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Abstract 

Biodegradable polymers exhibit shortcomings, including low thermal stability and electrical 

conductivity. These challenges limit the broad applications of several applications, such as 

electronic devices. They show suitable dielectric, thermal, and electrical conductivity 

compared to the biodegradable polymer alone. Several methods can improve biodegradable 

polymers' dielectric, thermal, and electric conductivity, including co-polymerization, blending, 

and cross-linking with other polymers. Furthermore, the formation of nanocomposites seems 

to be the most effective method to improve the properties and performance of biodegradable 

polymers. This book chapter summarized biodegradable polymers' dielectric, thermal, and 

electrical conductivity. Biodegradable polymers nanocomposites consisting of polymers blend, 

inorganic, and other nanomaterials were discussed. 
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1. Introduction 

Polymers are multifunctional materials that can be alternatives to other materials such as 

metals, glass, and other traditional materials [1–5]. They can be pure organic [6–9] or hybrid 

materials including coordination polymers or metal-organic frameworks (MOFs) 

[10,11,20,12–19]. They offered various advantages such as being lightweight, flexible, and low 

cost. They are widely used for applications including electromagnetic interference shielding, 

biosensors, transient electronics skin (wearable) [21,22], wound dressings [23,24],  tissue 

engineering [25], bone tissue scaffolds [26], self-healing strain sensor [27],  sensors [28–30], 

optoelectronics [31], biomedicine[32–34], biotechnology [35–47], gene-delivery[48,49], 

environmental[50–58], and energy [11,16,56,58–71]. Polymers, including organic and 

coordination, are promising for future applications. In 1980, the term biodegradable polymers 

were introduced. Biodegradable polymers are widely applied for tissue engineering. 

Biodegradable polymers can be degraded into carbon dioxide (CO2), water, biomass, and 

humus (dark organic matter in soil) using living organisms, photocatalysis, or catalysis. 

Biodegradation in a natural system is biologically benign using microorganisms or enzymes. 

The European standard of EN 13432 defined biodegradable materials as materials that can be 

degraded > 90% of their mass via biological environment for six months. 

We introduce biodegradable polymers and the development of polymers nanocomposites. 

Here, we discuss biodegradable polymer nanocomposites' dielectric, thermal, and electrical 

conductivity. The synthesis of polymer nanocomposites exhibits high electric and thermal 

conductivity with good dielectric properties. The properties of polymers can be improved via 

conjugation with inorganic and organic materials. 

2. Biodegradable polymers 

The term “biodegradable” ensures products' reliability in the environment without harmful 

effects. The ASTM (e.g., ASTM D5511-18 and ASTM D5526-18, American Society for 

Testing and Materials) defined biodegradable materials as materials that exhibited 70% 

degradation during 30 days under anaerobic conditions[72,73].  Under aerobic conditions, 

ASTM D6400-19 and ASTM D6868-19 require 90% mineralization degradation of the 

material into CO2 within 180 days[74,75].  Biodegradable polymers can be synthesized or 

extracted from different sources (Figure 1). They can be obtained from agro-resource biomass 

(i.e., agro-polymers). They can be extracted from microorganisms. They can be obtained from 

the conventional synthesis of bio-derived monomers. Petrochemicals are important sources of 
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monomers used for the synthesis of degradable polymers.  They can be classified as (Figure 

1):- 

(1) Natural-based materials, e.g., polysaccharides (e.g., cellulose, lignin, starch, 

chitin/chitosan) or proteins (e.g., collagen,  Silk fibril (SF)). 

 (2) Synthetic polymers, fossil oil, or petroleum-derived polymers e.g., poly(ε-caprolactone) 

(PCL) poly(lacticacid) (PLA), poly(butylenesuccinate), poly(glycolic acid) (PGA), poly(ɛ-

caprolactone) (PCL), Poly(vinyl alcohol) (PVA), Poly(vinylpyrrolidone) (PVP), polybutylene 

succinate (PBS), and poly(hydroxyl butyrate) (PHB)[76–78]. 

