models and only slightly changes for BGP, PLT, BART and 
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FAL models. As expected, the average serendipity metric in recommended experiments 
increases when this constraint is added (Fig. 4B).  
 
The changes in each of these measures are depicted in Fig. 5 and Fig. 6. In Fig. 5, volume 
fraction, success fraction, and serendipity measures are indicated by the circle, triangle, and 
square points, respectively, for the exploitation recommender on the x-axis and the 
serendipity recommender on the y-axis. Points above the unit slope indicate higher values 
for the serendipity recommender compared to the exploitation recommender. Fig. 6 is a bar 
plot showing a side-by-side comparison of the volume fraction, success fraction and 
serendipity measures for the two recommenders for different models. The serendipity 
measures (squares, Fig. 6A) improve when the serendipity recommender is used. The 
fraction of successful reactions predicted by models, indicated by triangular points (Fig. 
6B), changes slightly for most models and increases significantly for models such as KNN 
and DT. The volume fraction explored by models, indicated by circles (Fig. 6C), increases 
for all models except for DT. Thus, the serendipity recommender forces models to explore 
a large space of experimental parameters (indicated by the volume fraction and serendipity 
measures) while maintaining a high success rate.  
 
On a per-amine basis, the probability estimates for each amine remain high for all models, 
except for 4-chlorophenylamine (Fig. S2). BGP and FAL are consistently top performers 
with the serendipity recommender. On a per-draw basis—and in contrast to the exploitative 
recommender results—none of the tested models fail to yield at least one success in every 
draw when the serendipity recommender is used. This indicates that the serendipity 
recommender constraint improves robustness against initialization conditions.  

 
Discussion  
 

Although a variety of algorithms have been developed and tested for autonomous 
chemistry and materials experimentation,(2–8) there has not yet been a direct comparison 
of different algorithms in an experimental laboratory setting.(35)  To date, large-scale 
comparisons of different algorithmic methods have been performed computationally on 
previously collected datasets, rather than on live laboratory experiments. Specifically, Rohr 
et al. benchmarked sequential learning algorithms on a dataset of oxygen evolution reaction 
catalysts obtained from a historical set of combinatorial experiments,(36) and Liang et al. 
benchmarked Bayesian optimization-based and random forest models on five different 
materials datasets.(37) Comparisons on pre-existing datasets avoids the time and costs of 
laboratory experimentation and allows for a broad survey of possible algorithms and 
hyperparameters. However, this restricts algorithm requests to a limited set of pre-existing 
data. The distribution of these historical data may incorporate anthropogenic or algorithmic 
biases that degrade model performance.(38) The best comparison would approach would 
be to acquire unbiased, uniformly sampled data and then evaluate the algorithms on new 
problems based on the experiments that they select. As such, the results described above 
address this lack of direct comparison.    
 
Unlike the majority of the recommendation systems literature, which considers domains in 
which there are multiple users who may have different notions of relevance and 
surprise,(39) the recommendation systems we introduce here consider a single-user case. In 
multi-user cases the determination of relevancy is often subjective based on user opinion 
and thus hard to assess;(39) this work benefits from determining relevancy directly based 
on reaction success which allows direct assessment of the quality of the resulting 
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recommendations. With the exploitative recommender, all the tested active learning 
algorithms are better than random sampling, when judging by reaction success. In general, 
Falcon (FAL), BART, and BGP are the best across the entire study, and we generally 
recommend them for future work. Despite comparable performance, these three models 
take very different approaches to the problem. FAL and BGP use only the small amount of 
data (10 initialization experiments plus 10 sequentially selected active learning 
experiments) specific to the current amine being investigated to make their 
recommendations. BGP is even more restrictive, as it only makes use of the organic, 
inorganic, and formic acid concentrations as input variables to make the predictions, 
ignoring the other stoichiometric and physicochemical properties that were provided as 
possible model inputs. This suggests that in chemical optimization tasks like this one, large 
historical data sets are not necessarily required to create task specific models with high 
performance. This is especially relevant for the many scientific research applications where 
experimental databases do not yet exist.(1) In contrast, BART uses all of the input features 
and historical data, as well as incorporating its own transfer-learned latent representation of 
the amine molecule structure. This has clear benefits, as BART performs consistently well 
across all four amines tested, indicating the value of making use of historical information 
when available. However, here too, the total amount of historical data is relatively small 
(only 1722 data items for 19 different amines), indicating the applicability of these methods 
for the broad class of scientific problems where only modest datasets are available.  
 
