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Abstract 

The skew and shape of the Molecular Weight Distribution (MWD) of polymers have 

a significant impact on polymer physical properties. Standard summary metrics 

statistically derived from the MWD only provide an incomplete picture of the polymer 

MWD. Machine learning (ML) methods coupled with high-throughput experimentation 

(HTE) could potentially allow for the prediction of the entire polymer MWD without 

information loss. In our work, we present a computer controlled HTE platform that is 

able to run up to 8 unique variable conditions for the free radical polymerizations of 

styrene. The segmented-flow HTE system was equipped with an inline Raman 

spectrometer and offline size exclusion chromatography (SEC) to obtain time 

dependent conversion and MWD respectively. In a supervised learning exercise, the 

gradient-boosted decision trees ML algorithm was used to predict monomer 

conversion from reagent concentrations and reaction time with high accuracy, using 

data obtained from the Raman spectra. A second ML algorithm uses the random forest 

regressor to predict entire MWDs of the synthesized polymer. Each algorithm can 

navigate the complexity of multiple parallel reactions occurring in a polymerization.  

The algorithm accurately predicts monomer conversion in the first case despite 

variations in the polymerization kinetic parameters over time. In the second case, we 

predict the polymer MWD where fine details such as the shape and skew of the MWD 

are captured without information loss. SHAP values were calculated to examine the 

dependence of the ML model output on the experimental conditions. A transfer 

learning approach was also used to enhance the predictive power of a Deep Neural 

Network (DNN) model in predicting batch polymerization MWDs. Overall, we 

demonstrate that the combination of HTE and ML provide a high level of predictive 

accuracy in determining polymerization outcomes, providing polymer chemists with 

the ability to target the synthesis of polymers with desired properties via the predicted 

conversion and MWD. 

Introduction 

An attribute of paramount importance in polymers is the molecular weight as it 

directly impacts material performance such as Young’s modulus, viscosity and glass 

transition temperature.1 The statistical nature of the polymerization process leads to a 

mixture of polymer chains with differing molecular weights, resulting in a molecular 

weight distribution (MWD).2 The number-average molecular weight (Mn), weight-

average molecular weight (Mw) and dispersity (Đ) are important metrics used to 

characterize a polymer’s MWD. While Mn, Mw and Đ are widely used MWD descriptors, 

Gentekos and co-workers have reminded readers in a recent review that Mn, Mw and 

Đ are inadequate descriptors of the MWD because they do not take into account the 

skew and shape of the MWD.3 Indeed, polymer samples can have very similar Mn, Mw 

and Đ but have vastly different MWDs.4 Many have also discussed the downsides of 

using only dispersity to characterise the breadth of the polymer MWD, because Đ is a 

relative measure of the breadth of the MWD and can only be used to compare polymer 

samples with similar Mn.
5,6 One can conclude thus that these metrics overlook finer 

details found within the MWD of a polymer, which can significantly affect its 

properties.7 Moreover, while a polymer chemist may be able to target a particular Mn 

or Đ through careful selection of synthesis parameters, targeting the full distribution 

during synthesis remains a difficult challenge. With the emergence of machine learning 
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(ML) methods, we posit that this challenge could be realized by predicting the full MWD 

based on input conditions, thereby adding another tool to the polymer chemists’ 

toolbox. 

ML methods have increasingly been incorporated into recent materials discovery 

research efforts8,9, and range in its myriad applications from organic synthesis10–14, to 

drug discovery15–17, polymer design18–22 and many other areas23–27, owing to their 

ability to dramatically speed up scientific discovery28 and guide scientific 

experiments.29 Coupled with the proliferation of ML in scientific research, computer-

controlled platforms and automated workflows have also become increasingly 

prominent in scientific research.30,31 Automated platforms and high-throughput 

experimentation (HTE) accelerates data generation32,33, which can boost the 

performance of data-hungry ML models.34 The synergy between HTE and ML and 

their usage in scientific research brings about the potential to accelerate materials 

discovery and the significance of this trend cannot be overstated.35,36  

 In polymer design, automation, HTE and ML have seen increased prominence. In 

recent work by Rubens et. al., an autonomous self-optimizing flow reactor coupled 

with size exclusion chromatography (SEC) was designed for the systematic targeting 

of polymer Mn, and this work demonstrates the elegance of combining automation with 

ML.37 In another work by Zhou et. al., computer controlled syringe pumps were utilised 

to generate droplet flow, which allowed for the photopolymerization of monomers at 

high concentrations in a continuous flow setting, alleviating high viscosity and reactor 

clogging concerns.38 Rizkin et. al. have combined automated microfluidic 

experimentation and ML to understand the reaction space and technoeconomic 

outcomes of the coordination polymerization of 1-hexene.39 In addition, conducting 

polymerizations in continuous flow reactors have been shown to be highly effective in 

promoting photoinduced polymerizations40, allows easy access to block polymers41–43 

and serves as an analytical tool in understanding polymerization kinetics.44 The myriad 

advantages of polymerizations in flow reactors were summarized in an excellent 

review by Reis et. al.45 The application of ML in polymer synthesis was exemplified by 