Natural polymers can be classified as polysaccharides, polyamides, and polynucleotides 

(Figure 1). They can also be listed as plant-based polysaccharides (e.g., cellulose, alginate, or 

starch) and animal-derived polymers (e.g., collagen, silk fibroin, or chitosan). They exhibit 

advantages, such as high biocompatibility, low toxicity, low cost, good mechanical properties, 

and high biodegradability. Several linkages ensure high biodegradability (Figure 2). 

Cellulose has been considered the most abundant biopolymer in nature (Figure 2)[65,79–87]. 

It is a linear polysaccharide biopolymer consisting of β-1,4-linked D-glucose units. It can be 

extracted from several sources, such as trees and cotton. The chemical structure of cellulose 

shows a large number of hydroxyl (‒OH) groups[88]. Cellulose can proceed into the nanoscale, 

such as nanofibers (CNFs) and nanocrystals (CNCs). 

  

Figure 1. Biodegradable polymer sources. 
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Chitosan consists of randomly distributed β-(1-4)-linked D-glucosamine and N-acetyl-d-

glucosamine[89–91]. It is the de-acetylated form of chitin offering amino groups. It can be 

dissolved in an acidic solution forming a cationic polysaccharide. It exhibits good adhesive 

properties with high antibacterial activity. 

Synthetic polymers are usually extracted or synthesized via well-known reactions such as 

condensation or ring-opening polymerization (ROP). Several synthesis methods were reported 

for the synthesis of new organic polymers. Most of these methods require the use of a catalyst. 

The synthesis procedures aim to polymerize monomers with suitable functional groups that 

tend to polymerization. There are three main steps for polymerization: initiation, propagation, 

and termination. MOFs are coordination polymer formed via self-asselmbly of metal ions and 

organic linkers [64,66,69,92–98]. They can be decomposed into their constituent in harsh 

consition i.e. acid or base dpending on the MOFs materials. 

Aliphatic polyester polylactide (PLA can be synthesized via ROP reaction of lactide using a 

catalyst such as tin (II) octoate. It can also be prepared via the condensation of lactic acid. It 

can also be extracted from corn or wheat. It displays good transparency with thermoplastic 

properties. It can be considered bioplastic. It is an everyday use for three-dimensional printing 

(3D printing)[78]. It can be degraded via hydrolysis, thermal decomposition, or 

photodegradation. 

Like PLA, PCL can be obtained by ROP of 𝜀-caprolactone [26]. United States Food and Drug 

Administration (US-FDA) approved PCL for biomedical applications such as tissue 

engineering. PCL exhibits high biocompatibility, high biodegradability, good chemical 

resistance, and high ductility. It displays a melting point of 65 °C with tunable viscosity 

enabling processing using several methods. However, it has high Young’s modulus and 

strength. 

A water-soluble polymer such as PVA can be synthesized via hydrolysis poly(vinyl 

acetate)[99]. It exhibits high transparency, high strength, good flexibility, and high 

biocompatibility. However, it has a high density of –OH groups; it is hard to shape via 

conventional processes such as melting methods. However, it can be easily blended with other 

materials via a mixing procedure.  PVA–based materials were widely used for resistance 

random access memory [100–102]. PVP is another water-soluble polymer. It can be 

synthesized via the radical polymerization of N-vinylpyrrolidone [103]. PVP displays high 
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chemical resistance, easy processability, high transparency, good biocompatibility, and low 

cost. PVP was used for several applications, such as wearable electronic devices and gas 

sensors[104].  

 

Figure 2 Common biodegradable linkage and chemical structure for common biodegradable 

polymers. 

 

Natural polymers exhibit good intrinsic biocompatibility and enzymatic degradability, 

enabling intensive applications for biomedical applications (Figure 2). Biodegradable 

polymers are common clinical polymers, including polyglycolide, polylactides, and 

polycaprolactone. They can be classified as molecular, microstructural, and macroscopic. The 

properties of biodegradable polymers can be evaluated using UV–Vis spectroscopy, mass loss 

profiles, mass spectrometry, nuclear magnetic resonance (NMR), Fourier transform infrared 

(FT-IR) spectroscopy, Gel permeation chromatography (GPC), scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). 

