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We derive a rigorous nuclear gradient for a molecule-cavity hybrid system using the Quantum Electrodynamics
Hamiltonian. We treat the electronic-photonic DOFs as the quantum subsystem, and the nuclei as the classical
subsystem. Using the adiabatic basis for the electronic DOF and the Fock basis for the photonic DOF, and
requiring the total energy conservation of this mixed quantum-classical system, we derived the rigorous
nuclear gradient for the molecule-cavity hybrid system, which is naturally connected to the approximate
gradient under the Jaynes-Cummings approximation. The nuclear gradient expression can be readily used in
any mixed quantum-classical simulations and will allow one to perform the non-adiabatic on-the-fly simulation
of polariton quantum dynamics. The theoretical developments in this work could significantly benefit the
polariton quantum dynamics community with a rigorous nuclear gradient of the molecule-cavity hybrid system
and have a broad impact on the future non-adiabatic simulations of polariton quantum dynamics.

I. INTRODUCTION

Coupling molecules to the quantized radiation field
inside an optical cavity creates a set of new photon-
matter hybrid states, which are commonly referred to as
polaritons.1–6 These polariton states have hybridized cur-
vatures from both the ground and the excited electronic
states,5,6 which have been shown to facilitate new chem-
ical reactivities.1,6–9 Thus, polariton chemistry provides
a new paradigm for chemical transformations. Theoreti-
cal investigations play a crucial role in understanding the
fundamental limit and basic principles in this emerging
field,5,6,10–13 as these polariton chemical reactions often
involve a rich dynamical interplay among the electronic,
nuclear, and photonic degrees of freedom (DOFs). Accu-
rately simulating polaritonic quantum dynamics remains
a challenging task and is beyond the knowledge of pho-
tochemistry which does not include quantized photons,
or quantum optics which does not have a well-defined
theory to include the influence of nuclear vibrations.2

The mixed quantum-classical (MQC) approaches14–16

play an important role in studying the dynamics of
molecules and simulating the non-adiabatic dynamics of
the coupled electronic-nuclear DOFs. Two of the most
commonly used MQC methods are Ehrenfest and fewest
switches surface hopping (FSSH) approaches.17,18 Both
approaches describe the electronic subsystem quantum
mechanically, and treat the nuclear DOF classically. It is
thus a natural idea for the theoretical chemistry com-
munity to extend these two approaches to investigate
polariton chemistry by treating the electronic-photonic
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DOF (or so-called polariton subsystem) quantum me-
chanically, and describing the nuclear DOF classically.
Incorporating the description of the photon field into the
MQC methods has become a basic problem of crucial
importance to study polariton chemistry.10–13,19–22

The key ingredient in the MQC simulations of po-
lariton dynamics is the expression of the nuclear gradi-
ent, which is a necessary ingredient for propagating the
motion of nuclei. There has been large progress dur-
ing the past few years along this direction. Kowalewski
and Mukamel23 derived the expression of the deriva-
tive couplings using the Jaynes-Cummings (JC) model
Hamiltonian24 where the rotating wave approximation
(RWA) is assumed for the molecule-cavity coupling term.
Groenhof and coworkers developed a multi-scale simula-
tion approach combining Tavis-Cummings (TC) model25

using FSSH approach10,11 or Ehrenfest dynamics12,13 to
simulate an ensemble of molecules coupled to a cav-
ity. Zhang et al. extended the JC and TC models
to include multiple molecular excited states,22 derived
the corresponding nuclear gradient and performed MQC
simulations for polariton dynamics. Fregoni et al. de-
veloped the MQC simulations with the JC-type model
(that excludes the permanent dipole moment) to perform
FSSH simulations of azobenzene photoisomerization in
cavity.19–21

However, these previous simulations either used RWA,
excluding the dipole-self energy (DSE) terms,26 or ne-
glected permanent dipole moment,20 all of which could
change the fundamental polariton chemistry and physics
in the strong and ultra-strong coupling regime.27–31 Nu-
clear gradient expressions beyond the JC models has
been derived under the full Configuration-Interaction
(CI) expansion framework.20 Rigorous nuclear gradient
expressions under the quantum electrodynamics Linear-
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Response time-dependent Density Functional Theory
(QED-LR-TDDFT)32 framework using Pauli-Fierz (PF)
type QED Hamiltonian.3,30 However, these gradient ex-
pressions lack a clear physical picture of light-matter
interactions, as well as their clear connection to the
more intuitive (but less accurate) gradient of the JC-type
Hamiltonian.

In this paper, we derive a rigorous expression of the
nuclear gradient using the QED Hamiltonian without
making unnecessary approximations (such as the RWA).
We treat the molecule-cavity hybrid system as a MQC
system, where the electronic-photonic DOFs are treated
quantum mechanically, and the nuclear DOFs are treated
classically. Using the electronic adiabatic states for the
electronic DOF and the Fock basis for the photonic DOF,
and requiring the total energy conservation of this MQC
system, we derive the rigorous nuclear gradient, and it is
intuitively connected to those approximate gradients un-
der the JC approximation.23 Our gradient expressions,
and the corresponding MQC scheme, can in principle in-
clude any number of electronic states and photon number
states which is a desired property for investigating the
dynamical process of polariton chemistry. The nuclear
gradient expression can be readily used in any MQC sim-
ulations, such as Ehrenfest and FSSH approaches demon-
strated in the result section.

II. THEORY AND METHODS

A. The Pauli-Fierz QED Hamiltonian

The Pauli-Fierz (PF) QED Hamiltonian for one
molecule coupled to quantized radiation field inside a cav-
ity can be written as

Ĥ = T̂n + Ĥen + Ĥp + Ĥenp + Ĥd, (1)

where T̂n represents the nuclear kinetic energy opera-
tor, Ĥen is the electronic Hamiltonian that describes
electron-nucleus interactions. Further, Ĥp, Ĥenp, and Ĥd

represent the photonic Hamiltonian, electronic-nuclear-
photonic interactions, and the DSE, respectively. A full
derivation of this Hamiltonian, as well as its connection
with the various atomic cavity QED models can be found
in the Appendix of Ref. 33.

The electronic-nuclear potential Ĥen which describes
the common molecular Hamiltonian excluding the nu-
clear kinetic energy without any field is as follows:

Ĥen = T̂e + V̂ee + V̂en + V̂nn. (2)

The above expression includes electronic kinetic energy,
electron-electron interaction, electronic-nuclear interac-
tion and nuclei-nuclei interaction. The expressions of
these four terms can be found in previous work.34–36

Modern electronic structure theory have been developed
around solving the eigenvalue problem of Ĥen, providing

the following adiabatic energy and corresponding adia-
batic states

Ĥen|φν(R)〉 = Eν(R)|φν(R)〉. (3)

Here, |φν(R)〉 represents the νth many-electron adiabatic
state for a given molecular system, with the adiabatic
energy Eν(R).