Exploitative recommendations that try to maximize success alone are not as robust to the 
possible uncontrolled experiment variations —such as laboratory humidity,(40) 
impurities,(41) stock solution preparation and aging,(42) liquid handler calibrations(43)— 
that can affect crystal growth. For example, despite Falcon’s overall strength, we observed 
one instance where it failed to find a solution due to non-representative active learning 
data. As noted above, during one of the trials for the 4-chlorophenylamine iodide system, 
the model encountered “successes” during the active learning phase which produced a 
crystal, and then assigned high success probabilities to this and other similar experiments. 
However, subsequent recommendations based on these data failed to yield crystals. Crystal 
growth experiments can be strongly affected by subtle differences in reaction conditions, 
owing to experimental precision limitations, which can lead to imperfect replicability as the 
process is inherently stochastic.(44) This illustrates the need to incorporate diversity into 
the recommendations. Furthermore, reaction recommendations that purely try to maximize 
success can often be trapped in local minima possibly due to bias in the initial training data, 
and do not necessarily sample diverse compositions which might contain new, unexpected 
outcomes.  
 
Incorporating a definition of reaction serendipity into the recommendations provides a 
model-agnostic way to improve robustness against noise with respect to initialization data, 
allowing all models to find some successes regardless of how they are initialized. While 
this slightly reduces the overall success rate, it encourages more diverse sampling of 
reaction composition, which in turn reduces the risk of failure and facilitates discovery of 
unexpected phenomenon. For example, different concentrations in the 4-
chlorophenethylamine iodide system result in two different crystalline products, a red 
perovskitoid and a yellow non-perovskite (formed from decomposed N,N-
dimethylformamide), both of which are considered a “success”. Recommending a diverse 
set of reactions increases the likelihood of identifying both phases, rather than being 
trapped in a local minimum of one or the other. While we have focused on the problem of 
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optimizing reaction composition, the serendipity approach could be applied to 
compositional optimization problems by incorporating a suitable composition-space 
distance metric(45) during in the calculation. 
 
Our serendipity metric closely follows its use in the recommendation systems field.(14, 15) 
Within this field, “serendipity” is meant to introduce a notion of surprise—here quantified 
via distance from recommended reactions to historical reactions—that goes beyond 
novelty, where novelty is meant to indicate that recommendations are previously unknown, 
relevant, and different.(14, 46) In the sociology of science, “serendipity” is, similarly, used 
to express the notion of researchers making unexpected and beneficial discoveries, but the 
precise definition, significance, and broader implications have varied.(47)  A variety of 
metrics and tools have been proposed for assessing and aiding scientific serendipity, often 
with different goals.(48) Yaqub’s taxonomy distinguishes aspects of scientific serendipity 
in terms of whether there exists a target line of enquiry and whether the solution is for a 
pre-existing problem or a “solution waiting for a problem.”(49) Within this taxonomy, the 
approach taken here corresponds to Mertonian serendipity, wherein the search is conducted 
with a defined problem in mind (specifically: finding the parameters that will result in 
crystal formation for a given chemical system) and where the obtained solution is to that 
same problem, but in a new way. Operationally, this corresponds to proposing reactions 
with the broadest variety of possible successes. Incorporating serendipity into the reaction 
selection phase in this way reduces the number of experiments needed to find surprising 
results, and thus offers an efficiency improvement over the “accelerated serendipity” in 
which brute force experimentation is used to identify novel reactions.(50)  It is also distinct 
from Walpolian serendipity in which a targeted line of inquiry results in data that solves 
another problem; a recent example of this type of serendipity is the use of data initially 
collected to identify perovskite crystallization conditions which was subsequently analyzed 
for latent information about the role of ambient humidity in the crystallization process.(40) 
The serendipity discussed here is also in distinction to the scientific literature retrieval 
methods reviewed in Ref. (48).  
 
Famously, there is “no free lunch” in machine learning—an algorithm that performs well 
on a certain class of problems may not perform well on other problems.(51)  Thus, while 
there is no guarantee about the applicability to chemistry problems in general, we have 
assessed some aspects of the generality of the serendipity recommendation system and 
active learning models by benchmarking across four distinct chemical systems and eleven 
models. The self-imposed limits on the acquisition of task-specific data (10 initialization 
data, and 10 sequential experiments) makes our results relevant to both automated and non-
automated experimentation. To facilitate broader use of these models, we have provided 
source code which can be used for other problems.  In addition, all data used and generated 
in this study is provided, allowing other users to test their own methods against this 
benchmark task. 