The properties of polymers depend on several parameters, including chemical composition, 

particle size, morphology, and surface structure. Small particles polymers undergo aggregation 

into bulk materials, especially without proper stabilization. Nanoscale polymers have high 
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surface energy pushing the materials to aggregate to achieve high stability. Distributing the 

polymers uniformly in matrices can reduce or prevent the assembly. 

The size of a polymer affects the properties of polymers.  The morphology of the polymers can 

be spherical, rode, or plate, depending on the radius (R) and the thickness (t, Figure 3). 

Therefore, the ratio between volumes of interface material to the volume of the particle 

(Vinterface/Vparticle) increases with the decrease of particle size. The aspect ratio (the ratio of the 

diameter (2r) to the length (L)) determines the morphology of the polymers. Based on the 

aspect ratio, the morphology can be a plate, sphere, and rod with an aspect ratio of < 1, 1, and 

>1, respectively (Figure 3).  

 

Figure 3. The morphology of polymers particles and their aspect ratio. R is the radius, L is 

length, and h is the height. 
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(a) Solution method: this method depends on the dissolution in a suitable solvent in the 

presence of nanoparticles followed by evaporation of solvent or via precipitation. 

(b) Melt mixing: this method depends on the direct melt-mixed of polymer with the 

nanoparticle. 

(c) In-situ polymerization: this method involves the polymerization of monomers without 

nanoparticles. 

(d) Template synthesis: this method relies on using a template to synthesize nanoparticles. 

Polymer nanocomposites (PNCs) are multiphase materials made of two or more materials 

containing a polymer and other materials, e.g., metal, ceramic, inorganic, non-metallic, and 

ionic liquids[105]. PNCs exhibit good physicochemical properties compared to individual 

components (Figure 4). Polymers nanocomposites are prepared via physical blending, dipping 

coating, casting, template molding, melt blending, mixing (via ultrasonication, shear, three-

roll milling, ball milling), double-screw extrusion, and in-situ synthesis. Electro-hydrodynamic 

(EHD) method [106]. 

 

Figure 4. Advantages of polymer nanocomposite. 
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The electrical insulator materials that can be polarized under an applied electric field are 

called dielectric materials. This material exhibits high electrical polarizability due to the 

accumulation of the electric charges on the dielectric materials under an electric field. 

The materials are insulators; thus, no flow of the electric charges can be performed through the 

material. The dielectric materials are not loosely bound or free, causing dielectric polarization 

that offers positive charges in the field's direction and negative charges that shift opposite the 

electric field. The material performance determines by a dielectric constant (k) that defines the 

material’s storage capacity for the electrical charge. Materials with high-k values can be used 

as gate dielectrics in metal–oxide–silicon (MOS) transistors, memory cells, and 

supercapacitors. On the other hand, materials with low-k values are essential as electrical 

insulators. 

The dielectric properties of polymers enable their applications for electronic skins (e-skins), 

capacitors, and dielectric resonator. A parallel plate capacitor exhibits a capacitance (C), 

defined as the ability to store a charge. The capacitance can be determined via the equation 

of C = εA/d, where ε, A, and d are the dielectric constant, the area, and the space between the 

two electrodes, respectively. A dielectric layer of polymer is sandwiched between the two 

electrodes. The dielectric properties depend on several parameters such as composition, size, 

porosity, thin-film thickness, defects, operating frequency, doping concentration, and atomic 

number[31].  

Ion-gel of cellulose can be used as dielectric materials [107]. Cellulose such as CNC was 

reported as a flexible field-effect transistor (FET) [108]. CNC can serve as substrate and 

dielectric materials. However, cellulose-based devices need a large operating voltage. The 

performance of cellulose can be improved via several methods, including mixing cellulose 

derivatives such as cyanoethyl cellulose-containing barium strontium titanate (BST, BaxSr1–

xTiO3) nanoparticles[109]. The materials exhibit high dielectric properties, making them 

suitable for preparing ultralow-power electronics with a high on/off ratio and low operating 

voltage.  

