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Abstract

Emissions from vehicles contain a variety of pollutants that must be either oxidized

or reduced efficiently in the catalytic converter. Improvements to the catalyst require

knowledge of the microkinetics, but the complexity of the exhaust gas mixture makes

it challenging to identify the reaction network. This complexity was tackled by using

the ”Reaction Mechanism Generator” (RMG) to automatically generate microkinetic
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models for the oxidation of combustion byproducts from stoichiometric gasoline direct

injection engines on Pt(111). The possibilities and the limitations encountered during

the generation procedure are discussed in detail. A combination of first-principles-

based mechanism construction and top-down parameter refinement allows to describe

experimental results obtained by kinetic testing of a Pt/Al2O3 monolith under stoi-

chiometric conditions. The study can serve as a blueprint for the usage of RMG for

other challenging heterogeneously catalyzed reactions.

Introduction

The abatement of emissions from internal combustion engines to reduce the effect on the
environment and to meet more stringent government regulations necessitates further im-
provement of catalytic converters.1,2 Pt is usually the active metal for oxidation in the
three-way catalytic converters for stoichiometric gasoline direct injection (S-GDI) engines.
Improvement of the converters through tailoring of the catalyst – as well as overcoming
current hurdles, i.e. cold start emissions1 – requires a deeper understanding of the mech-
anism and the microkinetics of all elementary steps on the catalyst surface. However, the
exhaust gas contains more than 100 species,3,4 such as CH4, CO, H2, C2H4, C2H6, C3H6, and
NO, which makes mechanism development a daunting task.

Microkinetic models for the oxidation of these pollutants over Pt can be divided into two
categories: first-principles-based5–8 and semi-empirical.9–15 The semi-empirical models are
developed for complex reaction mixtures, including e.g. propene10,11,15 and usually achieve
a reasonably accurate postdictive prediction of the experimental results after tuning various
activation energies.9–12,15 The first-principles-based microkinetic models are constructed by
extensive density functional theory (DFT) calculations and focus mostly on the oxidation of
CO or CH4 on Pt(111) and Pt(211),5,7,8,16–19 but they fail to predict experimental results.
To the best of our knowledge, the only first-principles-based model for a larger molecule was
constructed by Peela et al.,6 for C2H6 oxidation over Pt(111) under lean-burn conditions
using a combination of DFT and Brønsted-Evans-Polanyi (BEP) relations. Yet, no first-
principles-based microkinetic models are available that thoroughly explore all the pathways
for the oxidation of the complicated exhaust gas mixtures from stoichiometric combustion
conditions over the Pt catalyst and also quantitatively predict experimental results.

This scarcity of detailed microkinetic mechanisms is due to the intricate complexity of the
reaction networks, because all the possible pathways and intermediates from the vast chem-
ical reaction space must be considered.20 On a first-principles-basis, it means performing
numerous expensive DFT calculations, which becomes impractical if the mechanisms get too
large. Using automated mechanism generation software, such as the ”Reaction Mechanism
Generator” (RMG)21–23 instead of building the microkinetics based on chemical intuition,
reduces personal bias and accelerates the procedure of the mechanism construction. RMG
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is a well-established open-source tool to automatically build comprehensive gas-phase mech-
anisms for combustion or pyrolysis reactions.24–28 However, RMG has only recently been
used for heterogeneously catalyzed reactions.29–32 The publications on the heterogeneous
catalysis branch of RMG are focused on demonstrating new features rather than developing
a microkinetic model suitable to describe experimental results. Blöndal et al.30 developed
a thermochemistry database for adsorbates on the Pt(111) surface and showed that RMG
could be used to generate mechanisms for coupled homogeneous/heterogeneous reactions for
methane oxidation. In order to estimate the thermochemistry on all other metals, Mazeau
et al.31 have implemented linear scaling relations33 in RMG. Recently, some of the authors
demonstrated the capability of RMG to generate mechanisms for the CO2 methanation on
Ni(111)32,34 while considering the correlated uncertainties in the energetic parameters.32 In
the study of Kreitz et al.,32 the generated mechanism for the methanation on Ni(111) was
in good agreement with temperature-scanning experiments from a Ni/SiO2 catalyst.35 RMG
has so far only been employed to investigate the chemistry of small molecules on heteroge-
neous catalysts, and little is known about how well it performs for the C2 chemistry and
beyond.

When a microkinetic mechanism is developed for a specific system, only the final results
are presented in the manuscript. The iterative procedure that was used to construct and
validate the mechanism is typically neglected. Accordingly, the aim of this study is twofold.
First, RMG is used to develop a microkinetic model for the oxidation of the complicated
exhaust gas mixtures from S-GDI engines on Pt(111) under stoichiometric conditions, and
this mechanism is compared with experiments through mean-field microkinetic modeling.
Second, the present work provides a detailed description of how the final mechanism was
constructed, so as to provide a template for microkinetic mechanism construction using open-
source software, such as RMG. We show the current capabilities but also the limitations of
RMG in discovering mechanisms for heterogeneously catalyzed reactions and highlight the
research directions for further improvement. An iterative hierarchical framework is applied
to refine the thermochemistry of important intermediates with DFT and adjust the predicted
reaction barriers of rate-determining steps to match the experimental results. We use a pre-
trained machine learning potential from the Open Catalyst Project36 to accelerate the DFT
calculations by obtaining converged initial structures at very low cost, which are further
refined by DFT calculations. Through this combined bottom-up/top-down approach, it
was possible to automatically build a microkinetic model that can accurately describe the
experiments and provide insights into the role of the Pt(111) facet for the emission oxidation
chemistry.