Houben et. al., where a multi objective active learner (MOAL) algorithm was developed 

and applied to the emulsion polymerization of a styrene and butyl acrylate two-

monomer system to simultaneously target conversion and particle size in a closed-

loop fashion.46 

The specific goal of engineering MWDs has been attempted through the method 

of accumulation of polymer samples with narrow MWDs synthesized via controlled 

polymerization techniques. This technique allows one to design and control the final 

MWD of the resultant polymer blend.47–51 Recently, the control of Đ in aqueous ATRP 

has also been reported by Wang et al.52 While these are certainly important steps 

taken towards addressing the MWD design problem, it is not yet possible to predict 

the MWD as an outcome of a polymerization in a facile manner. Mathematical models 

have been used to describe the polymer MWD arising from free radical 

polymerizations,53 however, these are highly complex with numerous assumptions. 

The use of HTE and ML in the study of polymer MWD, and specifically, free radical 

polymerization is unexplored. By formulating the study of the MWD as a multi-output 
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regression exercise, ML models can be trained to learn the mapping between input 

parameters and MWD in a simple and elegant way. 

With this goal in mind, we developed a computer-controlled experimental platform 

combined with ML in the study of monomer conversion and polymer MWD for the 

thermally initiated polymerization of styrene. The setup allows us to increase 

experimental throughput via a segmented flow method, which allows for the screening 

of multiple experimental conditions at once. An inline Raman spectrometer 

downstream generates Raman spectra of the reaction mixture in real-time and is used 

to monitor the styrene conversion accurately at different residence times. 

Subsequently, an offline SEC measures the MWD of the polystyrene formed during 

the polymerization. Using a gradient-boosted decision trees ensemble ML model, we 

then predict styrene monomer conversion with good accuracy. We also trained a 

random forest ensemble ML model for the prediction of the entire polystyrene MWD. 

Unlike one-shot learning techniques that aim to make predictions given small datasets 

such as in low data drug discovery efforts54, our HTE platform can generate 

experimental data at a higher throughput than traditional methods without 

compromising data quality. This allows us to leverage upon the power of the ML 

algorithms to make accurate predictions of relevant experimental targets. We hope 

that through the accurate prediction of monomer conversion and polymer MWD, our 

work could provide a case-study for polymer chemists on the benefits of incorporating 

ML and HTE into the polymer synthesis workflow, potentially allowing for the 

acceleration of novel polymeric materials discovery via targeting the synthesis of 

polymers with desired properties, guided by the predicted conversion and MWD.  

Results and Discussion 

 A schematic representation of the computer-controlled segmented-flow 

platform is shown in Figure 1a. The platform consists of four independent syringe 

pump ports that were interfaced with a computer and controlled by the LabVIEW 

software. Three reagent syringes, comprising of styrene, p-xylene and AIBN dissolved 

in p-xylene were infused into a mixer using gas-tight syringes for efficient mixing of 

reagents, while the fourth syringe comprised of deionized and degassed water, used 

as an inert spacer. The aqueous and organic phases will be generated using a 

staggered infusion protocol – in a single step of infusion, syringe ports containing 

either organic reagents (styrene, p-xylene and AIBN dissolved in p-xylene) or aqueous 

reagent (deionized water) would infuse, but not both immiscible phases at the same 

time. A PTFE coil of pre-determined length was immersed in an oil bath at 85°C during 

polymerization. The outlet of the PTFE coil was passed through an inline Raman 

spectrometer for real-time spectra collection. A back pressure regulator (BPR) was 

connected as shown in Figure 1a to reduce pressure differences within the flow system 

to ensure uniform flow. A fraction collector was used to collect organic fractions for 

subsequent off-line SEC analysis. The water was dyed green to allow for better visual 

identification of the aqueous and organic phases during experimentation and fraction 

collection. The segmented-flow architecture (Figure 1b) was generated by alternating 

the infusion of organic reagents and water. After the segmented pattern of 9 different 

compositions (Figure 1b) were formed, water was infused as a carrier liquid at an 

appropriate flow rate to achieve the desired residence time. Specific experimental 
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setup details and operational procedures are included in the supporting information 

(SI). The vinyl peak trace was obtained by plotting the intensity of the vinyl peak 

against spectra index (Figure 1b) and clearly shows the individual organic segments 

which contain the styrene monomer. This setup allows for the compartmentalisation 

of reaction mixtures containing different stoichiometries of reagents simultaneously at 

a set bath temperature without cross-contamination and enhances experimental 

throughput. 