The thin film consisting of chitosan and Y2O3 nanoparticles exhibits a low current leakage 

current compared to pure chitosan. The electric and dielectric performance of chitosan can be 

improved via the impregnation of a high-K material ( i.e., high dielectric constant)[40]. 

Similarly, silver nanoparticles (Ag NPs)/chitosan composite was used as a dielectric gate for 
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transparent resistive switching memory [110]. The composite offered high biocompatibility 

and required low-power operation conditions [110].  

PVA has a dielectric constant of 5–8 in the 10–106 Hz range. It exhibits a higher dielectric 

constant than other biodegradable polymers [111,112]. An aqueous solution of PVA can be 

mixed with inorganic fillers materials such as Au NPs/graphene oxide (GO) [113], GO [114], 

and MoS2 [115]. Inorganic nanoparticles improved the dielectric constant and strength of PVA 

films. A composite film of biodegradable poly(butylene succinate)  and graphite exhibited a 

K-value of 113, which was 28 times higher than the pristine polymer matrix [116].  

Various dielectric materials were mixed with biodegradable polymers such as PLA for 

electronic devices. PLA/TiO2 was reported for the humidity sensor [117]. It can be used for 

the detection of humidity in the range of 20-90% [117]. PLA/barium titanate (BaTiO3) 

nanowires (NWs) produce printable energy harvesters that can proceed using the 3D printing 

method [118]. BaTiO3 nanowires can be well aligned, offering 273% higher power generation 

capacity than conventional cast nanocomposites with randomly oriented nanowires. Al2O3 

improved the dielectric properties of cellulose acetate [119]. 3D printing was also reported for 

PLA/NiTi nanowires [120]. PLA/NiTi nanowires were reported as a sensor for measuring 

temperature and strain simultaneously [120]. Electrospinning of PLA/boron dye was reported 

to detect oxygen in real-time for tissue scaffold applications [121]. PLA/boron dye sensor can 

determine the low level of dissolved oxygen (< 15 ppm) in the scaffold [121]. Other materials, 

including cellulose nanocrystals (CNC)[122], clays [123], ZnO [124], SnO2 [125], cobalt 

ferrites [126], nitride nanosheets /copper calcium titanate [127], gold nanoparticles [128], or 

PbS [129] were also reported to improve the dielectric properties of polymers. There are 

several mechanism for the dielectric improvement using these nanoparticles including the 

decrease in energy band gap [125]. 

Carbon nanomaterials such as carbon nanotubes improved the dielectric properties of 

commercially available polymers, Ecoflex® [130]. It was found that there is an increase in the 

dielectric value with the rise of the carbon nanotube’s contents. Reduced graphene oxide (rGO) 

improved the dielectric properties of polyaniline (PANI)/calcium copper titanate 

(CaCu3Ti4O12) [131]. It can be also improved PVP-PVA [132], and starch [133].  

5. Thermal Properties 

The thermal properties of polymers can be determined using several analytical techniques such 

as thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential 
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scanning calorimetry (DSC). TGA can be connected with other analytical instruments to 

characterize degradable production, such as TGA\FT-IR spectroscopy. 

A composite of silica/carbon exhibited the thermal properties of biodegradable and commercial 

polymer Ecoflex (a blend of L,D-polylactide (L,D-PLA) and PCL) [134].  DSC analysis 

indicated an improvement in the composite's glass transition temperature (Tg) and 

crystallization temperature. There is an enhancement of decomposition onset and maximum 

temperatures by 15 °C and 16 °C, respectively. The thermal improvement is due to increased 

cross-linking caused due to the inorganic nanoparticles [134]. Carbon nanomaterials such as 

CNT enhanced the Tm of PLA [135]. CNC improved the thermal stability of polyaniline 

(PANI) [136].  