For clarity, we restrict our discussions to the cavity
with only on one photonic mode, and all the formula
presented here can be easily generalized into a real cav-
ity with multi-mode case. The photonic Hamiltonian is
written as

Ĥp =
1

2

(
p̂2c + ω2

c q̂
2
c

)
= ~ωc

(
â†â+

1

2

)
, (4)

where p̂c and q̂c are photon field operators, ωc is the
photon frequency, and q̂c =

√
~/2ωc(â

† + â) and p̂c =

−i
√
~ωc/2(â− â†), where â† and â are the photonic cre-

ation and annihilation operator, respectively.
The light-matter coupling term (electronic-nuclear-

photonic interactions) under the dipole gauge is ex-
pressed as

Ĥenp = ωcq̂c(λ · µ̂) = gcε · µ̂(â† + â) (5)

where λ = λ ·ε characterizes the photon-matter coupling
strength, ε is the direction of the field polarization. The
coupling strength is determined by the volume of the
cavity as λ =

√
1/ε0V . Another way to define the light-

matter coupling strength is using gc =
√
~ωc/2λ. Note

that the gc used in this work differs from the common
notation used in the literature,6,37 which often include
the magnitude of the dipole inside gc. Further, the total
dipole operator of both electrons and nuclei is defined as

µ̂ = −
∑
i

er̂i +
∑
α

ZαeR̂α, (6)

where −e is the charge of the electron and Zje is the
charge of the αth nucleus.

Finally, the dipole self-energy is expressed as

Ĥd =
1

2
(λ · µ̂)2 =

g2c
~ωc

(ε · µ̂)2. (7)

This is a necessary term of the PF Hamiltonian, in order
to make sure gauge invariance of the PF Hamiltonian9,30

and a bounded ground polariton state.9,38,39 In this pa-
per, we do not consider the cavity loss. This can be
effectively incorporated by using Lindblad dynamics ap-
proaches with the MQC simulations.40

Recent investigations of polariton photochemistry have
been mainly focused on using the Jaynes-Cummings (JC)
model22,26 or the Tavis-Cummings (TC) model12 to de-
scribe the quantum light-matter interactions. These
models usually only consider two electronic states
{|g〉, |e〉} and the transition dipole µge(R) = 〈g|µ̂|e〉
among them, where the permanent dipole is often ig-
nored. In this context, one can further define the creation
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and annihilation operators for molecular excitation as
σ̂† ≡ |e〉〈g| and σ̂ ≡ |g〉〈e|, and thus µ̂ = µeg(R)·(σ̂†+σ̂).
The molecule-cavity interaction term in Eq. 5 can now
be expressed as

Ĥenp = gcε · µeg(R) · (â† + â)(σ̂† + σ̂). (8)

Assuming the RWA by ignoring the counter rotating
terms (CRTs) â†σ̂† and âσ̂, and explicitly dropping the

DSE term Ĥd in Eq. 7, one arrives at the following
Jaynes-Cummings model.

ĤJC
enp = gcε · µeg(R) · (â†σ̂ + âσ̂†). (9)

The Rabi model, on the other hand, ignores the DSE and
the permanent dipole.41–43

B. Derivation of the Nuclear Gradient in the
Mixed-Quantum Classical Polariton Dynamics

For the molecule-cavity hybrid system, a convenient
basis for quantum dynamics simulations could be the
dressed states

|ψi(R)〉 = |φν(R)〉 ⊗ |n〉 ≡ |φνn〉 (10)

where quantum number i ≡ {ν, n} indicates both the
adiabatic electronic state of the molecule and the Fock
states. Note that we have introduced a shorthand nota-
tion in Eq. 10, which will be used throughout the rest
of this paper. This is one of the most straightforward
choices of the basis for the hybrid system, because of
the readily available adiabatic electronic states from the
electronic structure calculations, as well as the dipole mo-
ments we need to construct the elements of Hamiltonian.

Here, we provide a rigorous derivation of general nu-
clear gradient expression used in MQC simulations in
a real orthogonal basis, following the similar procedure
of Tully.44 In the MQC simulation, such as the Ehren-
fest dynamics or the FSSH approach, the total molecular
Hamiltonian is expressed as

Ĥ = T̂n + V̂ , (11)

where T̂n represents the nuclear kinetic energy operator,
and V̂ represents the rest of the Hamiltonian. For a bare
molecular system, V̂ = Ĥen expressed in Eq. 2. For a
molecule-cavity hybrid system,

V̂ = Ĥen + Ĥp + Ĥenp + Ĥd ≡ Ĥpl, (12)

which is commonly referred to as the polariton
Hamiltonian,3,45 also denoted as Ĥpl.

In MQC dynamics simulations, one treats the nuclear
DOF classically, such that the Hamiltonian in Eq. 11
becomes

Ĥ = Tn + V̂ (R). (13)

The electronic-photonic wave function is expanded in the
basis |ψi(r;R(t))〉

|Ψ(R(t))〉 =

Nb∑
i=1

ci(t)|ψi(R(t))〉, (14)

where Nb is the number of basis we use and ci is the
expansion coefficients. The wave function satisfies the
time-dependent Schödinger equation (TDSE)

i~
∂

∂t
|Ψ(r;R(t))〉 = V̂ |Ψ(r;R(t))〉. (15)

Plugging Eq. 14 into 15, we obtain the equations of mo-
tion for ci as follows

i~
d

dt
ci(t) + i~

∑
j

〈ψi|
d

dt
|ψj〉cj(t) =

∑
j

Vijcj(t), (16)

where Vij = 〈ψi(R)|V̂ |ψj(R)〉. The time derivative cou-
pling (non-adiabatic coupling) between two basis states
is

〈ψi|
d

dt
|ψj〉 =

∑
α

dαij(R) · Ṙα(t) (17)

where dαij is the derivative coupling vector (or non-
adiabatic coupling, NAC) associated with the αth atom,
defined as follows

dαij = 〈ψi(R)| ∂

∂Rα
|ψj(R)〉 = 〈ψi|∇α|ψj〉. (18)

Using the above notations, Eq. 16 can be rewritten as

ċi(t) =
∑
j

( 1

i~
Vij −

∑
α

dαij · Ṙα

)
cj(t). (19)

The total energy for the MQC system expressed in
Eq. 13 can be expressed as

E =
1

2

∑
α

M−1α P2
α +

∑
ij

c∗i cjVij , (20)

where Mα is the nuclear mass of αth atom and Pα is the
corresponding momentum. In order to get the equation
of motion for the classical nuclei, we resort to the con-
servation of the above total energy.44 Setting the time
derivative of the above total energy in Eq. 20 to zero, i.e.
dE/dt = 0, we obtain∑

α

M−1α Pα
dPα
dt

= −
∑
ij

∑
α

c∗i cjṘα∇αVij −
∑
ij

d

dt

(
c∗i cj

)
· Vij , (21)

where we have used the chain rule with respect to Hamil-
tonian matrix elements. As shown in Appendix A, using
Eq. 19, we can prove the following identity∑
ij

d

dt

(
c∗i cj

)
·Vij =

∑
ijk

∑
α

c∗i ck
(
−Vijdαjk + dαijVjk

)
· Ṙα,

(22)
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where the derivative coupling is defined as Eq. 18. In-
serting Eq. 22 into Eq. 21, we have

dPα
dt

= −
∑
ij

c∗i cj∇αVij −
∑
ijk

c∗i ck
(
−Vijdαjk + dαijVjk

)
.

(23)
These results are reduced to the familiar expression for
an isolated molecule, as shown in Appendix B.