 

Figure 1. Computer-Controlled Segmented Flow Platform and Supervised Learning 

Workflow (a) Schematic of the computer-controlled segmented flow setup. Figure inset 

depicts a staggered infusion protocol for generating the organic and aqueous phases 

separately. (b) segmented flow schematic and the vinyl peak trace plot. The first condition of 
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each experiment is discarded. (c) stoichiometry parameter space showing weight fraction of 

styrene on the x-axis and styrene to AIBN molar ratio on the y-axis. Numbers highlighted in 

red indicate the label of the condition. (d) supervised learning workflow schematic for the 

prediction of monomer conversion and polymer MWD. Gradient-boosted decision trees were 

used for the prediction of conversion, while random forest was used for the prediction of MWD. 

The computer-controlled segmented flow platform allows for the generation of high-quality 

experimental data at a higher throughput than traditional methods, allowing for the training of 

ML models which can predict the monomer conversion and polymer MWD with high accuracy. 

The design of experiment (DoE) constituted a uniform sampling of the parameter 

space of the experiment based on the input parameters of: (1) weight fraction of 

styrene in the organic phase; (2) the styrene to AIBN molar ratio and, (3) residence 

time of the reaction. Figure 1c shows the stoichiometry parameter space with the 

corresponding condition labels which was split into 4 quadrants with a single 

experiment running 9 conditions at once. The quadrant located at the bottom right was 

not tested on our platform due to the limits of AIBN solubility, resulting in the 

spontaneous precipitation of AIBN in the flow reactor. Styrene conversion and 

polystyrene MWD were determined for the uniformly sampled parameter space at 

residence times ranging from 0 min to 120 min at 30-minute intervals, with 0 min 

indicating no immersion of PTFE coil in the heated oil bath. Critically, our platform 

enables the parallel screening of 8 conditions, with the first condition discarded due to 

the syringe-pump driven flow not yet reaching steady state (details in the SI) and 

repeated in a subsequent segmented-flow experiment. The latter 8 conditions have 

different stoichiometries, which increases experimental throughput significantly over 

batch experiments. Importantly, an appropriate DoE coupled with HTE enables the 

rapid generation of reliable experimental data which can then be used for downstream 

data analytics and ML predictions. 

The labelled dataset therefore consists of 3 input parameters, and the conversion 

and MWD outputs that we derived through the raw data obtained from the inline 

Raman spectrometer and the offline SEC, respectively. This data was used to perform 

the supervised learning tasks as shown in Figure 1d. The ML prediction exercise for 

conversion is a single-output regression problem as the target output conversion is a 

single scalar. However, the MWD target output is formulated as a multiple-output 

regression problem where the targeted output is the weight fraction vector containing 

the weight fractions of fixed molecular weights. This would allow the ML algorithm to 

model and predict the entire MWD of the polymer across a well-defined molecular 

weight range without information loss. Before training the ML algorithms on the 

labelled dataset, we arbitrarily chose Condition 15 as a validation condition for a final 

ML algorithm performance evaluation. The remaining labelled dataset was split into 

80% training and 20% test sets. The experimental input features and output targets 

were scaled to range between 0 and 1. Hyperparameter tuning was conducted on the 

training set using 5-fold cross-validation (CV), and the ML algorithm was refit with the 

optimal hyperparameters and evaluated on the full training and test sets. Specific 

details on model training are included in the SI. As a final step of evaluation, we then 

use the best performing ML algorithms to predict the conversion and MWD of 

Condition 15 at different residence times and obtained highly accurate predictions (𝑅2 > 

0.99, Figures 3e and 5i). 



7 
 

 The inline Raman spectrometer collects Raman spectra in real-time during 

experimentation. Within a single Raman spectrum, we specifically monitored the area 

under the curve (AUC) of the Raman active vibrational modes of the styrene vinyl C=C 

stretch (~1630 cm-1)55 and the p-xylene ring breathing mode (~830 cm-1)56. Since 

Raman spectroscopy involves light scattering and absolute intensities cannot be used 

to quantify conversion57, we normalized the vinyl AUC against the p-xylene AUC within 

a Raman spectrum to allow for the subsequent quantification of conversion across 

residence times. To allow for rapid data extraction from a large number of Raman 

spectra collected during the experiments, we automated the baseline subtraction, 

peak fitting, and AUC calculation processes via a Raman spectra parsing code written 

using Python and the entire workflow is summarized in Figure 2 below: 

 

Figure 2. Monomer Conversion Calculation from Inline Raman Spectra Data (a) 

Workflow for calculation of conversion from the Raman spectra. (b, c) extraction of relevant 

Raman spectra from the vinyl peak trace (d) overlay of several Raman spectra of a single 

condition, featuring the styrene vinyl region (vinyl peak AUC is highlighted in blue). (e) overlay 
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of several Raman spectra of a single condition, featuring the p-xylene region (p-xylene peak 

AUC is highlighted in orange). (f) waterfall plot depicting the decrease in the vinyl peak AUC 

over time. (g) a representative conversion plot shows an increasing conversion with residence 

time. The data parsing code allows for the rapid quantification of monomer conversion across 

residence times for multiple conditions at once, owing to its ability to automate the baseline 

subtraction, peak fitting, and AUC calculation processes for a large number of Raman spectra. 