The coordination of Cd2+ ions with chitosan improved the thermal stability of chitosan [137–

139]. The presence of CdS quantum dots enhanced the thermal stability of chitosan. The 

thermal decomposition of CdS/chitosan was increased by  60 °C compared to pure chitosan 

[137,138,140–142]. Co-doped ZnO improved thermal stability of carboxymethyl cellulose 

(CMC)[143]. 

TGA and TGA-FTIR were used to characterize PCL and PLA's thermal stability and 

degradation [144]. Data analysis showed that PCL exhibited higher thermal stability than PLA. 

However, PLA has higher activation energy showing higher degradation kinetics. This 

observation indicates that the degradation rate depends on temperature. A blend of PLA and 

PCL showed lower thermal stabilities than both polymers. However, the thermal stability can 

be improved by adding TiO2 nanoparticles[144]. TiO2 NPs also improved the thermal stability 

of PLA/poly(hydroxybutyrate-co-valerate) (PHBV) [145]. 

Thermal analysis of pure PCL and PCL: lithium thiocyanate (LiSCN) salt complexes using 

different compositions were reported (Figure 5) [146]. DSC thermogram for pure PCL showed 

a relatively sharp endothermic peak at 64 °C. This observation indicates the high purity of the 

PCL. However, DSC thermograms of the PCL\LiSCN composite showed a shifting in the 

melting temperature (Tm) toward lower temperatures with increased LiSCN contents. The drop 

of Tm in the presence of the salt addition is due to the decrease in size and free energy (Figure 

5).  
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Figure 5 DSC analysis of PCL:LiSCN films embedded different concentrations of LiSCN 

[146]. Copyright 2015. Reproduced with permission from Elsevier. 

6. Thermal Conductivity for Biodegradable Polymer Nanocomposites 

Thermal conductivity is the ability to conduct heat. Thermal conductivity is measured 

in watts per meter kelvin (W−1•m−1•K−1) according to the International System of Units (SI). 

Organic polymers are heat insulators with low thermal conductivity (TC, 0.2 W−1•m−1•K−1). 

The low TC values of polymers hinder their adoption in electronic applications. The TC of 

polymers can be improved via several methods, including synthesizing polymers 

nanocomposites with organic and inorganic materials. 

A solvent-free spherical cellulose nanocrystals fluids (CNCfs) embedded PLA membrane was 

fabricated using electrospinning [147]. PLA/CNCfs fibrous membrane exhibited high thermal 

conductivity of 0.27 W−1•m−1•K−1[147]. A melt extrusion-stretching method was reported to 

process a biodegradable composite of PLA/poly(butylene adipate-co-butylene 

terephthalate)/carbon nanofiber (PLA/PBAT/CNF) [148]. PLA/PBAT/CNF  containing CNF 

of 10 wt.% exhibited in-plane TC of 1.53 W−1•m−1•K-1. CNF offered a 31.9% increment in the 

thermal conductivity of the biocomposite[148].  
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Hydroxyl-functionalized hexagonal boron nitride (OH-h-BN) nanoplatelets improved thermal 

conductivity for chitosan microspheres (CSM)[149]. OH-h-BN/CSM nanocomposites exhibit 

thermal conductivity of 5.66 W•m−1•K−1. It showed 502% and 1914% enhancement compared 

to OH-h-BN/CS nanocomposites and pure chitosan, respectively [149].  A simple and 

environmentally friendly strategy was reported to fabricate epoxy/BN composites[150]. The 

synthesis method improved the through-plane TC of the prepared composite. The effect of filler 

sizes of BN on thermal conductivity was also investigated. The data analysis showed that the 

high content of BN in the epoxy composite ensured a higher through-plane TC of 2.01 

W•m−1•K−1 [150]. 