Materials and Methods

Material preparation and characterization

Catalyst preparation A 3 wt% Pt/Al2O3 catalyst powder was prepared by incipient wet-
ness impregnation using commercial γ-Al2O3 (Puralox, SASOL) that was calcined for 5 h at
700 °C as support material and (NH3)4Pt(NO3)2 (VWR, purity > 99.9 %) as a precursor that
is dissolved in purified water (ROTIPURAN® Ultra, Carl Roth GmbH + Co. KG). After
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2 h of drying at 80 °C and 5 h of calcination at 550 °C in static air, the received catalyst
powder was coated onto a monolithic honeycomb cordierite substrate (Corning) exhibiting
a cell density of 400 cpsi, a wall thickness of 4.50 mil, a length of 5.00 cm and a diameter of
2.54 cm. For this, an aqueous slurry was prepared and applied onto the substrate through
dip-coating, analogous to the procedure described by Karinshak et al.37

Catalyst characterization After degassing the catalyst powder for 2 h at 300 °C, N2

physisorption measurements at −196 °C using a BELSORP mini II analyzer (Microtrac-
BEL) were used to determine the surface area and pore size according to the Brunauer-
Emmet-Teller (BET) method, which amounts to 189 m2 g−1 and 9.9 nm, respectively. The
noble metal dispersion was determined by means of CO chemisorption and temperature-
programmed desorption (TPD) in a continuous-flow reactor at atmospheric conditions as
described in earlier publications9,38 assuming a CO:Pt adsorption stoichiometry of 1:1.39

Catalyst testing

Setup Catalytic activity measurements of the monolithic samples were conducted in an in-
house developed laboratory catalyst testing bench that was already described in a previous
publication,40 optimized for three-way catalysis during the present work. The monolithic
catalyst sample was mounted in a cylindrical quartz glass sample holder and placed in a
plug-flow quartz glass tubular reactor. A customized electrical furnace (HTM Reetz GmbH)
surrounding the entire reactor heated the reaction gases and ensured a linear temperature
profile in the sample zone. Two type N thermocouples (d = 1 mm) connected to Eurotherm
controllers (Schneider Electric Systems Germany GmbH) were placed approximately 1 mm
up- and downstream of the sample to ensure accurate temperature control and monitoring.
Gaseous species were dosed via mass flow controllers (Bronkhorst Deutschland Nord GmbH)
and a controlled evaporation mixing system (Bronkhorst Deutschland Nord GmbH) provided
steam. Finally, a MultiGas 2030 Fourier-transform infrared (FTIR) spectrometer (MKS
Instruments) and a Magnos 16 oxygen analyzer (Hartmann & Braun/ABB) were used for the
continuous end-of-pipe analysis of the effluent gas stream. In addition, two wideband lambda
sensors (LSU 4.9, Bosch) up- and downstream the reactor allowed probing of the oxygen
content. Setup control and simultaneous data collection of all relevant setup parameters
(temperature, gas flow, gas species) from the different devices was realized by exploiting an
in-house developed LabView-based control software.

Experimental procedure The monolith catalyst was de-greened according to common
procedures41 at 700 °C in 10 % O2, 5 % H2O, 5 % CO2 in N2 with a GHSV of 30 000 h−1 for
4 h before conducting transient activity tests. These catalytic tests comprised a series of con-
secutive light-out runs with a temperature ramp of 2 K min−1 as depicted schematically in
Figure S1. The gas mixtures were systematically varied as summarized in Table 1 to uncover
the impact of different gas species on the catalytic activity. Note that the oxygen concentra-
tions required for achieving λ = 1 were calculated with the λ-equation (Equation (1)),42–44

where y are the mole fractions. The stoichiometry of the feed gas was additionally verified
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via the setup’s upstream lambda sensor.

λ =
2yO2

+ yNO + 2yNO2
+ yCO + 2yCO2

+ yH2O

2yCO + yH2
+ 3nyCnH2n

+ (3n+ 1) yCnH2n+2
+ 2yCO2

+ yH2O

(1)

Table 1: Summary of the conducted experiments for the conversion of representative model
mixtures for exhaust gas compositions (without NO) from S-GDI engines on a Pt/Al2O3

monolith adapted from Ref. 45. N2 was used as a balance gas.

# O2 CO2 H2O CH4 H2 CO C2H4 C2H6

(%) (ppm)

1 0.6 - - 3000 - - - -
2 0.25 - - - - 5000 - -
3 0.6 12 12 3000 - - - -
4 0.9335 12 12 3000 1670 5000 - -
5 1.031 12 12 3000 1670 5000 325 -
6 1.1085 12 12 3000 1670 5000 - 500
7 1.206 12 12 3000 1670 5000 325 500