 The first step of data processing involves the extraction of the relevant Raman 

spectra containing the vinyl peak associated with its respective condition label, taking 

reference from the vinyl peak trace as shown in Figures 2b and 2c. Each dot in Figure 

2c represents a Raman spectrum containing the vinyl peak from a particular condition. 

After extracting the relevant Raman spectra for each condition, the vinyl and p-xylene 

regions were first subjected to a baseline correction, followed by a curve fitting of the 

line-shape of the peaks using a linear combination of Lorentzian functional forms with 

the python package lmfit.58 The AUC of all relevant peaks can then be derived in an 

automated fashion via an iterative loop for all extracted Raman spectra. Figures 2d 

and 2e shows the vinyl and p-xylene regions for 5 representative Raman spectra of a 

single condition. Relevant peak AUCs are highlighted for clarity. The p-xylene peak 

AUC is then divided (normalized) against the vinyl peak AUC to obtain an AUC ratio. 

This ratio is aggregated across the 5 spectra of a single condition to obtain a mean 

and standard deviation of the ratio. The conversion is calculated via the following 

equation: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) = (1 −
𝑅𝑡

𝑅0
)  x 100% 

where 𝑅0 is the mean ratio at residence time of 0 min (no reaction) and 𝑅𝑡 is 

the mean ratio at residence time of 𝑡 min. The corresponding standard deviations were 

propagated during conversion calculation to obtain the error for each conversion value. 

An evolution of the normalized vinyl AUC over time is shown in Figure 2f. A decrease 

in the normalized vinyl AUC indicates an increase in monomer conversion over time. 

A plot of conversion values against residence time is shown in Figure 2g. We have 

verified that the conversion obtained from this approach agrees well with the 

conversion derived from NMR studies. Specific details on the Raman peak 

assignments, data parsing code and NMR studies are included in the SI.  

Once the Raman data was parsed and conversion data collected, ML 

algorithms were trained to map the relationship between styrene conversion and the 

input parameters. We approached this regression problem by first training and tuning 

the hyperparameters of different ML models on the training data. Figure 3a shows the 

performance of various ML algorithms on conversion as measured by the root mean 

squared error (RMSE). The hyperparameters for the respective ML Algorithms were 

tuned prior to evaluation using grid and random search methods. Linear ML models 

(Lasso, Elastic Net, Linear, Ridge) were unable to capture the non-linear relationship 

between the input features and the output target conversion and hence perform poorly 

as indicated by both metrics. The K-nearest neighbours and decision tree ML 

algorithms severely overfitted the training set as shown in Figure 3a with RMSE values 

of 0 for the training set, but non-zero RMSE for the test set. This implies that the trained 

K-nearest neighbours and decision tree ML models are not generalizable to previously 
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unseen conversion data in the context of this study. They were therefore not used for 

the final evaluation on condition 15. Between support vector regression, random forest, 

and gradient-boosted decision trees, the lattermost ML algorithm performed the best 

with the lowest test set RMSE of 0.038. Furthermore, a training set RMSE of 0.035 

indicates that the ML model was not overfitting the training set as the training scores 

were close to the test scores. Therefore, the gradient-boosted decision trees ML model 

was the best choice for mapping the input parameters to conversion without overfitting 

to the training set and being generalizable to test set examples previously unseen, 

striking a good balance between the bias and variance of the ML model.59 To visualize 

the robustness of the ML model predictions, a plot of predicted versus actual 

conversion values is shown in Figure 3d. Training and test set values close to the 

diagonal line indicate a good model fit onto the data and a high predictive accuracy of 

the ML model, respectively. As a final step of model evaluation, the gradient-boosted 

decision trees ML model was used to predict the conversion of condition 15 across 

five residence times, which it had not been previously trained on. Figure 3e shows the 

actual vs. predicted conversion plots for condition 15 and the 𝑅2  value of 0.9936 

obtained shows that the ML algorithm has accurately predicted the conversion for 

condition 15 across all residence times. Python code used for ML model training and 

conversion prediction are included in the SI. 

 

Figure 3. ML Model Selection and Prediction of Conversion (a) ML regressor 

performance on conversion measured by the RMSE. Regressors were arranged in order of 

decreasing test set RMSE. The gradient-boosted decision trees regressor was chosen as for 
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conversion prediction. (b) Predicted value versus actual value plot of the gradient-boosted 

decision trees ML algorithm on the training and test sets. (c) Plot of experimental and predicted 

conversion plots for condition 15. The goodness of fit (𝑅2) between actual and predicted 

conversions across all residence times is above 0.99, indicating a very accurate prediction by 

the gradient-boosted decision trees ML model. 