Metallic nanoparticles exhibit high thermal conductivity ensuring significant improvement for 

polymers nanocomposites. Metallic nanoparticles such as silver nanowires (Ag NWs) 

improved the through-plane thermal conductivity of cigarette filters (CF, non-

biodegradable cellulose acetate), offering TC of 1.71 W•m−1•K−1 at the loading of 2.8 vol% Ag 

NWs115. A cellulose nanofibers/MXene@Ag film showed TC of 22.43 W•m−1•K−1  due to the 

synergistic effect of Ag NPs116. 

Carbon nanomaterials such as graphene improve the thermal conductivity of polymers. They 

have high TC at ambient temperature. Graphene exhibits a high aspect ratio with 

high TC  (≥5000 W•m−1•K−1)[151]. The TC value of epoxy (BE)/4,4′-diaminodiphenyl 

methane/GNP (graphite nanoplatelets) and BE/DDMGNP-10 nanocomposites was enhanced 

to 2.21 W•m−1•K−1 which is ten times higher than conventional EP [152]. Cellulose/multiwall 

carbon nanotube (MWCNT) exhibited in-plane and through-plane TC of 1.98 and 

0.34 W•m−1•K−1, respectively [153]. The composite was prepared via several steps, including 

1) a simple paper-making step, 2) a layer-by-layer assembly step, and 3) in-situ welding 

(Figure 6A). There is a significant increase in the in-plane TC with the addition of CNT content 

without a substantial increase in the through-plant conductivity (Figure 6B)[153]. MWCNT 

and GNP improved thermal and electrical conductivity for composites of polyoxymethylene 

(POM)/ PLA/MWCNT and POM/graphene nanoplate (GNP) (denoted as PMCNT and 

PMGNP, respectively)[154]. PMCNT and PMGNP exhibited electrical and through-plane 

thermal conductivities of 3484 S•m-1 and 1.95 W•m−1•K−1, respectively, for PMCNT40, and 

2695 S•m-1 and 4.24 W•m−1•K−1, for the corresponding values for PMGNP48 [154]. MWCNT 

improved the thermal and electrical conductivity compared to GNPs. GNPs (loading of 40 

wt.%) improved the thermal and electrical conductivity for the PBAT/PLA blend (ratio of 

PBAT:PLA was 75:25), offering thermal conductivity and electrical conductivity of 3.15 



13 
 

W•m−1•K−1 and 338 S•m-1, respectively[155].  The polymer’s properties are enhanced with the 

GNPs content (Figure 7). The presence of PLA ensures a confined composite of PBAT and 

GNPs according to TEM images (Figure 7).  
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Figure  6  A) Schematic of the fabrication process of the cellulose/MWCNT nanocomposites, 

and B) a) TC and (b) TC anisotropy of cellulose/MWCNT nanocomposites, (c) Photographs 

A

B
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of cellulose (upper) and C-CNT50 (lower), (d) and (e) Surface temperature. (f) Infrared thermal 

images [153]. Copyright 2021. Reproduced with permission from Elsevier. 

 

Figure  7 a, c) thermal conductivity, b, d) electrical conductivity, of a-b) PBAT/GNPs and c-

d) PBAT/PLA/GNPs, e-f) TEM images of e) PBAT/GNPs, and f) PBAT/PLA/GNPs [155]. 

Copyright 2020. Reproduced with permission from Elsevier. 
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7. Electrical Conductivity 

Electronic devices are usually used in traditional polymers such as polypropylene (PP), 

polystyrene (PS), polyimide (PI), and poly(ethylene terephthalate) (PET). These polymers are 

mainly non-degradable, causing environmental concerns. In contrast, biodegradable polymers 

are environmentally friendly with high biocompatibility and metabolization properties. Thus, 

they can be used for implantable chips and wearable devices.  

Most reported polymers lack high conductivity except for some conducting polymers (CPs). 

The low conductivity of polymers is due to the covalent bonding. A strong bond, i.e., covalent 

bonds, prevents electron channels or ion migration. Compared with traditional conductive 

materials, CPs offer advantages, including high flexibility, lightweight, and low cost. CPs can 

be classified into two categories: Structural (intrinsic) structural CPs (SCPs): e.g., polyaniline 

(PANI), polypyrrole (PPy), polyphenyl acetylene (PPA), and their derivatives, and CPs 

composites (CPCs): incorporating the polymers with conductive fillers, e.g., carbon black 

(CB), carbon nanotubes (CNTs), and graphene (G). 