 
 
Materials and Methods 
 

Experimental Design. The experimental procedure for the high-throughput inverse 
temperature crystallization (ITC) synthesis of metal halide perovskitoid single crystals was 
described in our previous work.(16, 21) A Hamilton Microlab NIMBUS liquid handler 
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pipettes four different stock solutions into glass vials on a 96-well microplate. These stock 
solutions consist of (a) lead (II) iodide and the selected organoammonium iodide in solvent, 
(b) organoammonium iodide in solvent, (c) neat solvent, and (d) neat formic acid. N,N-
Dimethylformamide (DMF) was used as the solvent for the experiments described here. 
For brevity, the text refers to the organoammonium salt by the name of the corresponding 
freebase amine. Reagent stock solutions are dispensed into the pre-heated (70 °C) vials, the 
vials are vortexed for 35 min to ensure proper mixing, then heated to 95 °C for 150 min 
without vortexing to allow for crystal growth. Reaction outcomes are scored by visual 
inspection into the four classes: (1) no solid observed in the solution; (2) fine powder 
observed; (3) small crystals observed; (4) large crystals observed (>0.1 mm). Fig. S3 shows 
representative outcome images for these classes for all the amines tested during the 
experimental campaign. Visual inspect was more reliable than computational image 
processing, due to reflections on the glass vials. In this study, the outcomes are reduced to 
binary values for the classification models, with large (class 4) crystals considered as 
successful (denoted as a classification outcome of 1) and all other classes are considered as 
failed experiments (classification outcome of 0). Regression models use the full range of 
crystal scores to make predictions. A raw data file containing a description of the stock 
solution concentrations used for each experiment, as well as details of the pipetting 
instructions, final compositions, and outcomes of each reaction is in the supplementary 
materials. 
 
For each of the four amines tested in the experimental campaign, we initially acquired 96 
experiments sampling the concentrations uniformly in the achievable 3-dimensional 
composition space(22) to serve as a statistical benchmark for the models. To initialize the 
models for the active learning cycle (Fig. 1B), two draws of 10 experiments were selected 
using uniform random sampling from this pool. Models requested 10 additional 
experiments sequentially from the stateset of possible achievable compositions for the 
amine. Because only one experiment is requested by each model at a time, the requested 
experiments were dispensed by manual pipetting, but otherwise follow the same 
experimental process described above. At the conclusion of the experiment, the results 
were returned to the models. Each ITC experiment requires approximately 4 hours to 
complete, allowing for 2 active learning rounds per amine per day. At the conclusion of the 
active learning cycle each fully trained model made 9 recommendations using either the 
exploitation recommender (Fig. 1C) or the serendipity recommender (Fig. 1D). These 
experiments were conducted using the liquid handler robot, batching together the 
recommendations made by all tested models. 
 
Dataset Description. The historical datasets were acquired using the automated ITC 
experimental procedure described above, and previously described in Ref. (21). Each data 
item describes an inverse-temperature crystallization (ITC) metal halide perovskite 
synthesis by including concentrations of lead iodide, formic acid, and an organoammonium 
cation (referred to as the amine), other reaction conditions (such as temperature), and 
outcomes. From our collected set of historical data, we extracted only experiments 
performed at the nominal 105 °C (correspond to an actual temperature of 95°C, as 
measured by infrared thermometry), where the concentrations were sampled uniformly 
over the achievable convex hull of compositions, and for which at least one successful 
outcome was observed. Of the 20 amines satisfying these criteria in the historical data, one 
amine (Dimethylammonium iodide) was held out to be used as part of the laboratory test 
experiments. In addition, we acquired a uniformly sampled baseline for three additional 
amines for which we had no previous data, to demonstrate the resulting models on a true 
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time-separated hold-out set. Table S1 summarizes the amines included in the training and 
testing phases of the study, and the number of experiments from the historical dataset, and 
the observed success fraction. The ESCALATE software(52) was used to append 
stoichiometric and physicochemical descriptors from the raw record of reaction conditions 
and amine structure. In total, each experiment is described by 50 input features: 28 
molecular descriptors (number of atoms, rotatable bond counts, etc.), 7 reaction conditions 
(concentration of acid, organic and inorganic compounds in solvent), and 15 stoichiometric 
descriptors. The full list of included features can be found in Table S2. The 44 numerical 
features in the dataset were standardized to zero mean and unit variance on the training 
data, and these training mean, and variance were used to rescale the values for subsequent 
active learning experiments. The complete dataset is available at 
https://github.com/darkreactions/serendipity_recommender 
 