Theoretical Methods

Electronic Structure Theory DFT calculations were performed with QuantumEspresso46,47

using projector-augmented wave pseudopotentials48 and ASE49 to interface with the calcu-
lator. Exchange-correlation was treated with the BEEF-vdW functional.50 The lattice con-
stant for the Pt(111) unit cell was optimized using a Monkhorst-Pack mesh of (25×25×25)
with a cutoff energy of 70 Ry. The optimized lattice constant is a = 4.00�A in agreement
with the experimental value.51 Electronic structures of adsorbates were calculated in a (3×3)
supercell at 1/9th of a monolayer (ML) coverage with 8.5�A of vacuum above and below the
slab. The Brillouin zone was sampled with a (5×5×1) k-point grid. Electron orbitals were
smeared with the Mazari-Vanderbilt method and an electron temperature of 0.02 Ry. Ad-
sorbates were first relaxed on a completely frozen metal slab with a cutoff of 50 Ry until

all forces were converged to at least 2.5 meV�A−1
. These relaxed structures were then fur-

ther optimized together with the two top layers of the slab at otherwise identical settings.
Single-point energies were calculated for an energy cutoff of 60 Ry. Gas-phase molecules were

computed in a box of 10�A3
at the Γ-point using Gaussian smearing with a low broadening

of 0.005 Ry. The vibrational analysis was performed with ASE. In the case of imaginary

vibrational modes, the structure was further optimized until forces were below 1 meV�A−1
.

If imaginary modes persisted, these were set to 12 cm−1 similar to Ref. 52.

Initial structures of the predicted adsorbates were generated by using the machine learning
potential (MLP) from the OpenCatalystProject (OCP).36 The GemNet-dT OCP calculator
trained on all splits was used. Gas-phase molecules were manually placed in a variety of
different configurations on the Pt slab and optimized with the MLP until forces were con-

verged below 2.5 meV�A−1
. All unique structures obtained from the pre-screening with the
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MLP were further relaxed with DFT to identify the most stable adsorbate configuration.
This procedure resulted in a speed-up of the subsequent electronic structure calculations
with approximately 30 % fewer DFT calls to achieve convergence.53

We followed the approach outlined by Blöndal et al.30 to determine the reference enthalpy
of formation ∆fH, entropy S and the temperature-dependent heat capacity cp of the ad-
sorbates using the Active Thermochemical Tables (ATcT).54,55 The vibrational modes were
converted to partition functions applying the harmonic oscillator approximation using stan-
dard statistical routines previously used in our group.30 In the case of two or more vibrational
frequencies below 100 cm−1 for an adsorbate, the two lowest vibrational modes corresponding
to frustrated translation were replaced with partition functions of a 2D gas model, while the
remaining modes are treated as harmonic oscillators.

Automated Mechanism Generation Mechanisms for the oxidation of the combustion
engine emissions on Pt(111) were generated automatically with RMG.21–23 RMG can con-
struct arbitrarily large microkinetic models by considering all the possible chemistry sig-
nificantly faster and more consistently than done by humans. The software achieves this
by using templates that convert chemical graphs from educts to products and precompiled
ab-initio based databases as well as estimation routines. The basic functionality of RMG is
described in great detail in Ref. 21,22 and the heterogeneous catalysis features in Ref. 29.
Hence, only a brief description of the essentials of RMG important for this work is given
below.

Energetic parameters, such as heat of formation of adsorbates and activation energies of
reactions, are determined either from precompiled databases or estimated via approximate
routines. Thence, RMG can consider all the possible yet a priori unknown species and path-
ways in the mechanism generation procedure. RMG filters out the important intermediates
and reactions from the discovered chemistry by employing a rate-based algorithm.56 Initially,
RMG starts with input species provided in the core, which are typically, but not limited to,
the reactants. The core contains all the chemistry that is important at the specified condi-
tions. For the first iteration, RMG predicts all possible reactions between the core species
and places them in the edge. The system is then integrated in a reactor simulation, and all
reaction rates are evaluated. RMG keeps track of the characteristic rate of reaction Rchar

computed according to Equation (2), considering production rates Rj of all species j in the
core during the simulation to determine whether a species is kinetically significant.

Rchar =

√√√√Ncore∑
j

R2
j (2)

Species j is deemed kinetically relevant and accordingly moved to the core, if its rate of
production exceeds a threshold value, Rj > εcoreRchar, where εcore is a tolerance defined by
the user. Afterward, RMG reacts the core together anew, predicts all possible pathways and
species, and starts again with the simulation. This procedure continues until RMG reaches a
user-defined stopping criterion without discovering kinetically relevant reactions. Finally, the
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core contains all relevant pathways and is further used for microkinetic modeling, whereas the
model edge contains all the chemistry that has been considered but is deemed unimportant.
We used the characteristic rate ratio, the ratio between the characteristic rate of the first
iteration step and the n-th iteration (TerminationRateRatio) as termination criterion. If
this ratio drops below a threshold value, the iteration procedure is terminated. This criterion
makes the comparison of generated mechanisms for different mixtures comparable due to the
several reactants that are simultaneously converted.