Since the monomer conversion is closely related to the kinetics of polymerization, 

we further investigate the relationship between styrene conversion and free-radical 

polymerization kinetics in the context of this study. The instantaneous rate of monomer 

disappearance, or the instantaneous rate of polymerization, 𝑅𝑝, shown in the equation 

below, is linearly dependent on the monomer concentration2,60: 

𝑅𝑝 = −
𝑑[𝑀]

𝑑𝑡
 = 𝑘𝑝[𝑀] (

𝑓𝑘𝑑[𝐼]

𝑘𝑡
)

1/2

 

In the equation, [𝑀] is the monomer concentration, [𝐼] is the initiator 

concentration, 𝑓 is the initiator efficiency, 𝑘𝑝 is the propagation rate constant of the 

monomer, 𝑘𝑑 is the decomposition rate constant of the initiator and 𝑘𝑡 is the 

termination rate constant. This was derived from the mechanism of a free radical 

initiated chain polymerization assuming steady-state as well as equal reactivity with 

respect to the propagating radical size.2,60 The linear relationship between 𝑅𝑝 and 

[𝑀] only holds if the steady-state and equal reactivity conditions are met and that the 

polymerization interval under study is sufficiently short such that kinetic parameters 

in the above equation do not change meaningfully within the interval.  We expect the 

aforementioned parameters to vary during the polymerization process in the 

relatively long residence time intervals of our study. Firstly, 𝑓 is known to change 

with differing monomer concentrations.61,62 Termination and propagation rate 

constants are also influenced by the radical length63, viscosity64–66, as well as 

variations in the mass transport of propagating radical moieties.67–69 [𝐼] changes over 

time as the initiator gradually dissociates into primary radicals. Standard polymer 

kinetic rate plots of our experiments (details in the SI) show that the kinetics of 

radical polymerization are observed to deviate from a straight line, confirming that a 

single linear relationship does not hold over the course of our experiments. This also 

explains the inability of linear ML models to accurately predict conversion across 

residence times in our study. Nevertheless, based on the high degree of accuracy of 

the predicted conversions by the non-linear gradient boosted decision trees model, 

we are able to conclude that the non-linear ML model can accurately capture the 

variations in kinetic parameters of an uncontrolled free radical polymerization across 

all residence times tested during the experiment. 

 Now that we have investigated the kinetics leading to the conversion, the next 

part of the campaign involves the study of polymer MWDs. To achieve this, organic 

segments from the segmented flow setup were manually collected into separate vials, 

diluted with THF and subjected to SEC analysis without further purification. The SEC 

was first calibrated using polystyrene standards with narrow MWDs and the mapping 

between the molecular weights and retention volume provided by the standard 

calibration was used for subsequent MWD extraction from the chromatogram. 
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The formulation of an ML problem statement for the MWD is non-trivial. While 

MWD descriptors like Mn, Mw and Đ used individually as targets for ML prediction, 

information on the skew and the shape of the MWD are still absent within the summary 

metrics.3 The direct prediction of the entire MWD using ML models, without information 

loss, would be far more powerful and descriptive of the polymerization outcome. 

Therefore, a well-defined MWD target for the ML algorithm was integral to the success 

of the supervised learning task. We approached the ML problem statement by framing 

it as a multi-output regression problem, where the target of ML prediction is a vector 

with a fixed number of components, containing the weight fractions of the polymer 

fraction of a particular molecular weight. A vector output with a fixed number of 

components requires the systematic extraction of the MWD within a well-defined 

retention volume window for all chromatograms. Figure 4 shows the MWD extraction 

process in detail: 

  

 

Figure 4. MWD Target Vector Extraction Methodology (a) Extraction of the polystyrene 

peak from the SEC chromatogram within a fixed window of retention volume. (b) 

representative MWD extracted from the chromatogram within the fixed retention volume 

window. (c) the extracted log M and the extracted normalized weight fraction vectors both 

have a fixed number of components (1499 components) due to the extraction of the 

polystyrene peak within a fixed retention volume window. The log M vector contains log M 

values which are fixed, owing to the standard calibration used throughout all extractions, while 
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the normalized weight fraction vector contains normalized weight fraction values which 

depends on the refractive index (RI) signal obtained from the detector on the SEC. The 

resultant MWD weight fraction vector which describes the entire polystyrene MWD fully without 

information loss was used as the target for ML prediction and this MWD target vector 

extraction methodology can be applied for chromatograms obtained from SECs with the same 

standard calibration and operating parameters.  