Defining c† as the transpose of the coefficient column
vector c expressed as follows

c† = (c1, c2, . . . , cNb
), (24)

Eq. 23 can then be written as a more compact form

dPα
dt

= −c†[∇αV ]c (25)

where we have used [ · · · ] to denote a matrix, and the
gradient of potential matrix is defined as

[∇αV ] ≡ ∇α[V ]− [V ][dα]+[dα][V ] ≡ ∇α[V ]+Xα, (26)

where [V ] and [dα] are the matrix of V̂ and derivative
coupling operator, respectively, and we have defined the
matrix

Xα ≡ −[V ][dα] + [dα][V ]. (27)

We can write the matrix elements of the nuclear gradient
as follows

[∇αV ]ij = ∇αVij +
∑
k

(
−Vikdαkj + dαikVkj

)
≡ ∇α[V ]ij + [Xα]ij (28)

This is the most general way to express the nuclear gra-
dient when using a real orthogonal basis that explicitly
dependents upon R. Note that although we introduced
(defined) the short-hand notation [∇αV ] in Eq. 26, it can
be justified as the matrix of [∇αV ] using the chain rule
and the completeness relation of basis as follows

〈ψi|∇αV̂ |ψj〉 (29)

= ∇〈ψi|V̂ |ψj〉 − 〈∇αψi|V̂ |ψj〉 − 〈ψi|V̂ |∇αψj〉
= ∇αVij −

∑
k

[〈∇αψi|ψk〉〈ψk|V̂ |ψj〉+ 〈ψi|V̂ |ψk〉〈ψk|∇αψj〉]

= ∇αVij −
∑
k

(
−dαikVkj + Vikd

α
kj

)
,

which is indeed equivalent to Eq. 28.

C. Nuclear Gradient for Molecule-Cavity Hybrid Systems

In this section, we provide the detailed expression of
the nuclear gradient for molecule-cavity hybrid systems.
With the adiabatic-Fock basis |φνn〉 and |φγm〉 intro-
duced in Eq. 10, the matrix elements of every term in

the PF QED Hamiltonian (Eq. 12) can be explicitly ex-
pressed as follows (using the properties of creation and
annihilation operators of photonic DOF)

〈φγm|Ĥen|φνn〉 = Eνδγ,νδm,n (30a)

〈φγm|Ĥp|φνn〉 = ~ωc(m+
1

2
)δγ,νδm,n (30b)

〈φγm|Ĥenp|φνn〉 = gcε · µγν
(√
nδm,n−1 +

√
n+ 1δm,n+1

)
(30c)

〈φγm|Ĥd|φνn〉 =
g2c
~ωc

∑
ξ

(ε · µγξ)(ε · µξν)δm,n ≡ D2
γν ,

(30d)

where the sum
∑
ξ in the matrix element of Ĥd runs over

the adiabatic states |φξ(R)〉, and D2
γν denotes the matrix

elements of DSE. In the above expressions, we have used
the matrix element of the dipole operator µ̂ (Eq. 6) under
the adiabatic representation

µγν(R) ≡ 〈φγ(R)|µ̂|φν(R)〉, (31)

which parametrically depends on R.
The most general results of the nuclear gradient

[∇αV ]ij is thus presented in Eq. 28, with the matrix el-
ements of Vij expressed in Eq. 30. To express the nu-
clear gradients in Eq. 28, we need the gradients ∇αVij
and derivative coupling matrix [dα] which often can be
directly obtained from ab initio electronic structure cal-
culations or numerical differential techniques.22 To con-
struct the derivative coupling matrix [dα], one can simply
use

[dα]γm,νn ≡ 〈φγm|∇α|φνn〉 = dαγνδmn, (32)

because the Fock states do not explicitly depend upon
R and are orthonormal to each other. Using the above
information, we can explicitly write down all matrix ele-
ments of the PF Hamiltonian and the nuclear gradients
(using Eq. 28). Note that the derivative coupling between
|g1〉 and |e0〉 states is

〈g1|∇α|e0〉 = 〈g(R)|∇α|e(R)〉 · 〈1|0〉 = 0, (33)

due to the fact that 〈1|0〉 = 0, even though that
〈g(R)|∇α|e(R)〉 6= 0. Thus, in the {|e, 0〉, |g, 1〉} sub-
space, the derivative coupling among these two states is
0, making them effectively “diabatic” even though |e〉
and |g〉 themselves are adiabatic states.

Below, we give more detailed expressions of these gra-
dient expressions in two specific subspaces. For clarity
and concreteness, we will only consider two adiabatic
electronic states |g〉 and |e〉, which are the electronic
ground and first excited states of the molecule, respec-
tively. The eigenvalues corresponding to these two states
|g〉 and |e〉 are Eg and Ee, respectively. The photon Fock
basis considered here is from vacuum state |0〉 to some
finite number which assures the convergence of the prop-
erties we calculate. Unless explicitly stated, we always
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assume that the photon number in the basis is in ascend-
ing order. For the state with the same photon number,
the electronic states are also in ascending order. Under
the above settings, the two simplest basis one can choose
are {|e0〉, |g1〉} and {|g0〉, |e0〉, |g1〉, |e1〉} which are refer-
enced hereafter as 2-state and 4-state basis, respectively.

Under the 2-state subspace {|e0〉, |g1〉}, using the gen-
eral results in Eqs. 30-32, we have [dα] = 0 because of
〈g1|∇α|g1〉 = 0, 〈g1|∇α|e0〉 = 0 and 〈e0|∇α|e0〉 = 0.
The potential matrix for the molecule-cavity hybrid sys-
tem under this 2-state basis is

[V ] =

[
Ee +D2

ee + ~ωc

2 gcε · µge
gcε · µge Eg +D2

gg + 3~ωc

2 .

]
(34)

The corresponding nuclear gradient is obtained as

[∇αV ] = ∇α[V ] =

[
∇α
(
Ee +D2

ee

)
gcε · ∇αµge

gcε · ∇αµge ∇α
(
Eg +D2

gg

)]
(35)

The above formula (without the DSE related terms) can
be directly derived23 using the JC model (Eq. 9), and
has been used to compute the nuclear force of two-level
molecules inside a cavity.10

In the 4-state basis {|g0〉, |e0〉, |g1〉, |e1〉}, the potential
matrix is

[V ] =


Eg + ~ωc

2 +D2
gg D2

ge gcε · µgg gcε · µge
D2
eg Ee + ~ωc

2 +D2
ee gcε · µeg gcε · µee

gcε · µgg gcε · µge Eg + 3~ωc

2 +D2
gg D2

ge

gcε · µeg gcε · µee D2
eg Ee + 3~ωc

2 +D2
ee

 (36)

The above matrix is Hermitian, because µeg = µge and D2
eg = D2

ge. The derivative coupling matrix [dα] is

[dα] =


0 dαge 0 0
dαeg 0 0 0
0 0 0 dαge
0 0 dαeg 0

 (37)

where dαge = 〈g|∇α|e〉 = −dαeg. The elements are non-
zero only when the corresponding basis (ket and bra)
have the same photon number, according to Eq. 32. The
nuclear gradients can be decomposed into two matrices
as indicated by Eq. 28, with the ∇α[V ] expressed as

∇α[V ] =


∇α
(
Eg +D2

gg

)
∇αD2

ge gcε · ∇αµgg gcε · ∇αµge
∇αD2

eg ∇α
(
Ee +D2

ee

)
gcε · ∇αµeg gcε · ∇αµee

gcε · ∇αµgg gcε · ∇αµge ∇α
(
Eg +D2

gg

)
∇αD2

ge

gcε · ∇αµeg gcε · ∇αµee ∇αD2
eg ∇α

(
Ee +D2

ee

)
 , (38)

as well as the [Xα] matrix as follows

[Xα] =


2dαgeD

2
eg dαge(Ee − Eg +D2

ee −D2
gg) 2dαgegcε · µge dαgegcε · (µee − µgg)

dαge(Ee − Eg +D2
ee −D2

gg) 2dαegD
2
eg dαgegcε · (µee − µgg) 2dαeggcε · µge

2dαgegcε · µge dαgegcε · (µee − µgg) 2dαgeD
2
eg dαge(Ee − Eg +D2

ee −D2
gg)

dαgegcε · (µee − µgg) 2dαeggcε · µge dαge(Ee − Eg +D2
ee −D2

gg) 2dαegD
2
eg

 .
(39)