The thermophysical properties of adsorbates are determined from a reference database for
Pt(111),30 which implies that these properties are at the accuracy of the BEEF-vdW DFT
level, assuming a harmonic oscillator model for the adsorbate partition function. In case
a species is not in the database, RMG estimates its thermochemistry from the gas-phase
molecule, which itself is either from a database or estimated via group additivity, and then
applies an adsorption correction.29,57 RMG can estimate reaction kinetics based on training
reactions, which are used to populate nodes in a tree-structured database or rate rules such
as Brønsted-Evans-Polanyi (BEP)58

Ea = E0
a + α∆Hrxn (3)

where α is the slope, E0
a is the intercept, and ∆Hrxn is the heat of the reaction. BEP relations

have been proven to be universal for surface reaction mechanisms in a variety of studies
and predictions are suitably accurate.6,59–61 Therefore, the usage of training reactions was
turned off, and we relied exclusively on BEP relations for the reaction families to estimate the
reaction kinetics of all elementary steps, similar to the procedure reported by Kreitz et al.32

Parameters for the BEP relations are based on values reported in the literature32,62–67 and
are summarized in Table S2. In the generated mechanisms, we provide only the Arrhenius
parameters for the forward rate constant; the reverse rate constant is computed from the
equilibrium constant, which is determined from the thermochemistry of the adsorbates. As
a consequence, all generated microkinetic models are always thermodynamically consistent,
as demonstrated in Ref. 32.

Mechanisms were generated for exhaust gas mixtures with different levels of complexity: only
CH4, O2 (exp. #1 in Table 1), plus CO2, H2O (#3), plus CO, H2 (#4), and plus C2H4, C2H6

(#7) at atmospheric pressure and an array of temperatures using RMG’s build-in ranged
reactor feature.22 We neglect NO in the present study, a major pollutant in the exhaust
from S-GDI engines, because RMG’s databases for nitrogen chemistry are scarcely popu-
lated. This absence of reliable thermophysical properties and kinetic parameters results in
flawed predictions; improvements to RMG’s nitrogen capabilities is under active develop-
ment. The settings applied in the generation procedure are summarized in Table S1 and
input files are provided in Ref 68. For the temperatures and pressures considered for this
study, gas-phase reactions are expected to be negligible;30 accordingly, although RMG can
explore gas-phase reactions in parallel with surface reactions, we choose to turn off this
feature to reduce computational overhead. This assumption was confirmed by a coupled
homogeneous/heterogeneous reaction mechanisms generation test.
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Reactor Modeling and Mechanism Evaluation The experimental setup with the
monolithic reactor was modeled as a plug-flow reactor within the Cantera69 framework em-
ploying a chain of 100 continuously stirred-tank reactors (CSTR). The transient light-out
experiments were approximated by computing the steady-state solution of the PFR at vari-
ous temperature increments. All model parameters are summarized in Table S3. Recently,
the feature for the inclusion of coverage-dependent thermochemistry was added to Cantera
(see SI). A second-order polynomial is used to describe the coverage dependence of the heat
of formation ∆fHi of adsorbate i as a function of the coverage Θ of species j

∆fHi = ∆fH
ref
i +

∑
j

ai,jΘj +
∑
j

bi,jΘ
2
j (4)

where a and b are parameters for the coverage relation fitted to DFT results and summarized
in Table S8. The effect of coverage on entropy and heat capacity has been neglected due
to anticipated minor contributions. Reaction path analysis was performed with Cantera.69

The relative importance of various elementary steps was quantified with the degree of rate
control (DRC) according to Equation (6) with respect to the consumption rate rj of reactant
j.70–72 A thermodynamic sensitivity analysis for the free energy of formation was conducted,
analogous with, but not equivalent to the thermodynamic DRC71 (see SI for an explanation
of the difference). The definition of the thermodynamic sensitivity coefficient Sthermo is given
in Equation (5) and of the DRC XRC in Equation (6).

Sthermo =
1

rj

(
∂rj

∂
(−∆fGk

RT

)) (5)

XRC =
ki

rj

(
∂rj

∂ki

)
(6)

Forward and reverse rate constant ki of elementary reaction i are perturbed by 1 % to ensure
thermodynamic consistency when determining the DRC (XRC). The Gibbs free energy of
formation ∆fGk of adsorbate k is adjusted by 0.1 kJ mol−1 for the thermodynamic sensitivity
analysis.

Results and Discussion

Kinetic activity experiments

Figure 1 shows a summary of the kinetic activity test with the Pt/Al2O3 monolith under
different stoichiometric gas mixtures. The conversion of CH4 in the CO2 and H2O atmo-
sphere encountered in stoichiometric combustion conditions is displayed in Figure 1a. CH4

conversion begins at 400 °C, reaches 50 % conversion at 508 °C (T50) and full conversion is
obtained beyond 550 °C. Neither CO2 nor H2O has any observable effect on the CH4 oxida-
tion rate, in contrast to experiments on Pd, where H2O strongly inhibits the conversion.73,74
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It also shows that reforming pathways do not occur in the oxidative environment. Figure 1b
displays the light-out curve for CO. CO is oxidized at lower temperatures, with a start at
150 °C. The addition of CO and H2 to the CH4 mixture decreases the onset temperature
for CH4 oxidation and the T50 by 50 K, as seen in Figure 1c. Similarly, the T50 for CO is
decreased by 70 K when H2 is added, also reported by Gänzler et al.75 Although the O2

concentration is increased in the gas phase, the Pt crystals are locally exposed to a more
reductive atmosphere (H2, CO), which can alter catalyst morphology and oxidation state76,77

that affect the activity.

Moving on to the influence of larger hydrocarbons, the addition of C2H4 (Figure 1d) ac-
celerates the conversion of CH4, whereas the addition of C2H6 (Figure 1e) does not have
an effect on methane’s light-off temperature. However, the T50 for CO is retarded in both
cases. C2H4 has almost an identical conversion profile as CO. C2H6 has a T50 of 385 °C, which
is significantly lower than CH4, because the activation of the C H bond in C2H6 requires
substantially less energy than CH4.