 Figure 4a shows a representative chromatogram with the relevant polystyrene, 

styrene and solvent peaks labelled. MWD data of the polystyrene was extracted within 

a fixed extraction window of retention volume from 13.5 mL to 18.5 mL. The resultant 

MWD is shown in Figure 4b, with the normalized weight fraction (𝑤𝑖) on the y-axis 

plotted against the log molecular weight (log M) on the x-axis. Figure 4c shows the 

connection between Figure 4a and 4b where extraction of the polystyrene peak within 

a fixed retention volume window of the chromatogram ensures that the log M vector 

has a fixed number of 1499 components. A further consequence of the standard 

calibration is that the log M vector has components with fixed values as the standard 

calibration procedure maps retention volumes to log M values using polystyrene 

standards with narrow MWDs. The corresponding weight fraction vector determined 

by the refractive index (RI) signal will also have 1499 components. The weight fraction 

values within the weight fraction vector were normalized to sum to 1 and the weight 

fraction vector which describes the entire polystyrene MWD fully without information 

loss was used as the target for ML prediction. Furthermore, by representing the entire 

MWD as a vector, multimodal MWDs or MWDs with irregular shapes can be fully 

represented, and common MWD descriptors of Mn, Mw and Đ or higher moments of 

the MWD such as skewness and kurtosis3 can be subsequently derived if information 

loss can be tolerated. 

ML models were trained to tackle a multi-output regression problem to learn the 

mapping from the input parameters to the output vector containing 1499 components 

comprising of the normalized weight fractions. In an approach similar to the conversion 

predictions, data for condition 15 were chosen for the final model evaluation. Figure 

5a shows the performance of various ML algorithms on the normalized weight fraction 

vector as measured by the RMSE. For multiple output regression models, the metrics 

were calculated element wise and averaged across all components. The 

hyperparameters for the respective ML Algorithms were tuned prior to evaluation. 

Linear ML models (Lasso, Elastic Net, Linear and Ridge) performed poorly due to the 

poor linear fit of the input features to the target vector. K nearest neighbours and 

decision tree ML models overfitted the training set with RMSE values of 0 for the 

training set, but non-zero RMSE for the test set and were not generalizable towards 

unseen MWD data. Between random forest and  deep neural network (DNN) ML 

models, while the DNN had a lower RMSE of 0.046 compared to the random forest 

model (RMSE = 0.047), the random forest model achieved the best balance between 

bias and variance by having a larger training set RMSE of 0.018, compared to the 

DNN’s training set RMSE of 0.009, indicating that the random forest model is less 

likely to overfit than the DNN model and was chosen for MWD prediction. Finally, the 

random forest ML model was used to predict the conversion of condition 15 across 

four residence times. Figure 5b shows the experimental MWD and the predicted MWD 

of condition 15 at a residence time of 30 minute. Figure 5c shows the overlay of 
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experimental MWD across different residence times, while Figure 5d highlights the 

ability of the ML model to recognise the gradual and subtle shift of the MWD towards 

higher molecular weights. An 𝑅2  value higher than 0.99 was obtained for all 

predictions and it shows the robustness of the random forest ML algorithm in this 

multiple output regression exercise. The Python code used for ML model training and 

MWD prediction are included in the SI. 

  

Figure 5. ML Model Selection and Multi-Output Regression for MWD Prediction (a) 

ML regressor performance on conversion measured by the RMSE. Regressors were arranged 

in order of decreasing test set RMSE. The random forest regressor was chosen for MWD 

prediction. (b) plot of experimental and predicted MWD for condition 15 at a residence time of 

30 min with an 𝑅2 value of 0.9995. (c, d) overlay of experimental and predicted MWDs at 
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different residence times for condition 15, respectively. The random forest model can predict 

the MWD for condition 15 at all residence times with very good accuracy: the goodness of fit 

(𝑅2) between the actual and predicted MWD at a given residence time above 0.99 and the 

high degree of accuracy of the MWD predictions indicate the robustness of the random forest 

ML algorithm in tackling the multiple output regression problem, allowing for the accurate 

prediction of polymer MWDs without information loss. 

The data presented in Figure 5 shows that the random forest algorithm can not 

only predict MWDs with very high accuracy, but it also captures the finer details of the 

MWD, such as the skew of the MWDs of condition 15 which gives a low molecular 

weight tail, as well as the evolution of the MWD with reaction time, without information 

loss. From a machine learning standpoint, we showcase the ability of our multi-output 

regressor to learn from the experimental data, linking process conditions to a target 

vector that represents the MWD. Mechanistically, the ML regressor was able to, once 

again, capture the nuances of the MWD that result from complex mechanistic events 

that occur during a free radical polymerization process, which can be difficult to 

express numerically whether through the typical MWD descriptors of Mn, Mw and Đ, or 

even through the asymmetry factor (𝐴𝑠) of an MWD.3 

To better understand the impact of the input features on the conversion and MWD 

outputs, we calculated the SHAP (SHapley Additive exPlanations) values of features 

to understand how the features influence the output of the ML model. SHAP values 

are measures of feature importance and represent a feature’s responsibility for a 

change in the model output and they are calculated via a game theoretic approach.70 

While calculating the SHAP values for conversion would give us an idea of how the 

input features affect the conversion, calculating the SHAP values for the MWD vector 

would not be highly illuminating, as each element of the 1499-dimension output vector 

would be related to a feature by the SHAP value. Such granular detail would not be 

useful in understanding how the features affect the shape and skew of the MWD. 