All of the quantities appear in [V ] and the gradient ma-
trix (Eq. 36-39), can be obtained when solving the elec-
tronic structure problem (Eq. 3) by calculating the adi-

abatic states of the molecular Hamiltonian Ĥen (Eq. 2).
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D. Gradient expressed in the polaritonic basis

Until now, the nuclear gradient expressions were for-
mulated in the adiabatic-Fock basis (i.e., photon-dressed

electronic states), which is not the eigenbasis of V̂ (de-
fined in Eq. 12). Some MQC methods, such as FSSH, are

formulated specifically in the eigenstates of V̂ and require
the calculation of the nuclear gradients on the eigenstates
of V̂ . For the molecule-cavity hybrid system, we define
the polaritonic state3,45 as the eigenstate of V̂ = Ĥpl (see
definition in Eq. 12) through the following eigenequation

Ĥpl|EI(R)〉 = EI(R)|EI(R)〉, (40)

where |EI(R)〉 is the polariton state with polariton en-
ergy EI(R). The transformation between {|ψi(R)〉} =
{|φν(R)〉⊗|n〉} and {|EI(R)〉} basis can be accomplished
by applying the transformation matrix U that diagonal-
izes the matrix [V ] as

U†[V ]U = [E ], (41)

where the diagonal elements EI(R) are the eigenvalues
of the polariton states |EI(R)〉. The adiabatic gradient
(diagonal terms) and non-adiabatic coupling (NAC) be-
tween polaritonic states can thus be obtained by trans-
forming the gradient matrix [∇αV ] using U.

To connect with the nuclear gradient expressions in
the previous literature, we derive the gradient explicitly
in polaritonic basis. The nuclear gradient associated with
the |EI(R)〉 polaritonic state is

∇αEI = 〈EI |∇αV |EI〉 (42)

where we have used the Hellman-Feynman theorem. As-
suming the completeness relation

∑
i |ψi〉〈ψi| = Î (where

|ψi〉 = |φν(R)〉⊗|n〉), and inserting it into Eq. 42, we have

∇αEI =
∑
jk

〈EI |ψj〉〈ψj |∇αV |ψk〉〈ψk|EI〉

=
[
UT[∇αV ]U

]
II
,

(43)

where the transformation matrix element is UkI =
〈ψk|EI〉. The gradient term 〈ψj |∇αV |ψk〉 can be eval-
uated using Eq. 28.

The derivative coupling between two polaritonic states
can be expressed as18

dαIJ = 〈EI |∇α|EJ〉 =
〈EI |∇αV |EJ〉
EJ − EI

. (44)

Note that this should not be confused with the molecular
derivative coupling dαij defined in Eq. 32. One can further
express Eq. 44 by inserting the completeness relation as

dαIJ =
∑
kl

〈EI |ψk〉〈ψk|∇αV |ψl〉〈ψl|EJ〉
EJ − EI

, (45)

where UlJ = 〈ψl|EJ〉 and 〈ψk|∇αV |ψl〉 can be evaluated
using Eq. 29.

To give a more concrete example, for the 2-state basis
{|e0〉, |g1〉}, we have

U†[∇αV ]U =

[
∇αE1 −dα12(E1 − E2)

−dα21(E2 − E1) ∇αE2

]
(46)

where ∇αE1 and ∇αE2 are gradients of two adiabatic
(polaritonic) states and dα12 is the NDC between them.
Since one can obtain the analytical formula of the trans-
formation matrix U to diagonalize a 2 × 2 matrix, we
can explicitly write down the analytical formula for the
NDC for this special case. To diagonalize the [V ] matrix
in Eq. 34, we have the following U matrix as

U =

[
cos θ sin θ
− sin θ cos θ

]
. (47)

where the mixing angle θ satisfies the condition46

θ =
1

2
arctan

(
2µ̃ge
∆V

)
(48)

with µ̃ge = gcε · µge and ∆V = Ve + D2
ee − Vg −D2

gg −
~ωc which is the difference between diagonal elements in
Eq. 34.

The two polaritonic states can be expressed as

|+〉 ≡ |E2〉 = cos θ|e0〉+ sin θ|g1〉 (49a)

|−〉 ≡ |E1〉 = − sin θ|e0〉+ cos θ|g1〉, (49b)

which are commonly referred to1–3,5 as the upper polari-
ton state (for |+〉) and lower polariton state (for |−〉).

The NDC between these two states is dα12 =
〈E1|∇α|E2〉. Using Eq. 49, one can find that

dα12 = 〈E1|∇α|E2〉 (50)

=

[
− sin θ〈e0|+ cos θ〈g1|

]
· ∇α

[
cos θ|e0〉+ sin θ|g1〉

]
= ∇αθ.

Using the expression of the mixing angle in Eq. 48, we
have

dα12 =
µ̃ge

∆V 2 + 4µ̃2
ge

∇α∆V +
∆V

∆V 2 + 4µ̃2
ge

∇αµ̃ge (51)

The above equation is identical to the derivative cou-
plings derived by Kowalewski and Mukamel23 for a JC
light-matter interaction model (Eq. 9), subject to a dif-
ference in terms of the DSE term in ∆V . This is not
surprising, because within the {|e0〉, |g1〉} subspace, the
light-matter interaction Hamiltonian reduces to a JC
type Hamiltonian (see Eq. 34).

III. DETAILS OF MODEL CALCULATIONS

A. Shin-Metiu Model for the molecule

In this work, we use the Shin-Metiu (SM) model47

as the “ab-initio” model molecular system to investigate
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strong and ultra-strong light-matter interactions between
a molecule and an optical cavity. We choose two different
parameter sets of the SM model, and hereafter we refer
to them as SM1 and SM2, respectively. The SM1 is the
model-I documented in Ref. 47. The distance between
two fixed ions is L = 18.897 a.u., and the cut-off for the
modified Coulomb interaction Rc = 2.8345 a.u. Fig. 1a
presents the two lowest adiabatic electronic states (de-
fined in Eq. 3) of SM1 model (red and blue curves), and
Fig. 1c presents the NDC between them (green curve).
The energy gap at R = 0 a.u. between these two states
is about 1.281 eV. The NDC is in the order of 0.2 a.u.,
and has a peak at R = 0 a.u. as well. The matrix
elements of the dipole moment under the adiabatic rep-
resentation (Eq. 31) of SM1 are presented in Fig. 1e.
Note that in some nuclear configurations, the magnitude
of the permanent dipoles (µgg and µee) could be even
larger than the transition dipole µeg, making the atomic
JC model invalid. This can significantly change the po-
laritonic PES when the light-matter coupling is strong
enough and cause some strange dynamical behaviors as
we will discuss later.