65 Figure 1f shows the light-out experiment with all com-
ponents, which does not differ from the experiments in Figure 1d,e. Finally, it should be
kept in mind that these conversion profiles would be vastly different in the presence of NO,
due to its oxidizing potential.45 The investigation of the effect of NO is beyond the scope of
the present study.
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Figure 1: Kinetic activity test results for different stoichiometric gas mixtures (Table 1). a)
CH4, O2, CO2 and H2O (experiment #3), b) CO oxidation (#2), c) CH4, O2, CO2, H2O, H2,
and CO (base case) (#4), d) base case + C2H4 (#5), e) base case + C2H6 (#6), and f) base
case + C2H4 + C2H6 (#7).
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Initial Discovered Mechanisms

Table 2 summarizes the kinetically relevant subset of the considered species and reactions
by RMG for the different reaction mixtures. The mechanism for the oxidation of pure
CH4 contains 41 species and 128 reactions, which RMG’s rate-based algorithm deems to be
important. Interestingly, even for this simple case, a full 50 % of the discovered reactions
in the core mechanism are abstraction reactions. These reactions include the abstraction of
larger moieties and are not limited to the abstraction of H atoms by O* or OH* in oxidative
dehydrogenation reactions typically considered for the oxidation chemistry.63 The addition
of CO2 and H2O as well as H2 and CO actually leads to smaller mechanisms, which is a
consequence of the rate-based algorithm and the termination criterion. In the initial step
of the mechanism generation for the oxidation of the pure CH4, the reaction rates are quite
low, and consequently, so is the threshold for the termination criterion. In contrast, the
addition of CO2 and H2O leads to higher initial reaction rates due to adsorption of CO2 and
H2O, which leads to a higher characteristic rate, and thus the threshold for the termination
is higher. This result illustrates nicely that the discovered mechanism depends on the initial
reactant and concentration as well as the termination criteria.

Table 2: Summary of the discovered mechanisms by RMG for different exhaust gas mixtures
for stoichiometric combustion conditions. N2 is used as a balance.

Core Core + Edge
Experiment Species Reactions Species Reactions Time

0.6 % O2 0.3 % CH4 (#1) 41 128 184 484 08:28
+ 12 % CO2, 12 % H2O (#3) 25 43 55 100 01:53
+ 0.167 % H2, 0.5 % CO (#4) 25 43 55 100 01:31
+ 0.0325 % C2H4, 0.05 % C2H6 (#7) 56 334 578 1651 13:01

When the C2 chemistry is considered, the mechanism generator shows its full potential. The
number of intermediates is more than doubled, and the number of reactions increases by
nearly one order of magnitude. The total number of species and reactions considered is
even larger, with factors of 11 and 16, respectively. We wish to highlight that it takes a
mere 13 min to generate a fully parameterized microkinetic model for a complicated reaction
system on a single core with a typical office notebook (Lenovo ThinkPad E490, IntelCore
I7).

Microkinetic modeling

Figure 2a presents the results of the simulation with the generated mechanisms for the
oxidation of CO, H2, CH4 and C2H4. Comparing the simulation with the experimental results
shows that the generated model predicts a significantly lower activity than the experiments.
The simulated conversion of CO sets in at temperatures of 390 °C, whereas in the experiment
CO is already fully converted below 220 °C. A similar shift in temperature is observed for
the CH4 conversion profile. Moreover, the model predicts that C2H4 is converted after CH4,
in obvious disagreement with experiments45 as well as theoretical studies on the activation of

10



the C H bond in alkanes.65 The coverage profile in Figure 2b reveals the reason for the shift
to higher temperatures. *CO effectively poisons the entire surface at temperatures below
400 °C, and *O similarly saturates the surface from 400 °C to temperatures beyond 700 °C,
since both *CO and O* bind strongly to the Pt(111) surface.66,78 The conversion of CO and
CH4 begins when temperatures are high enough for *CO and *O to desorb, thereby providing
the necessary vacant sites. The reactions are almost instantaneous when the species start to
desorb, as shown by the steep conversion slope and similar coverage profiles.
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Figure 2: Simulated and experimental a) conversion profiles and b) computed coverages for
the oxidation of CO, CH4, and C2H4 (#5). Simulations were performed with (w Θ) and
without (w/o Θ) the inclusion of adsorbate-adsorbate interactions.