Therefore, in addition to the conversion, we concatenated the summary statistics of 

each MWD (namely 𝑀𝑛 , 𝑀𝑤 , Đ, 𝑀𝑧 , 𝑀𝑝  and 𝐴𝑠 ) into a vector and used this 7-

dimensional vector as the output of a DNN model. The model can then be trained in 

the same way as previously described, and the SHAP values can be calculated to 

enhance model interpretability and understand the feature-output relationship. Figure 

6a shows the architecture of the DNN trained on the training data, with 3 nodes in the 

input layer representing the features, 7 hidden layers of 32 nodes, and 7 nodes in the 

output layer for the 7-dimension output vector. The SHAP values for all features were 

plotted in bee swarm plots, where each dot in its corresponding feature row represents 

its relative impact on a particular instance of the output as indicated by the location of 

the dot on the x-axis representing the SHAP value. More information on the 

hyperparameter tuning of the DNN and SHAP value calculation is included in the SI. 
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Figure 6. SHAP Values Toward ML Interpretability for Conversion and MWD 

Summary Metrics. (a) DNN architecture trained using the training set and used for 

subsequent SHAP values calculation. (b-h) Distribution of feature SHAP Values for conversion, 

𝑀𝑛 , 𝑀𝑤 , 𝑀𝑧 , 𝑀𝑝 , Đ and 𝐴𝑠 , respectively. The colormap represents the magnitude of the 

feature value. (b) shows that low residence times led to a negative impact on the conversion, 

while low styrene to AIBN molar ratio led to a positive impact on the conversion. (c-f) 

distribution of feature SHAP values for 𝑀𝑛, 𝑀𝑤, 𝑀𝑧 and 𝑀𝑝 respectively, where a low styrene 

weight fraction and low styrene to AIBN molar ratio had a negative impact on the output, while 

the residence time had relatively minor impact. (g) shows that high styrene weight fractions 

and low styrene to AIBN mole ratios had a negative impact on Đ. (h) shows that low styrene 

to AIBN mole ratios had a negative impact on the 𝐴𝑠 while the residence time had relatively 

minor impact. 

The SHAP values help to reinforce our understanding of how the features affects 

the output and helps illuminate the underlying chemical rationale that drives the 

relationship. For instance, low residence times led to lower conversion, as less styrene 

molecules would be converted to polystyrene in a shorter time. Similarly, high styrene 

weight fractions would lead to higher 𝑀𝑛, 𝑀𝑤, 𝑀𝑧 and 𝑀𝑝 as more styrene molecules 

are present to form polystyrenes of higher molecular weights. Conversely, low styrene 

to AIBN molar ratios would lead to polystyrenes of lower average molecular weights 

because there are less styrene molecules per AIBN molecule available to add to the 

growing kinetic chain on average. Low styrene to AIBN molar ratios also led to lower 
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dispersities because of the lower average molecular weights of the polystyrenes which 

set an upper bound to the range of molecular weights the polystyrenes could have, 

limiting the range of molecular weights and the relative breadth of the MWD the 

polystyrene would possess. This also results in lower 𝐴𝑠  as the resultant MWD 

becomes more symmetric about the 𝑀𝑝. More information on the calculation of 𝐴𝑠 is 

included in the SI. It is also not surprising that residence times would have a limited 

impact on the average molecular weight of polystyrenes because high molecular 

weight polymers are formed very quickly initially in chain growth polymerizations and 

the average molecular weight of the polymer does not change dramatically throughout 

the course the reaction, unlike the situation of step-growth polymerizations. Evidently, 

SHAP values are powerful tools in understanding the underlying kinetics of the 

reaction, as described by the ML model. 

Next, we use transfer learning74 to circumvent the limitations of the flow setup, 

going beyond the limitations of AIBN solubility (shown as the inaccessible bottom-right 

quadrant in Figure 1c). We randomly chose 3 conditions in this region to be run on 

batch reactors and measured the resultant polystyrene’s MWDs at 30-minute intervals. 