The SM2 model, which is an asymmetrical proton-
coupled electron transfer model, is directly adapted from
Ref. 48. The electron-nucleus interaction potential oper-
ator is expressed as

V̂en =
∑
σ=±1

 1

|R+ σL
2 |
−

erf
(
|r+σL

2 |
aσ

)
|r + σL

2 |

− erf
(
|R−r|
af

)
|R− r|

(52)
where the r and R are the position of the electron and the
nucleus, respectively. We choose the same parameters
used in Ref. 48, which is L = 19 a.u., a+ = 3.1 a.u.,
a− = 4.0 a.u., af = 5.0 a.u. and the proton mass is M =
1836 a.u. For the polariton dynamics simulation when
coupling this molecule with cavity, the photon energy
of the cavity mode is chosen as ~ωc = 2.721 eV (≈ 0.1
a.u.). Fig. 1b presents the two lowest adiabatic electronic
states of SM2 (red and blue curves). Fig. 1d presents the
NDC between them (green curve). The matrix elements
of the dipole moment under the adiabatic representation
(Eq. 31) of SM2 are presented in Fig. 1f.

For both models, the initial stats (for t = 0) of the
molecule-cavity hybrid system is

|Φ〉 = |e, 0〉 ⊗ |χ〉, (53)

which corresponds to a Franck-Condon excitation of the
hybrid system to the |e, 0〉 state, with |χ〉 as the initial
nuclear wavefunction. For both two models in this work,
we use χ(R) = 〈R|χ〉 ∼ exp[−Mω(R − R0)2/2~], where
M is the mass of the proton (nucleus in the SM model),
R0 is the position with a minimum potential energy of
the ground electronic state. Here, χ(R) is the vibra-
tional ground state wavefunction on the ground electronic
states, centered at R0 under the harmonic approxima-
tion, with the harmonic oscillation frequency is ω. For
SM1, R0 = −4.156 and ω = 0.00270 a.u.; for SM2, we
use48 R0 = −4 and ω = 0.000382 a.u.
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FIG. 1. Adiabatic potential energy surface of (a) SM1 model
and (b) SM2 model, with the red curve as the ground elec-
tronic state and the blue curve as the first excited electronic
state. The non-adiabatic coupling (NAC) between these two
electronic states for (c) SM1 model and (d) SM2 model. Tran-
sition Dipole moments µge (green) and the permanent dipole
moments µgg (red) and µee (blue) of the (e) SM1 model and
(f) SM2 model.

Further, we assume that the cavity field polariza-
tion direction ε is always aligned with the direction of
the dipole operator µ̂, such that ε · µγν = µγν (for
{ν, γ} = {e, g}) where µγν is the magnitude of µ̂. Ex-
plicitly consider the angle between ε and µ̂ will gener-
ate a polariton induced conical intersection (even for a
diatomic molecule), which will induce geometric phase
effects.49

B. Details of MQC simulations

Ehrenfest dynamics uses TDSE in Eq. 19 for quantum
subsystem (electronic-photonic DOFs), and equation of
motion in Eq. 23 for the classical subsystem (nuclear
DOF). We use the fourth-order Runge-Kutta method to
integrate the TDSE and the velocity Verlet algorithm to
integrate Newton’s equation of motion. The time step
for the nuclear motion is 0.1 a.u. and the sub-step for
solving the TDSE of the electronic-photonic subsystem
is 0.001 a.u. The total energy is well conserved for all the
trajectories.

We use Tully’s FSSH17,18 algorithm to perform surface
hopping simulations for polariton dynamics. Note that
a similar simulation has been performed recently,19,21,22
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and our focus here is to test the importance of the new
gradient expressions. The equation of motion for elec-
tronic wavefunction in FSSH is described in Eq. 19, which
is same as Ehrenfest Dynamics. The main difference is
how the nuclear force is treated. In FSSH, the nuclear
force is proposed to be contributed from only one spe-
cific eigenstate of V̂ (so-called the active state), i.e., Eq.
42. The active state index will be determined at ev-
ery single nuclear propagation step. According to the
“fewest switches” algorithm,17 the probability of switch-
ing (probability flux) from the active polariton state |I〉
to any other polariton state |J〉 during the time interval
between t and t+ δt is

fIJ =
2Re[ρJIṘ · dIJ(R)] δt

ρII
, (54)

where ρIJ = c∗IcJ is the electronic density matrix ele-
ment. Since the probability should not be negative, we
set fIJ to 0 if fIJ < 0. Then, the non-adiabatic tran-
sition, i.e. stochastic switch from the current occupied
state |I〉 to another state |K〉, occurs if the following ex-
pression is met

K∑
J=1

fIJ < ξ <

K+1∑
J=1

fIJ , (55)

where ξ is a randomly generated number between 0 and
1 at each nuclear time step. If the transition is accepted,
the active state is set to the new adiabatic state |K〉,
while the velocities of the nuclei are rescaled along the
direction of the non-adiabatc coupling vector dIK(R) in
order to conserve the total energy

Ṙ′α = Ṙα − τIKdIK(R)/M, (56)

where the universal scaling constant τIK is calculated
with the smallest magnitude obtained from the following

expression18 τIK = 1
AIK

[
BIK ±

√
B2IK + 2AIK · CIK

]
,

where AIK = d2
IK(R)/M , bIK = Ṙ · dIK(R), and

CIK = EI(R)−EK(R). When the nuclear kinetic energy
is not large enough to compensate the polariton poten-
tial difference, a frustrated hop occurs,50 meaning that
the hop is rejected and the active state is set to the origi-
nal adiabatic state |I〉. In addition, we do not modify the
nuclear velocity in this case. The polariton population is
calculated as the trajectory average of the active states,
i.e, for a given trajectory and at a given time, a value of
0 is given for an inactive state and a value of 1 for the
active state.

As is well known in the field of the MQC simulations,
FSSH lacks the correct description of decoherence mech-
anism due to the nuclear wavepacket moving on different
electronic surfaces.51. In order to exclude the “over co-
herence” problem of MQC method, we add the energy
based decoherence method52 to the FSSH simulation.

The initial nuclear distribution of MQC simulations
are generated by sampling the Wigner density [〈R|χ〉]w =

1
~π e
−M(P 2+ω2(R−R0)

2)/ω~, which is the Wigner transfor-
mation of the nuclear wavefunction χ(R) = 〈R|χ〉 in the
initial state (see Eq. 53). Here, R and P are the nu-
clear coordinate and momentum, respectively. The initial
state for the electronic-photonic subsystem is set to be
|e0〉. The population dynamics were averaged over 2000
trajectories, although 500 trajectories was good enough
to produce the basic trend of the polariton dynamics.
The light-matter coupling strength gc was chosen to be
0.001, 0.005 and 0.01.

We use Sinc DVR method53 to calculate the electronic
properties of SM model including the adiabatic electronic
eigenstate, dipole moments and derivative coupling. The
grid of DVR is uniform with spacing ∆x = 0.147 in the
range [−22, 22] (a.u.). In the exact quantum simulation
case, we also use the same method to solve the TISE
61 with finer grid points for nucleus ∆x = 0.016 in the
range [−8, 8]. To test the convergence of grid points, we
doubled the number of grid points and the results were
identical.