Adsorbate-adsorbate (or lateral) interactions for *CO and *O are strongly repulsive and
lead to a destabilization of the adsorbate, which dramatically inhibits the formation of an
entire monolayer.66,78 Therefore, it is necessary to include coverage effects in the microkinetic
model. However, at the time of publication, RMG does not include coverage effects in the
generation process (though this feature is under active development). Without the inclusion
of coverage effects, the reactions are controlled only by the thermochemistry of *CO and *O,
since the desorption barrier governs the conversion profile, which corresponds to the heat
of formation of the adsorbate. In principle, lateral interactions affect the thermophysical
properties of all species as well as the activation energies of all reactions, but computing all
these relations with ab-initio DFT is not feasible for systems with this degree of complexity.
As a simplification, we accounted only for the self-interaction of *O and *CO (see SI). The
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inclusion of coverage effects shifts the conversion profile to significantly lower temperatures.
CH4 conversion starts at 400 °C instead of 600 °C, while CO is completely converted below
200 °C. Surprisingly, CO and CH4 agree remarkably well with the recorded data, while
C2H4 shows exactly the same oxidation profile as CH4, in disagreement with the experiment.
The coverage profile also changes drastically, as illustrated in Figure 2b. In addition to *O
and *CO, *CCH2 as well as *CCHCH2 cover around a third of the Pt(111) facet. Actually,
*CCH2 shows that C2H4 is indeed activated at low temperatures as observed experimentally,
but cannot be fully oxidized due to a high barrier in a subsequent elementary step. The
reaction path diagram for the C2H4 conversion reveals that the adsorption of C2H4 results in a
physisorbed species, a π-complex. However, the most stable configuration of C2H4 on Pt(111)
is as a di-σ bidentate adsorbate.66,79 Although RMG contains bidentate adsorbates in its
present database,30 there are no reaction templates available to manipulate or discover these
species (though this, too, is under development). Additionally, the formation of *CCHCH2 is
peculiar, given that the oxidative atmosphere should result in decomposition of C2H4 rather
than lead to chain growth. The high coverage of this intermediate indicates that it is very
stable, which unveils another obstacle: RMG’s current thermochemistry database contains
only adsorbates with no more than two heavy30 atoms (with the exception of CO*

2,
*COOH,

and HCOO*, which were recently added80). Therefore, the thermochemistry of *CCHCH2

is only estimated via RMG’s built-in routines. While all thermochemistry properties of the
discovered intermediates for the C1 chemistry are known, this makes up only a small fraction
of the more complex mechanisms, with most intermediates being estimates. Therefore, an
important task is to assess the accuracy of RMG’s thermochemistry estimates for larger
adsorbates, refine these estimates, and to include functionalities for bidentate adsorbates.

Accuracy of RMG’s thermochemistry estimate

RMG can estimate the thermochemistry of all unknown adsorbates,29 which we describe
using CH2CHC* as an example (see Figure 3a). To estimate the thermochemistry of the
adsorbate, RMG first desorbs the molecule and obtains the thermochemistry of the corre-
sponding gas-phase species. In this particular case, the gas-phase precursor is not included in
the precompiled databases, and so RMG estimates the thermophysical properties via group
additivity.21 RMG then applies an adsorption correction to compute the thermochemistry
of *CCHCH2 from the gas-phase precursor •CCHCH2.

57 The correction depends on the dif-
ference in the enthalpy between the gas-phase molecule and the adsorbate from the current
database, organized in a tree structure, which is based on the thermochemistry database
developed by Blöndal et al.30 RMG descends the tree to the node with the most specific
representation of this adsorbate, applying wildcards to functional groups of the molecule. In
this case, •CCHCH2 is treated as a wildcard, resulting in the adsorbate R *C, for which the
difference in the thermochemistry of gas-phase and adsorbed *CH is applied. If a gas-phase
species can be found in the databases, the only uncertainty in this approach stems from the
applied adsorption correction. However, additional uncertainty is introduced if the gas-phase
properties are themselves an estimate, as is the case here.21

Over the course of the iterative generation procedure, we performed DFT calculations for
adsorbates with 3 and more heavy atoms based on the predictions. As a benchmark study,
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we compared the estimate with the DFT-based thermochemistry displayed in a histogram
in Figure 3b. A full table with all intermediates and a comparison for entropy and heat
capacity is provided in Table S13.

Figure 3: a) Estimation procedure of the thermochemistry for *CCHCH2. b) Histogram
for the error in the estimated heat of formation by RMG for unknown C3 species or C1,C2

oxygenated species and the result from the DFT calculation. c) Predicted and discovered
structure for iso-propyl (monodentate adsorbate) and d) for *CH*

2CH*CH2 (tridentate adsor-
bate) along with the corresponding heats of formation.

The histogram in Figure 3b demonstrates a broad spread in the accuracy of the estimation
routine. Most discovered adsorbates have a reasonably accurate estimate of the heat of
formation, with a discrepancy to the DFT value below 40 kJ mol−1 and the mean absolute
error (MAE) is 48 kJ mol−1. The uncertainty of the commonly applied exchange-correlation
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functionals such as the BEEF-vdW is on the order of 20 kJ mol−1,50,81,82 so this spread is
acceptable. An example adsorbate for a reasonable estimate is provided in Figure 3c. RMG
predicts a heat of formation of −108 kJ mol−1 for iso-propyl (CH*

3CHCH3), and the DFT
result is −113 kJ mol−1. Yet, there are some adsorbates for which the heat of formation is
off by up to 187 kJ mol−1. This error is caused by multiple factors.

First, the accuracy depends mainly on the thermochemistry of the gas-phase precursor. The
thermochemistry of most gas-phase adsorbates is based on the ATcT database54,55 or high-
accuracy gas-phase coupled-cluster methods,83 and is usually known with chemical accuracy
(i.e. ± 1 kcal mol−1). A substantially larger error can be observed if the thermochemical
properties of the gas-phase precursor are determined via group additivity. This is quite a
challenge for heterogeneous catalysis since some adsorbates, when directly desorbed, would
form a species that is at best meta-stable in the gas phase, and therefore no accurate ther-
mochemistry data are available.

Second, RMG predicts the heat of formation based on a monodentate structure for some ad-
sorbates, but subsequent DFT calculations confirmed that the adsorbate is in fact bidentate
or tridentate, as illustrated in Figure 3d for *CH*

2CH*CH2. The multidentate adsorbates tend
to bind more strongly to the surface. RMG does currently not find the most stable chemical
graph representation of the adsorbate, which leads to a wrong adsorption correction.