Models Tested 
KNN: K-Nearest Neighbors(31, 32) serves as a baseline model, with the prediction  
generated by the single (k=1) Euclidean nearest example in the training set, using 
sklearn.neighbors.NearestNeighbors in scikit-learn 0.23.2.   Previous work has indicated that 
1-NN is an appropriate baseline for model memorization.(53). Exploitation recommender 
results described here were previously reported in Ref. (21). 
DT: Decision Tree(33) serves as a baseline model with a maximum depth of 12, 5 
minimum samples per split and 1 minimum sample per leaf and class weight ratio of 0.105 
for failure and  0.895 for success. These calculations were performed using the 
sklearn.tree.DecisionTreeClassifier in scikit-learn 0.23.2. Exploitation recommender results 
presented here were previously reported in Ref. (21). 
BART: Bayesian Additive Regression Trees with transfer learning (BART+TL) approach 
consisted of two steps. First, additional features were obtained for each amine using 
transfer learning. Second, the probability of crystallization was modeled using  Bayesian 
Additive Regression Trees.(23) The transfer-learned features were obtained using the 
Chemprop neural network model(24) which predicts molecular properties by using 
convolutions centered on molecular bonds. Specifically, the Chemprop model was trained 
on a dataset of 118,360 molecules curated from the eMolecules.com database. The 
eMolecules dataset was created by selecting all amines and amides based on the following 
SMARTS patterns  
s=’[#7]’ s!=’[OX2H]’ s!=’[OX2H]’ s!=’[OH]’ s!=’[OX2,OX1-][OX2,OX1-]’  
s != ’[#2, #3, #4, #5, #11, #12, #13, #14, #15, #18, #19, #20, #21, #22, #23, #24, #25, #26, 
#27, #28, #29, #30,#31,#32,#33,#36,#37,#38,#39,#40,#41,#42,#43, #44, #45, #46, #47, 
#48, #49, #50, #51, #52, #54]’ and with molecular weight less than 370,  water accessible 
surface area between 15.05-149.19 and van der Waals volume between 42.58-229.29.  The 
Chemprop model took as input the SMILES string of each molecule and was trained to 
predict 44 molecular descriptors (accessible surface area, rotatable bond count, minimal 
projection area etc). For the Chemprop model, the dimension of the hidden layer was set to 
50, otherwise default Chemprop settings were used. After training, the transfer-learned 
features for each of the 19 historical and 4 evaluation amines were obtained by passing 
their SMILE strings through the trained Chemprop model and extracting the final layer of 
the neural network as a set of 50 additional features for each amine considered here.  
Consequently, the probability of crystallization was modeled using a total of 101 input 
features: 51 features related to the reaction conditions, stoichiometry, and chemist-curated 
properties and 50 features from the Chemprop neural network. A BART model was applied 
to these features to predict the probability of crystallization The BART model was fitted 
using the dbarts package in R. 
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PLATIPUS(25) (Probabilistic LATent model for Incorporating Priors and Uncertainty in 
few-Shot learning) extends the model agnostic meta-learning (MAML)(54) model which 
enables a model to quickly adapt to new amines using only a few data points and iterations. 
PLATIPUS constructs a Bayesian network for data and parameters and estimates uncertainty 
in key parameters. PLATIPUS computes approximate posterior distributions of amine-
specific parameters and meta-parameters by maximizing variational lower bound of log 
likelihood function. Each amine is considered a meta-task.  The application of PLATIPUS 
to perovskite experiments using the exploitation recommender was previously reported in 
Ref. (21), and the corresponding results described here are taken from that paper.  
BGP: A Gaussian process-based Bayesian Optimization (BO) algorithm utilizing spatial 
constraints was implemented using the GPyOpt package(55) with the following parameters: 
Matern32 kernel, local penalization, automatic relevance determination, jitter, and the 
expected improvement acquisition function. Constraints for the BO were generated by 
computing a convex hull from the stateset for each amine using the “ConvexHull” function 
from scipy. For optimization, the independent variables were: molar organic concentration, 
molar inorganic concentration, and molar acid concentration. The crystal score was 
considered as the dependent variable, and the values were treated as negatives for 
minimization within the BO. For each round of active learning, a location within the stateset 
was chosen based on the lowest Euclidean distance to the location suggested by the 
“suggest_next_locations” function. Resulting crystal scores for the tested location were then 
incorporated into the training data to compute a suggestion for the next round. In the model 
validation round, CMA-ES(55) was utilized to identify points in the stateset likely to exhibit 
high-quality crystals. CMA-ES was run 20 times, seeding each search with the 20 points 
measured in the training and active learning rounds (1 point per CMA-ES run). As different 
seeds would often converge to the same minima, CMA-ES produced too few distinct final 
guesses. To fill in the remaining guesses, “suggest_next_locations” was executed 100 times. 
The resulting locations were ranked based on expected crystal score, and the remaining 
guesses were filled in with the top-scoring points. As before, the locations were mapped to 
their closest locations in the stateset. 
Atinary™ Falcon: Falcon is a general-purpose optimization algorithm developed by 
Atinary Technologies which can solve optimization problems that include continuous, 
discrete and/or categorical variables with or without physicochemical descriptors, as well as 
batch-constrained optimization.  Among other enhancements, both Atinary™ Falcon GPBO 
and  Atinary™ Falcon DNGO empower existing Bayesian optimizers based on Gaussian 
Processes(26, 27) and Neural Networks(28), respectively, with the capacity for users to 
easily deal with arbitrary combinations of continuous, discrete and categorical parameters 
(with or without descriptors) as well as with batch-constrained optimization problems.   
Atinary™ Falcon GPBO: Gaussian Processes are probably the most standard choice of 
surrogate model for problems that are conceivably optimized with a relatively small number 
of queries.(26, 27) However, its computational cost scales cubically in the number of queries-
which hinders its usage for more challenging problems.  
Atinary™ Falcon DNGO: Neural Network based Optimization technique(28) that 
maintains desirable properties of the Gaussian Processes (e.g. management of uncertainty) 
while improving its scalability from cubic to linear in the number of queries.  
Gryffin: Gryffin(29) is an extension of Phoenics(56) to also handle categorical and discrete 
parameters. As opposed to GPBO and DNGO, its surrogate model does not provide 
information about the uncertainty of the predictions. However, this limitation is overcome 
with a novel acquisition function that still enables balancing between exploration and 
exploitation. 
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GPTAF: Gaussian Processes (GPs) with Transfer Acquisition Functions (TAF)(30) 
approach injects prior knowledge directly into the optimization strategy via an acquisition 
function that leverages independently learned GPs for each of the amines.  
Atinary™ Falcon leveraging historical data (FH): This is the same method, but training 
set to include historical data collected for the 19 amines. 
 