C. Exact Dynamics

To benchmark the performance of the MQC polariton
dynamics simulations, we also solve the exact quantum
dynamics for the molecule-cavity hybrid system. We ex-
press the total wavefunction of the hybrid system through
the Born-Huang expansion as follows

|Ψ(R, r)〉 =
∑
νn

χνn(R)|φν(R)〉 ⊗ |n〉, (57)

where χνn(R) is the nuclear wavefunction. In our cases,
electronic |φν(R)〉 and photonic |n〉 basis states are trun-
cated to some finite number of states. For example, in
the 4-level basis, ν = g, e and n = 0, 1, and the total
wavefunction can be written out explicitly as

|Ψ〉 = χg0|g0〉+ χe0|e0〉+ χg1|g1〉+ χe1|e1〉. (58)

To simplify our notation, we omit R-dependence of the
adiabatic electronic states. Plugging the above expansion
to time-independent Schödinger equation (TISE) we can
obtain the eigenvalue equation for the nuclear wavefunc-
tion. The main obstacle is how to write the nuclear ki-
netic energy operator correctly in the dressed states. We
discard the nuclear index α since in our model we only
have one nucleus, i.e. ∇α = ∇. The nuclear gradient
operator is applied to the total wavefunction (Eq. 58),
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and we arrive at the following two equations

∇|Ψ〉 =∇χg0|g0〉+ χg0|∇g0〉+∇χe0|e0〉+ χe0|∇e0〉
+∇χg1|g1〉+ χg1|∇g1〉+∇χe1|e1〉+ χe1|∇e1〉

(59a)

∇2|Ψ〉 =∇2χg0|g0〉+ 2∇χg0|∇g0〉+ χg0|∇2g0〉
+∇2χe0|e0〉+ 2∇χe0|∇e0〉+ χe0|∇2e0〉
+∇2χg1|g1〉+ 2∇χg1|∇g1〉+ χg1|∇2g1〉
+∇2χe1|e1〉+ 2∇χe1|∇e1〉+ χe1|∇2e1〉

(59b)

Multiply 〈g0|, 〈e0|, 〈g1| and 〈e1| to the above equation
respectively, we can rewrite the above equation in matrix
form

[
∇2
]χg0χe0

χg1
χe1

 =

 ∇
2 + 〈g|∇2g〉 2dge∇+ 〈g|∇2e〉 0 0

2dge∇+ 〈g|∇2e〉 ∇2 + 〈e|∇2e〉 0 0
0 0 ∇2 + 〈g|∇2g〉 2dge∇+ 〈g|∇2e〉
0 0 2dge∇+ 〈g|∇2e〉 ∇2 + 〈e|∇2e〉


χg0χe0
χg1
χe1

 (60)

The matrix in right hand side can be seen as the nuclear
kinetic operator in the adiabatic-Fock states basis except
a constant −~2/2M . Since we already derived the for-

mula of V̂ in the same basis in Eq. 36, we can directly
plug these expressions into the TISE Ĥ|Ψ〉 = ε|Ψ〉, and
obtain the following eigenvalue problem

[
− ~2

2M
∇2 + V

]χg0χe0
χg1
χe1

 = ε

χg0χe0
χg1
χe1

 (61)

We use the Sinc DVR basis53 to represent the nuclear
wavefuntion {χ} and solve the above eigenvalue problem
to obtain all the eigenvalues and eigenstates. The time
evolution dynamics is obtained by unitary evolution

|Ψ(R, r, t)〉 =
∑
j

cj exp

(
− i
~
εjt

)
|εj〉 (62)

where εj is the jth eigenvalue and cj is the projection of
initial total wavefunction onto the jth eigenstate |εj〉

cj = 〈εj |Ψ(R, r, 0)〉. (63)

The potential technical challenge is to obtain the sec-
ond order derivative coupling, e.g., 〈g|∇2g〉 and 〈g|∇2e〉,
terms in Eq. 60, which are not always available in elec-
tronic structure methods. However, for a two-electronic-
state problem, they can be calculated explicitly using dge
as

〈g|∇2|g〉 = 〈e|∇2|e〉 = −|dge|2 (64a)

〈g|∇2|e〉 = −〈e|∇2|g〉 = ∇ · dge. (64b)

The above strategy to solve the exact polariton dynamics
can also be found in many other previous works, such as
Ref. 54 and Ref. 55. For more than two electronic states,
these quantities are evaluated numerically.

IV. RESULTS AND DISCUSSIONS

First, we present the population dynamics of the SM1
model in a cavity compared between 2-level’s and 4-
level’s results of the exact quantum simulation in Fig.
2(b) along with the polaritonic surface in Fig. 2(a). For
all simulations, we start with |e0〉 state and a light-matter
coupling strength of gc = 0.005.

Fig. 2a presents the first four polaritonic surfaces of the
SM1 model coupled to a resonance optical cavity, where
the potential is color coded based on the expectation
value of 〈â†â〉 indicated on top of this panel. Note that
this should not be viewed as a “photon number” operator
under the dipole gauge used in the PF Hamiltonian,31,56

becasue the rigorous photon number operator should be
obtained by applying the Power-Zienau-Woolley (PZW)
Gauge transformation30,57,58 on the photon number op-
erator â†â. Nevertheless, it can be viewed an approxi-
mate estimation of the photon number when the light-
matter couplings are not enter into the ultra-strong cou-
pling regime.59

Fig. 2b presents the exact quantum dynamics within
the JC subspace {|e0〉, |g1〉} (dashed lines) or in the larger
{|g0〉, |e0〉, |g1〉, |e1〉} (solid lines) sub-space , under which
the polaritonic eigenstates and dynamics are converged.
Clearly, additional states beyond the JC subspace will be
explored by the quantum dynamics of the hybrid system
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Figure 16: Population of |e0〉+ |g1〉 for the modified SM model.

16

FIG. 2. (a) The polariton potential of the Shin-Metiu-cavity
model, color coded according to 〈â†â〉 (top). (b) Exact polari-
ton dynamics of the adiabatic-Fock states with a two-state JC
basis (dash lines) and a four-state basis (solid lines). (c) Sev-
eral gradient terms (Eq. 28) in the four-state basis. (d) Com-
paring the population dynamics of Ehrenfest dynamics (dot-
ted lines) with exact results (solid lines) in 4-level basis. All
the simulations are done with coupling strength gc = 0.005.
The MQC method is Ehrenfest.

due to the NACs among these states. The population of
the |e1〉 state is mainly contributed from the |e0〉 state
due to the light-matter coupling carried from the perma-
nent dipole µee. In addition, the population transition
between |e0〉 and |g1〉 is mediated by the cavity-induced
coupling near R = 0, where the PES exhibits a strong
mixing between these two states as shown in Fig. 2a at
R=0.

Fig. 2c presents several Xij components of the gen-
eral gradient expression (Eq. 39) in the larger subspace
{|g0〉, |e0〉, |g1〉, |e1〉}. Comparing the gradient expres-
sion in the 2-state (Eq. 35) and 4-state subspaces (Eq. 38
and Eq. 39), the [X] terms (Eq. 39) do not show up
in the 2-level JC case (Eq. 35). The JC gradient com-
ponent ∇ [V]e0,g1 = gcε · ∇µge and the regular gradi-
ent from the electronic derivative couplings Xg0,e0 =
dge(Ve − Vg +D2

ee −D2
gg) are compared with the rest of

the non-JC type of gradients, such as Xg0,g0 = 2dgeD
2
eg

(where D2
eg is the matrix of the DSE operator), Xg0,e1 =

dgegcε · (µee − µgg), and Xg0,g1 = 2dgegcε · µge. As
we show in Fig. 2c, all of the gradients we discussed
above have a similar magnitude in this Shin-Metiu-cavity
model. Some elements can be even larger than ∇[V ]e0,g1,
such as Xg0,e0 and Xg0,g1. All of these non-JC type of
gradient terms, unfortunately, are not included in the
previous MQC studies of polariton quantum dynamics
based upon the JC22,23,37 (or the TC12) models. When
the system starts to explore all of the states and gen-
erate sizable population and coherences (ρij = c∗i cj , see
Eq. 16), in the nuclear forces (for example, in Eq. 23)
from these new gradient terms will make a non-negligible

contribution which is required to be explicitly and cor-
rectly included.