Lastly, the adsorption corrections are based on a database with small molecules, and there
can be a significant change in the thermochemistry from molecules with 1-2 heavy atoms to
molecules containing more than 3. For example, the change in thermochemical properties
from *CH to *CCH3 is probably larger than the change from *CCH2CH3 to *CCH2CH2CH3.
This phenomenon is reported and exploited in first-principle-based microkinetic modeling
studies on the Fischer-Tropsch synthesis.84 Also, the binding site of the molecule used for
the adsorption correction might be different from the most stable binding site determined
with DFT. With more thermochemical data of larger molecules becoming available, the
present corrections can be refined to provide better estimates for larger molecules. In a
worst-case scenario, these errors are compounded, as is seen for CH*

3COH, which results in
an error of 187 kJ mol−1.

Another source of error that has not been considered is systematic uncertainties for the
gas-phase energies derived from the BEEF-vdW functional, where often correction factors
are applied to match heats of reaction from thermochemical tables.85,86 If the bidentate
adsorbates or adsorbates with unavailable gas-phase chemistry are removed, then the MAE
reduces to 30 kJ mol−1, which demonstrates that the estimation routine of RMG itself is
fairly accurate. The MAE in the entropy of the adsorbates amounts to 38 J K−1 mol−1. In
conclusion, all estimates have to be taken as approximate since some predicted structures
by RMG do not represent the most stable configuration on the potential energy surface, and
it is necessary to refine the thermochemistry properties over the course of the mechanism
development.27

The present work is the first study that employs the pre-trained machine learning potential
from the Open Catalyst Project36to obtain converged adsorbate configurations as an initial
guess for the DFT calculation. In order to assess the accuracy of the MLP prediction, we
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computed the single-point energy of the MLP-relaxed structure with DFT and compared
it with the fully DFT relaxed energy. The MAE for all 40 of the C2 and C3 adsorbate
was 12.5 kJ mol−1 (see Table S14 and Figure S5), thus highlighting that the GemNet-dT
MLP from the OCP is a powerful tool for a fast-but-reliable energy prediction. The largest
deviations are caused by CH*

2CCH3 (0.6 eV), *CHCHCH3 (0.58 eV), and species with an
OCO backbone such as CO*

2 (−0.5 eV) or HCO*O (−0.32 eV). The discrepancy for the OCO
backbone is presumably caused by the systematic difficulties of the BEEF-vdW functional
to accurately predict the energies of these adsorbates85,86 and not by GemNet-dT MLP.

Construction of the final microkinetic model

After the first round of mechanism generation, the thermochemistry library for Pt(111) was
extended by including missing adsorbates. In the next step, it became apparent that many
reactions involving bidentate species should be included. Accordingly, we compiled a reaction
library to provide potentially missing bidentate elementary reaction steps based upon the
hydrogenolysis of ethane on Pt(111) from the work of Salciccioli et al.79 (see Table S10).
Admittedly, this approach does not enable the full predictive power of RMG for bidentate
species, but it allows us to improve the mechanism significantly. This inclusion of a reliable
sub-mechanism as a “reaction library” to enhance RMG’s predictive capabilities is a well-
known practice in RMG’s gas-phase community.24,25 This new iteration led once more to
new adsorbates in the core and triggered additional DFT calculations. Simulations with
this microkinetic model revealed a too strong binding energy of CO*

2, caused by the BEEF-
vdW functional that faces issues to accurately predict the thermochemistry of gas-phase
molecules with an OCO backbone.85,86 Although the approach for the computation of the
heat of formation by Blöndal et al.30 does not depend on the DFT energy of the gas-phase
precursor, we applied a correction factor of +0.41 eV52,85,86 to the heat of formation of CO*

2,
CO*

3 and HCO*
3 for the 5th iteration to decrease the heat of adsorption. Metrics for the

generated mechanism at each stage of this iterative procedure are illustrated in Figure 4.

Figure 4a differentiates the discovered species by their thermochemistry, whether it is an
estimate or a direct database hit. For the mechanism generation for the mixture containing
CH4, CO, CO2, and H2 (#4), the size is only affected by the inclusion of the bidentate path-
ways but not by adding additional thermochemistry values for larger adsorbates. This result
was expected, since all C1 hydrocarbons and oxygenates are already in the database. How-
ever, this changes for the mixture with C2H4 and C2H6 (#7), where the size of the mechanism
increases with additional thermochemistry data. The trend for the reactions differs and does
not show a clear pattern (see Figure 4b). Again the C1 chemistry remains unchanged. Yet,
adding more accurate thermochemistry values can cause reaction pathways that were feasible
before to become irrelevant and vice versa. This highlights the tremendous importance of
an accurate thermochemistry for gas-phase molecules and adsorbates,27,87 especially if BEP
relations are used to estimate the barriers. While for the C1 chemistry, the reactions are
mostly equally split into abstraction and dissociation, a significant overhead of abstraction
reactions prevails for the C2 chemistry.