Serendipity based recommender system. The recommender system is modeled as a 
constrained optimization problem. Given a set of candidate recommendations C, the 
recommender provides a set of recommended reactions R, where |𝑅| ≤ |𝐶|.  The elements 
in R are determined by 

𝑅 = 	argmax	 .𝛼	 0 rel(𝑥!) + (1 − 𝛼)	obj
"!∈$

(𝑅)6 

Where rel(𝑥!) is the recommendation relevance of candidate 𝑥!, i.e., the predicted 
probability of the experiment being successful, and obj(𝑅) is an additional objective 
function that captures the diversity and serendipity of the recommended reaction. The 
weight hyperparameter 𝛼 is determined through a validation process, described below.  
 
Serendipity of a recommended experiment is the notion that it is unknown to the user, 
relevant and different from the list of already conducted experiments.(14) Serendipity can 
be measured using a distance or similarity metric between two reactions, that is serendipity 
between reactions is inversely proportional to their distances. The objective function 
attempts to maximize the Euclidean distance between a recommended reaction and a 
historical reaction as well as other previously recommended reactions. These distances are 
known as inter-list serendipity and intra-list serendipity respectively. Therefore, the 
objective function is defined as 

     𝐨𝐛𝐣(𝑅) = 𝜆	S(𝐻, 𝑅) + (1 − 𝜆) S(𝑅, 𝑅)	 
where R denotes current list of recommendations and H is the list of historical reactions. 
𝐒(𝐻, 𝑅) is the serendipity of recommendations R with respect to historical reactions H, 
defined as 
 