While we were running the same reaction in different reactors, the mass and heat 

transfer characteristics would differ between a flow and batch reactor.71–73 The transfer 

learning process involves fine-tuning a previously trained DNN model. Figure 7a 

shows the stoichiometry parameter space where a DNN pre-trained on the conditions 

run on the flow system (annotated in red) was fine-tuned using the training examples 

from the bottom right quadrant (annotated in blue). Figure 7b shows a schematic of 

the transfer learning process, where the weights for the first two hidden layers learnt 

previously were frozen (pre-training), while the weights for the output layer was 

allowed to be trained (fine-tuning) using new training examples from the batch 

reactions. The output vector from the DNN was further processed via the Savitzky-

Golay filter and re-normalization to give the final predicted MWD. A comparison was 

made between the previously high performing random forest model and the fine-tuned 

DNN to highlight the difference in the model performances. Figures 7c and 7d 

highlights the difference in predictive power of the ML models. More information on 

the transfer learning process and the comparison of predictive accuracy between the 

DNN model with and without fine-tuning is included in the SI. 
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Figure 7. Transfer Learning Improves ML Predictive Power in a Related Domain (a) 

stoichiometry parameter space where the previous conditions run in flow were used to pre-

train the DNN (red region), while the new conditions run in batch were used to fine-tune the 

DNN (blue region) (b) schematic of the fine-tuning of a DNN for transfer learning, where frozen 

weights in the first two layers are highlighted in red, and the trainable weights at the last layer 

are highlighted in blue. A Savitzky-Golay filter was used to smoothen the output from the DNN 

to give the final predicted MWD. (c) plot of experimental versus random forest predicted MWD 

for condition 35 at a residence time of 90 min with a moderate 𝑅2 value of 0.6124. (d) plot of 

experimental versus fine-tuned DNN predicted MWD for condition 35 at a residence time of 

90 min with a relatively higher 𝑅2 value of 0.9902. Transfer learning allows for the transfer of 

knowledge from one domain (polymerization in flow reactors) to a related domain 

(polymerization in batch reactors), improving the predictive power of the ML model. 

We have shown that the transfer learning approach works well in enhancing the 

predictive prowess of an ML algorithm, and the fine-tuning process requires 

dramatically less amount of data as compared to pre-training the DNN. In effect, while 

we utilised 83 data points from the flow reactor to pretrain the DNN, we only used 3 

data points from the batch reactor to fine-tune the DNN. Through the transfer learning 

approach, we could extend the knowledge from high throughput flow experiments to 

batch experiments with far fewer data points. We believe that this transfer learning 

approach can be applied in other instances, where a HTE platform can be used to 

generate a large amount of data in a more accessible region of the input parameter 

space to pre-train a DNN, which can then be fine-tuned with data from a less 

accessible region of the input parameter space which might require more laborious, 

stringent low-throughput experimental procedures, to generate more accurate 

predictions. 

Conclusions 

In this work, we have outlined an approach towards accurately predicting outcomes 

of the thermal-initiated radical polymerization of styrene using a combination of HTE, 
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automated data analysis and ML. Our high throughput segmented flow platform was 

able to conduct multiple compartmentalized polymerization reactions in parallel, with 

the collection of in situ Raman spectroscopic data and sample collection for offline 

SEC. Automated data analysis allowed for the rapid determination of monomer 

conversion, while the systematic MWD target vector extraction methodology which 

results in a complete representation of the MWD proved essential for the success of 

the MWD prediction exercise. We expect these methods to be applicable to similar 

workflows which might involve other monomers or types of polymerizations. 

The parallelization of experiments, combined with automated data analysis affords 

a platform that can generate large amounts of high-quality experimental data which 

are essential for training accurate ML algorithms. A gradient-boosted decision tree ML 

algorithm was able to accurately predict monomer conversion as a function of reagent 

stoichiometry and reaction time for both training and test data, as well as unseen data 

in the form of one masked condition. Our model was able to learn the kinetics of the 

polymerization without being explicitly programmed to do so. We also demonstrate 

that with a careful ML problem statement formulation, proper predictive target 

definition and MWD extraction methodology, a random forest regressor was similarly 

able to accurately predict the entire polymer MWD across residence times. Our 

predictions were accurate in capturing the nuances of a MWD, including features such 

as its shape and skew, without information loss. This approach is unprecedented as 

there have not been any reported methods that can accurately represent and more 

interestingly, predict an entire MWD from reaction conditions. In addition, we 

calculated SHAP values to better understand the relationship between the input and 

the ML model output. We also applied a transfer learning approach for the prediction 

of polymer MWD run in batch, via the fine-tuning of a pre-trained DNN, achieving good 

accuracies in the process. The implications and potential directions for this platform 

are twofold. Firstly, with our high throughput platform coupled with automated data 

analysis, we were able to generate polymerization data at an accelerated pace. This 

would potentially enable large scale studies to look at polymerization kinetics, 

especially of complex systems with many variables such as other reagents and 

temperatures. Secondly, the ability of the ML models in navigating the complexity of 

multiple parallel ongoing elementary reactions within the radical polymerization 

mechanism could be leveraged in investigating poorly understood monomers, or more 

complex polymerizations such as co- or ter-polymerizations. 
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