Fig. 2d presents the polariton dynamics obtained from
the Ehrenfest MQC simulations (dotted lines) in the 4-
level subspace, compared to the numerically exact re-
sults (solid lines). It shows that the population dynam-
ics of MQC agrees reasonably well with the exact re-
sults. For the 2-level case, our MQC simulation results
are also consistent with the exact quantum simulation
shown in Fig. 2b (dashed line), which are not presented
here. These results provide great confidence of the de-
rived MQC gradient expression.

Fig. 3 presents the MQC population dynamics with
light-matter coupling strength of gc = 0.001 (panels (a),
(d) and (g)), gc = 0.005 (panels (b), (e) and (h)), and
gc = 0.01 (panels (c), (f) and (i)). The polariton pop-
ulation dynamics are obtained from both Ehrenfest dy-
namics (open circles in panels (d), (e) and (f)) as well as
the FSSH approach (dots in panels (g), (h) and (i)), and
compared to the numerically exact results (solid lines).

When the coupling is weak (gc = 0.001), the polari-
tonic PESs (panel (a)) have nearly identical curvatures
of the photon dressed states |g1〉 and |e0〉. The light-
induced mixing only occurs near R = 0 between |e0〉 and
|g1〉. The population dynamics presented in Fig. 3d and
Fig. 3g suggest that the population transition mainly oc-
curs between |g1〉 and |e0〉 states. Both Ehrenfest and
FSSH provide accurate description of the population dy-
namics.

When the coupling strength increases, the polaritonic
PES starts to change its curvatures and characters, which
can be clearly seen from the color coding of the polari-
ton PES. As we can see from Fig. 3b (gc = 0.005) and
Fig. 3c (gc = 0.01), the gap between the 2nd and the 3rd

polariton PES becomes larger and the state |e1〉 starts to
mix with the JC subspace. The |g0〉 state, on the other
hand, only slightly mixes with the other photon dressed
states, even with the largest light-matter couplings we
considered. The population dynamics for gc = 0.005
are presented in Fig. 3e and Fig. 3h. The main tran-
sitions occur between |e0〉 and |g1〉. But now the |e1〉
state also shows finite oscillating population, which is
mainly caused by the light-matter interaction due to the
presence of the permanent dipole µee. When increasing
the coupling strength to gc = 0.01, the main population
transition now happens between |e0〉 and |e1〉 states, due
to the permanent dipole µee that dominates the light-
matter coupling. For all cases, both Ehrenfest and FSSH
approaches generate reasonably accurate polariton pop-
ulation dynamics, with FSSH slightly outperforming the
Ehrenfest dynamics.

Fig. 4 presents the polariton dynamics of the SM2
model coupled to a cavity.48 This model has been used
to investigate how cavity can influence proton-coupled
electron transfer reaction with the exact factorization
approach.48,60,61 The PES of SM2 is asymmetric and
there is an avoid crossing near R = 2.0 a.u.. The
photon energy we use is 0.1 a.u., which causes a light-
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Figure 3: (a), (b) and (c) are polaritonic surfaces corresponding to coupling
strength g = 0.001, g = 0.005 and g = 0.01, respectively. (d), (e) and (f) show
the population dynamics of Ehrenfest method compared with exact simulation
results. (g), (h) and (i) are the FSSH simulation results starting from the same
initial condition as the Ehrenfest simulations.

4

FIG. 3. Polaritonic PES and population dynamics of the SM1 model coupled to the cavity at different coupling strength.
Panels (a), (b) and (c) are polaritonic PES, color coded based on the value of 〈â†â〉. Panels (d), (e) and (f) are the Ehrenfest
results compared with exact simulation; (g), (h) and (i) are the FSSH results compared with exact simulation. The populations
for the adiabatic-Fock states |g1〉 (red), |e0〉 (blue), |e1〉 (green) and |g0〉 (orange) are presented.

induced avoid crossing near R = −4.0 a.u. (see Fig.
4(a)). Fig. 4 presents the MQC population dynamics
with light-matter coupling strength of gc = 0.001 (panels
(a), (d) and (g)), gc = 0.005 (panels (b), (e) and (h)), and
gc = 0.01 (panels (c), (f) and (i)). The polariton pop-
ulation dynamics are obtained from both Ehrenfest dy-
namics (open circles in panels (d), (e) and (f)) as well as
the FSSH approach (dots in panels (g), (h) and (i)), and
compared to the numerically exact results (solid lines).

When the coupling is weak (gc = 0.001), the polari-
tonic PESs (Fig. 4a) have nearly identical curvatures of
the photon dressed states |g1〉 and |e0〉 (which is in-
dicated by the color coding of the surfaces), except at
R ≈ −4 a.u. where the |e, 0〉 and |g, 1〉 states mix. In
Fig. 4d and Fig. 4g, even for a small light-matter cou-
pling strength gc = 0.001, the system will have a finite
population for |g0〉 state. This is different compared to
the case of SM1 (Fig. 3d and Fig. 3g), where the dynam-
ics is largely confined with in the JC subspace {|g1〉, |e0〉}
under the same coupling strength. Although SM2 has a
large permanent dipole, the population of |g0〉 starts to
grow later in time (20 fs) after the initial excitation. The
population transfer to these states are mainly due to the

electronic NAC deg that directly couples the |g1〉 state to
|e1〉 state, as well as the |e0〉 state to |g0〉 state. Note that
the |e1〉 state does not have a significant population (see
solid lines for the exact results), however, both Ehrenfest
dynamics (open circles in Fig. 4d) and FSSH approach
(dots in Fig. 4g) incorrectly predict a larger |e1〉 popula-
tion, due to their less accurate MQC approximation.

When the coupling strength increases, the polaritonic
PES starts to change its curvatures and characters, which
can be clearly seen from the color coding of the polariton
PES. The population dynamics of |e1〉 starts to grow at
an earlier time, due to the permanent dipole µee that
couples |e0〉 state to the |e1〉 state, whereas the elec-
tronic NAC deg still contribute to the later time popula-
tion transfer to the |g0〉 state. Through out all coupling
strength investigated here, both Ehrenfest and FSSH ap-
proaches provide a reasonable accuracy for the popula-
tion dynamics for the |g1〉 and |e0〉 states at a short time,
with less satisfied accuracy at a longer time, compared
to the case of SM1 coupled to the cavity in Fig. 3.