Several critical parameters affect the polymer’s conductivity (Figure 8). The size of polymers 

determines the polymer conductivity.  When the volume fraction of polymers increases to a 

specific critical value, there is a significant increase in the conductivity of the polymer, i.e., 

conversion of insulator materials to the conductor. The conductivity of biodegradable polymers 

can be improved by adding conductive nanofillers. It can be improved by adding a small 

volume fraction of high conductivity materials. The conjugated polymers exhibit electrical 

conductivity in the range of 10−10 to 10−5 S•cm−1. The electrical conductivity can be improved 

via several methods, including doping with molecules such as salt ions that can improve the 

polymer’s electrical conductivity to 104 S•cm−1. As a rule of thumb, the critical value (defined 

as the percolation threshold) of the conductive material in the composites offers a significant 

increase of several orders of magnitude in conductivity. The critical value of the conductivity 

materials in polymer composite converts an insulator to a conductor. Above this threshold, the 

relation between the concentration and the conductivity (σ) or electrical resistivity (ρ) can be 

described by a scaling law[156]: 

𝜎 = 𝜎0[(𝜑 − 𝜑c)]
t 

ρ = ρ0[(𝜑 − 𝜑c)]
t 
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 where σ0, ρo, t, 𝜑, and 𝜑c represent the intrinsic conductivity of the fillers,  the resistivity 

coefficient, the exponent, the volume fraction of conductive particles, and percolation 

transition, respectively. The exponent t depends on the dimensionality of the polymers, which 

is called universal percolation behavior. Based on the theoretical calculation, it equals 1–1.3 

and 2 for two-dimensional (2D) networks and a three-dimensional (3D) network. 

Nanofiller materials exhibit higher electrical properties than microsized fillers. Conductive 

nanofillers with a large aspect ratio (e.g., CNTs, graphene) exhibited an excellent connected 

conductive network providing a low percolation threshold. The use of carbon nanomaterials 

such as graphene improved the thermal conductivity of the biodegradable polymers[157]. 

Chitosan composite film containing GO exhibits good proton conductivity. PBAT composite 

containing 40 wt.% of graphene nanoplatelets (GNPs) exhibited electrical and thermal 

conductivity of 3.15 W•m-1•K-1 and 338 S•m-1, respectively [155]. GNPs improved the 

electrical conductivity for PLA/chitosan (75/25 wt./wt.) [158], and polyhedral oligomeric 

silsesquioxane/PCL (POSS-PCL)[159]. The use of plasticizers such as glycerol improved the 

conductivity for poly(vinyl alcohol) (PVA) films and PVA/starch blend [160]. Data analysis 

reveals that there is an increase of the conductivity for PVA with the increase in the content of 

glycerol and starch [160]. The same observation was reported for 

Chitosan\AgNO3\Al2O3 system using glycerol as a plasticizer [161].  

The conductivity of PLA can be improved by incorporating gold nanoparticles (Au NPs)[162]. 

The PLA/Au NPs/indium tin oxide (ITO) electrode was used as an electrochemical biosensor 

for the selective identification of leukemia cancer cells [162]. Silver nanowires improved the 

conductivity of PLA [163]. PLA/Ag NPs were reported as electrodes for the organic light-

emitting diodes (OLEDs) [163]. It offered high transparency with good electrical conductivity, 

even after 10 000 cycles[163]. AgNPs-Ni2O3 improved the electrical conductivity of cellulose 

nanowhiskers/polypyrrole [164]. Ag NPs can be also used to improve the electrical 

conductivity for chitosan [165].  
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Figure 8. Key parameters are affecting polymer’s conductivity. 