	𝐒(𝐻, 𝑅) = 	
1
|𝑅| 0 min

""∈%
tanh D

E𝑥! − 𝑥&E
𝑛 G

"!∈$

 

 
where ‖𝑥!‖ denotes the Euclidean (L2) norm of 𝑥!, 𝑛 is the number of features describing 
the experiment (fixed to 50 as hyper-parameters 𝛼 and 𝜆 are determined using the 50 
features used in the baseline models) and tanh 𝑥 = (𝑒" − 𝑒'")/(𝑒" + 𝑒'") is the 
hyperbolic tangent. Applying the hyperbolic tangent to the Euclidean distance between 
items normalizes the non-negative distances to be within the range of [0, 1], preventing 
either the either the interlist or intralist serendipity values from dominating the final 
objective function.  The serendipity of a recommended reaction with respect to other 
recommendations in the list is defined as  

𝑺(𝑅, 𝑅) = 	
1
|𝑅| 0 min

""∈$\{"!}	
tanh D

E𝑥! − 𝑥&E
𝑛 G

"!∈$

 

where the notation 𝑅\{𝑥!} denotes the elements in R excluding 𝑥!.  
 
We determine the hyperparameter values of the serendipity recommender (𝛼 and 𝜆) as 
follows. First, the PLATIPUS model was trained on 16 of the 19 amines in the historical 
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dataset. Next, for each value of 𝛼 and 𝜆 within range [0, 1] with steps of 0.05, the 
recommender is applied to PLATIPUS predictions made on the remaining 3 amines in the 
historical data. For each combination of parameters, the algorithm recommends 20 
candidate reactions. The experiments were performed in the lab and the following dual 
objective score is calculated for a particular set of recommendations R by   

D(𝑅)  =   ,
-
× ./0(23) ' 23($)

./0(23) ' .67(23)
  +   ,

-
× ./0(2) ' 2($)

./0(2) ' .67(2)
, 

where SF(R) is the fraction of successful experiments and S(R) is the serendipity value of 
the set of recommendations R. The dual objective score is the mean of the normalized 
values of SF(R) and S(R). Fig. S4 shows the contour plot of the above metric of both 
success percentage and serendipity values, normalized separately for different values of 𝛼 
and 𝜆. The highest dual objective score values were observed for 0.35 ≤ 𝛼 ≤ 0.6  and 0 ≤
𝜆 ≤ 0.1; the final hyperparameter values selected for use in the study were 𝛼 = 0.5 and 
𝜆 = 0.1.   
 
Statistical Analysis.  95% confidence limits in Figures 3-5 are established using bootstrap 
calculations, as implemented in stats.bootstrap module of the SciPy version 1.7.3 Python 
library. 
 
Volume fraction calculation. Convex hull of experiments is calculated using  
scipy.spatial.ConvexHull module with the three dimensions being organic amine, inorganic 
lead diiodide and formic acid concentrations. Volume fraction is the ratio of volume 
occupied by the convex hull of recommended points to the volume occupied by the convex 
hull of the stateset of all possible reactions for a specific amine. 
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Figures and Tables 

 

 
Fig. 1. Overview of recommendation systems with active learning (A) Model are 

provided with historical data for training, and refinement and initialized with 10 
random experiments for each new chemical system to explore. (B) Ten active 
learning rounds enable amine-specific models to be further refined by requesting 
experiments from a stateset of possible experiments and performing them in the 
lab. Success probabilities per model are calculated for the stateset and serve as 
inputs to recommendation systems. (C) The exploitative recommender maximizes 
success probabilities predicted by a model. (D) The serendipity recommender 
maximizes the serendipity measure which attempts to increase diversity in 
experimental conditions while keeping the success probabilities high. 
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Fig. 2. Convex hull of experiments for 4-Hydroxyphenethyl amine. The blue polygon 

represents the stateset of all achievable concentrations due to volume and solubility 
limits. Points represent successful experiments predicted by different models. 
Models such as BART, BGP, FAL, FALGP and GRYF, are clustered together in 
chemical space. The exploitation recommender optimizes for experiments with the 
highest probability of success which tend to have similar experimental conditions to 
those already sampled. Each model mentioned above has two clusters of points 
corresponding to the initialization experiments used to train the model. These 
models explore a small fraction of the chemical space and cluster in different parts 
of the space due to the sensitivity to initialization samples   
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Fig 3. Convex hull volume fraction versus success fraction for the exploitation 