The canonical picture for the JC cavity QED is that
in a molecule-cavity hybrid system, the cavity photons
dress the molecular energy level by a photon energy, e.g.,
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Figure 12: Population of |e0〉+ |g1〉 for the modified SM model.
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FIG. 4. Polaritonic PESs and population dynamics of the SM2 model coupled to the cavity at different coupling strength.
Panels (a), (b) and (c) are polaritonic PESs, color coded based on the value of 〈â†â〉. Panels (d), (e) and (f) are the Ehrenfest
results compared with exact simulation; (g), (h) and (i) are the FSSH results compared with exact simulation. The populations
for the adiabatic-Fock states |g1〉 (red), |e0〉 (blue), |e1〉 (green) and |g0〉 (orange) are presented.

|g0〉 to |g1〉 state, which can be resonant with the |e0〉
state and hybridize with it. The transition dipole µeg
causes the mix between |e0〉 and |g1〉 states (through the
light-matter coupling term in Eq. 9). The NDC between
polaritonic PES d12 (Eq. 51) will be large due to the near
degeneracy of the polariton states. When the NDC from
other states are smaller than d12 (Eq. 51), the polariton
dynamics is largely confined within the Hilbert subspace
{|e0〉, |g1〉} states. However, this approximation will
breakdown under several scenarios, and we just enumer-
ate two commonly encountered ones which we have ex-
plored in our numerical results. First, the electronic NDC
deg (Eq. 18) between |e0〉 and |g0〉 could play a impor-
tant role in the dynamics (as shown in Fig. 4) and could
have a large contribution in the [X] expression (Eq. 39).
Note that the effect of electronic NDC deg is not included
in the JC subspace (see Eq. 33). Correctly including the
intrinsic NDC is essential to investigate molecular cavity
QED. The second scenario is when molecules have large
permanent dipole moments. In our case, both SM1 and
SM2 have a large permanent dipole µee which causes the
coupling between |e0〉 and |e1〉 through the light-matter
coupling in Eq. 5, and this coupling is proportional to

the light-matter coupling strength gc. Thus, with an in-
creasing gc, the |e1〉 state could get a larger population
(as shown in Fig. 3). Unlike the atomic cavity QED,
the dynamical interplay among the electronic, photonic,
and nuclear DOFs are often more complicated, thus the
truncation to any Hilbert subspace must be done with
caution.30,31,62

V. CONCLUSIONS

In this paper, we derive a rigorous expression of
the nuclear gradient using the the QED Hamiltonian
without making unnecessary approximations. Under
the adiabatic-Fock representation, and requiring the to-
tal energy conservation of this MQC system, we de-
rived the rigorous nuclear gradient, and it is intuitively
connected to those approximate gradients under the
JC approximation.23 This rigorous expression has addi-
tional terms that go beyond the expression of the JC
Hamiltonian.23 We have numerically demonstrated the
importance of these terms in the MQC simulations of
polariton dynamics.
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The nuclear gradient expression can be readily used
in any MQC simulations, such as Ehrenfest and FSSH
approaches demonstrated in this work, as well as nuclear
wavepacket approaches that require nuclear gradient.63,64

The theoretical developments in this work could signifi-
cantly benefit the polariton quantum dynamics commu-
nity with a rigorous nuclear gradient of the molecule-
cavity hybrid system and could have a broad impact on
the future non-adiabatic simulations of polariton quan-
tum dynamics.
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APPENDIX A: PROOF OF EQ. 22

Here, we provide a simple proof of Eq. 22 which was
used to derive the nuclear gradient expression in Eq. 23.
Starting from the equation of coefficients Eq. 19, we have

dcj(t)

dt
=
∑
k

( 1

i~
Vjk −

∑
α

dαjkṘα

)
ck(t). (65a)

dc∗i (t)

dt
=
∑
l

(
− 1

i~
Vil −

∑
α

dαilṘα

)
c∗l (t). (65b)

Combine the above two equations together, we have

d(c∗i cj)

dt
=
dcj
dt
c∗i +

dc∗i
dt
cj (66)

=
1

i~

(∑
k

c∗i ckVjk −
∑
l

c∗l cjVil

)
−
∑
α

(∑
k

c∗i ckd
α
jk +

∑
l

c∗l cjd
α
il

)
Ṙα.

Using the above result, the left hand side of Eq. 22 be-
comes∑

ij

d(c∗i cj)

dt
Vij =

1

i~

(∑
ijk

c∗i ckVjkVij −
∑
ijl

c∗l cjVilVij

)
−
∑
α

(∑
ijk

c∗i ckd
α
jkVij +

∑
ijl

c∗l cjd
α
ilVij

)
· Ṙα. (67)

The order of summation over the index i, j, k does not
affect the final result. By relabeling the index i → l,
k → j and j → i, we can see that∑

ijk

c∗i ckVjkVij =
∑
ijl

c∗l cjVilVij . (68)

Thus, the second term of the right hand side of Eq. 67
is equal to zero. Similarly, by relabeling the index l→ i,
j → k and i→ j, one can show that∑

ijl

c∗l cjd
α
ijVli =

∑
ijk

c∗i ckd
α
jkVij (69)

Plugging the above equation into Eq. 67, we have∑
ij

d(c∗i cj)

dt
Vij = −

∑
α

∑
ijk

c∗i ck
(
dαjkVij + dαjiVjk

)
Ṙα

(70)

=
∑
α

∑
ijk

c∗i ck
(
−Vijdαjk + dαijVjk

)
Ṙα,

which is Eq. 22 of the main text. In the last step, we
have used the property dαij = −dαji.

APPENDIX B: NUCLEAR GRADIENTS OF MOLECULES

For the case of an isolated molecular system, it is easy
to check that the nuclear forces in Eq. 23 reduces to the
familiar expressions. For a diabatic basis, the derivative
coupling between states is strictly zero, i.e., dij = 0, and
Eq. 23 becomes the familiar expression

dPα
dt

= −
∑
ij

c∗i cj∇αVij . (71)

For the adiabatic basis, the electronic potential matrix
[V ] now is diagonal, i.e. Vij = Ei(R)δij , where Ei is ith
eigenvalue satisfying V̂ |φi〉 = Ei|φi〉. Under this case,
Eq. 23 becomes

dPα
dt

=−
∑
i

c∗i ci∇αEi −
∑
i 6=j

c∗i cjd
α
ij (Ej − Ei)

=−
∑
ij

c∗i cj〈φi|∇αV |φj〉, (72)

where we have used the chain rule 〈φi|∇αV |φj〉 =
∇α (〈φi|V |φj〉) − 〈∇αφi|V |φj〉 − 〈φi|V |∇αφj〉 as well as
the following well-known equality18

〈φi|∇αV |φj〉 =

{
∇αEi (i = j)

dαij (Ej − Ei) (i 6= j).
(73)
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APPENDIX C: CONVERGENCE TEST OF THE FOCK
STATES

All simulations presented in the main text are re-
stricted in the Fock state basis |0〉 and |1〉. Under
the strong light-matter interactions, this can become
problematic and more Fock states are required to reach
convergence.9,31 In Fig. 5 we provide the convergence test
of the Fock states with the intermediate coupling case
(gc = 0.005).
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(a)

(b)

FIG. 5. Photon number convergence teat for gc = 0.005 with
an increasing number of the Fock state {|n〉}, with n = 2
(red), n = 4 (blue), n = 6 (yellow), n = 8 (black), and n = 10
(cyan). The population dynamics of the |e0〉 state obtained
from the (a) exact simulation and (b) Ehrenfest dynamics.

Fig. 5a presents the population dynamics of the |e0〉
state with the exact quantum dynamics. The results ob-
tained using n = 6 and n = 8 Fock states are nearly
identical and only display a small difference after 30 fs,
and the n = 10 Fock state results are identical to the
n = 8 result (which is on top of the n = 10 result).
Fig. 5b presents the same calculations using the Ehren-
fest dynamics, with the general nuclear gradient expres-
sion in Eq. 28 and Eq. 30. As we already presented in the
main text, the Ehrenfest simulation results (or FSSH re-
sults) are very close to the exact simulation results for the
SM1-cavity coupling model investigated here, the Ehren-
fest dynamics thus presents almost identical trend of the
convergence for the population dynamics.
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