The perfect interconnection between polymers and conductive nanofillers is critical for 

constructing a conductive nanocomposite. The homogenous distribution of nanofiller in the 

polymer nanocomposite improved the electrical conductivity of the composite. Naturally, the 

nanofillers tend to distribute randomly in the polymer matrix. It was reported that some fillers 

tend to spread to the polymer’s surface at higher concentrations. 

A study showed a correlation between the dispersion state of MWCNTs in PP and electrical 

conductivity [166]. The composite was synthesized using two different procedures; 1) chemical 

modification of MWCNTs and 2) incorporation of a master batch [polypropylene-grafted-

maleic anhydride (PP-g-MA)] as a compatibilizer followed by a simple melt blending. Based 

on the optical microscopic images of MWCNTs/PP composite, the addition of a compatibilizer 

enhanced the uniform dispersion of MWCNTs in the PP matrix. Although it reduced the 

conductivity. However, the post-heat treatment improved the interconnection between 

MWCNTs and PP, leading to higher electrical conductivity. The uniform distribution and 

construction of a compelling relationship between the composite are crucial. Amphiphilic 

polymers prevent the aggregation in nanocomposites non-covalently attachment.  

Conductivity
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Distribution

Morphology
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The addition of CNT improved the conductivity of several polymers, such as  PCL[167,168], 

polypropylene (PP)[168], PLA[169], and chitosan-PCL[170]. The dispersion of conductive 

carbon nanoparticles (e.g., CB, CNTs) in PLA can be improved via the addition of ramie fiber 

(RF)/PLA, resulting in different sensing mechanisms [169].  PCL/CNTs nanocomposites were 

synthesized via in-situ grafting and polymerization of PCL and CNTs [171]. It exhibits good 

conductivity enabling quantitative sensing of organic vapors[171]. The melt-blown method 

synthesized PCL/PP/CNTs [168]. A 3 wt.% CNTs offered a significant high electrical 

resistance of the polymer nanocomposites, enabling the detection of various solvents[172]. 

PCL/CNTs/PLA blends containing four wt.% CNTs were synthesized via the melt-spun 

procedure as fibers[168]. The fibers exhibited good electrical properties for application as a 

textile sensor. CNTs\PCL composite can be used to monitor the temperature in a range of 20-

80 °C [168]. MWCNT exhibited more remarkable POM/PLA composite improvement than 

GNPs (Figure 9)[154]. The conductivity depends on the loading of both materials (Figure 

9)[154]. 

 

Figure 9. (a) Electrical and (d) thermal conductivity.[154] Copyright 2021. Reproduced with 

permission from Elsevier. 

The nanofiller materials such as metallic nanoparticles or metal oxides with high conductivity 

ensure high conductivity. The electrical properties of PVA can be improved by adding 

In2O3/Cr2O3 nanoparticles [128] and GO [129]. 3D printing PVA/GO devices can be operated 

in a small gate voltage range of −0.5 to 2.5 V for electronic devices and circuits[129].  

Graphite/diamond particles [173] and G [174] enhanced the electroconductive of PLA  

nanocomposites. Nano-clay improved the electrical conductivity of bacterial 

cellulose (BC)\PANI to 0.49 S•cm-1 using only 5 wt.% of the clay [175]. It exhibited 16 folds 

improvement in the electrical conductivity for the polymer blend [175]. The improvement in 

the conductivity of biodegradable polymers enable the fabrication of energy storage devices 

with high biodegradability [176].  
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8. Conclusions  

This chapter discusses the dielectric, thermal, and electrical conductivity properties of 

biodegradable polymers nanocomposites. The fabrication process of biodegradable polymer 

nanocomposite can significantly influence the electrical properties. There are several methods 

for the synthesis  and fabrication of polymer nanocomposites. However, preparing 

nanocomposite with high conductivity, i.e., low percolation threshold, remains challenging. 

There is a lack of clear procedures to characterize biodegradable polymers' dielectric, thermal, 

and conductivity. Potentially, there is high progress in evaluating the material's properties to 

ensure high benefits.  
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