recommendations. The figure shows fraction of convex hull volume explored by 
each model versus the crystallization success rate averaged over all amines, with 
error bars showing the 95% confidence interval. The best performing models, FAL, 
BART, and BGP models do not have a large convex hull volume formed by the 
recommended reactions, implying selected experiments are close together in 
chemical space  
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Fig 4. Change in model performance due to serendipity recommender.  Error bars 

show 95% confidence interval over 72 recommended experiments. (A) Fraction of 
chemical space explored (volume fraction) per model averaged over all amines vs. 
success fraction for exploitation recommender experiment and serendipity plates. 
All models except for DT move towards the right indicating the recommendations 
made by the serendipity recommender explore more of the chemical space with 
very little change in success fraction for the best performing models (B) Average 
volume fraction per model over all amines vs. average serendipity per model over 
all amines for original experiment and serendipity plates. Serendipity values 
increase across all models indicating a greater variety of experiments selected by 
the recommender 
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Fig. 5: Overview of recommender measures. Volume fraction, success fraction and 

serendipity measure comparisons indicated by circle, triangle, and square points, 
respectively between the serendipity recommendations and exploitation 
recommender with error bars showing 95% confidence interval. Points above unit 
slope indicate higher values for the serendipity recommender as compared to the 
exploitation recommender. Serendipity measures and volume fractions both 
increase for all models except for DT by applying the serendipity recommender, 
indicating an increase chemical space explored while maintaining success fractions 
on average. 
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Fig 6: Side by side comparison of measures per model.  Each bar show an average over 

two trials of 4 amines, and error bars show one standard deviation. (A) Serendipity 
measure of recommendations made by models. (B) Success fraction of 
recommendations made by models. (C) Fraction of convex hull volume occupied 
by recommendations of each model. 
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Table 1. Models used and exploitation recommender results.  Table shows the model 
codes used throughout this paper in the first column and the corresponding model 
name in the second column. Columns that follow show results for the exploitation 
recommender, starting with “Successful initialization draws” which is the number 
of initialization experiment draws that yield at least one success. “Successful for 
all amines and draws” indicates whether the model predicts at least one success for 
all amines and draws. Followed by the fraction of experiments correctly predicted 
and the fraction of the convex hull covered by the recommended experiments  

 

Model 
Code 

Model Name Successful 
initialization 

draws 

Successful 
for all 

amines and 
draws 

Fraction Success  

  

 

Convex hull 
volume 
fraction 

KNN K Nearest Neighbors 3 
 

0.08 0.166 

DT Decision Tree 8 ✓ 0.22  0.181 

BART Bayesian Additive 
Regression Trees with 
Transfer Learning 
(BART+TL) 

8 ✓ 0.79 

 

62.7 x 10-5 

PLT PLATIPUS 8 ✓ 0.56 0.0927 

BGP Bayesian Optimization 
using Gaussian 
Processes 

8 ✓ 0.75  0.00653 

FAL Atinary Falcon 7 
 

0.83  16.9 x 10-5 

G Falcon GPBO 7 
 

0.74  23.4 x 10-5 

D Falcon DNGO 5 
 

0.28  8.78 x 10-5 

GR Gryffin 4 
 

0.39  9.87 x 10-5 

TA Gaussian Processes with 
Transfer Acquisition 
Functions 

6 
 

0.67  6.9 x 10-5 

FH Falcon with Historical 
data 

8 ✓ 0.47  0.0598 

R Uniform random 
selection 

8 ✓ 0.36 0.135 
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Table 2. Models used and serendipity recommender results.  Table shows model code 
followed by the corresponding success fraction, fraction of the convex hull 
occupied by recommended experiments and the serendipity values for both the 
serendipity recommender and the exploitation recommender   

 

Model 
Code 

Fraction 
Success 

Convex hull volume 
fraction 

Serendipity value  

Serendipity 
rec. 

Exploitation 
rec. 

KNN 0.43 0.23 0.88 0.37 

DT 0.54 0.14 0.87 0.47 

BART 0.58 0.063 0.97 0.12 

PLT 0.56 0.133 0.98 0.51 

BGP 0.75 0.077 0.93 0.54 

FAL 0.84 0.067 0.92 0.45 

 
 
 

 
 
 