The discovered chemistry depends to a large extent on the termination criterion and the
toleranceMoveToCore. If the value is set too loosely (larger ε), a truncation error may be
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Figure 4: Metrics of the iterative mechanism generation procedure with RMG for the in-
creasing complexity of the gas mixtures. a) Discovered adsorbates; the bar indicates the
number of adsorbates that have their thermochemistry based on an estimate from RMG or
a DFT-based library value. b) Discovered reactions sorted into the main reaction families,
which are adsorption, dissociation, and abstraction. c) Number of adsorbates (squares) and
reactions (circles) as a function of RMG’s toleranceMoveToCore for the mixture containing
all gas-phase species (exp. #7). The line is intended to guide the eye. Only reactions and
adsorbates from the core are displayed.

included because some important steps might have been missed.21,29 On the other hand,
a too-tight tolerance results in mechanisms containing almost all the possible elementary
steps. Such large mechanisms are impractical, because most of the reactions have no signif-
icant contribution to the conversion pathways (not to mention numerical issues associated
with stiffness). Consequently, the user must ensure that these values are well-chosen, which
can be done by generating models for various tolerances and comparing the model predic-
tions in continuum reactor models. We conducted such a convergence study for the C2

mechanism after the fifth iteration step to determine the required tolerance (see Figure 4c).
When mechanisms are generated for a toleranceMoveToCore of 1× 10−2 all discovered ad-
sorbates are based on DFT values, while increasing the value further adds only estimates to
the core. Simulations with the microkinetics from the different toleranceMoveToCore show
that the value can be reduced to 1× 10−2 without missing important chemistry (see Figure
S6), which reduces the computational overhead significantly. The final microkinetic model
used for further investigation contains 32 adsorbates, 9 gas-phase species and 132 reactions.
In addition to the self-interaction of *O and CO* discussed before, we added coverage effects
for the thermochemistry of *CCH2 in dependence of the *O and *CO coverage (see SI). More-
over, all reactions which have products that are coverage dependent (*O, *CO, *CCH2) were
rewritten and re-parameterized to make these species the reactants, except the adsorption
of CO and O2. This was done to limit the effect of the coverage-dependent heat of formation
on the reaction kinetics for the reversible reactions, explained in depth in the SI.
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Evaluation of the generated microkinetic model

Conversion profiles of the final microkinetic model generated by RMG (but the penultimate
microkinetic model as described below) and the experiment with all components are shown
in Figure 5a. CO conversion sets in at 150 °C in the experiments, whereas the model predicts
a value around 200 °C. Similarly, the conversion of C2H4 is slowed down compared to the
experiment. The C2H4 conversion follows almost precisely the CO conversion profile, in
agreement with the experimental data. Still, the model cannot predict the conversion profiles
of both alkanes, while for CH4 at least the slope is accurately described. In summary, the
microkinetics capture the trend in the profiles, except for C2H6 and are, thus, in qualitative
agreement with the experiments but fail to quantitatively match the recorded data. The
generated mechanism was significantly improved through the iterative refinement procedure
and the predicted profiles are reasonably close to the experiments. A better agreement can be
obtained by adjusting the activation energies of the rate-determining steps within reasonable
uncertainty boundaries. This procedure combines the bottom-up approach of first-principles-
based mechanism generation with a top-down regression of activation energies.88,89 DRC
analysis was used to identify the most important elementary reactions in the pathways for
each species, and the results are displayed in Figures S7 and S8.
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Figure 5: Comparison of the experiments with the final generated microkinetic model by
RMG (but the penultimate model as described below) for the complete gas mixture (exp.
#7).

The rate-determining step in the CO oxidation pathway is the oxidation of *CO via *CO +
*O CO*

2 + * (see Figure S8). Oxidation of CH4 and C2H6 is controlled by the re-
spective dissociative adsorption reactions, CH4 + 2 * *CH3 + H* and C2H6 + 2 *

*CH2CH3 + *H, also demonstrated in numerous earlier studies.5,6,8,19,90,91 The activation bar-
rier for the CO*

2 formation and the parameters of the Arrhenius expression for the sticking
coefficient were fitted to match the experimental results. Parameter regression was per-
formed one parameter at a time using the SciPy package. Barriers for the dehydrogenation
of vinyl (*CH*CH2 + * *CH*CH + *H) and the C-C scission of acetylene (*CH*CH
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2 *CH) have a high degree of rate control for the oxidation of C2H4. Consequently, the acti-
vation energies for these two reactions were optimized to the experimental data as well. The
adjusted parameters are summarized in Table 3. Results from the optimized microkinetic
model are reported for all experiments in Figure 6.

Table 3: Reactions that were fitted to the experiment with their initial and final parameters.

initial fitted
reaction A/ cm2 mol−1 s−1

or A/ s−1
‡

or s / 1†
Ea / kJ mol−1 A/ cm2 mol−1 s−1

or A/ s−1
‡

or s / 1†
Ea / kJ mol−1

CH4 + 2 * *CH3 + *H 6.04† 58.0 12.475† 76.2

C2H6 + 2 * *CH2CH3 + *H 2.052† 42.7 0.866† 48.9
*CO + *O CO*

2 + * 7.27× 1019 112.8 7.27× 1019 92.7
*CH*CH + *H *CH*CH2 + * 4.18× 1021 94.6 4.18× 1021 86.2
*CH*CH 2 *CH 1.0× 1013‡ 124.7 1.0× 1013‡ 107.9

In the case of the CH4 and CO oxidation (Figure 6a,b), the conversion profiles of the model
are shifted to lower temperatures compared to the experiments. However, the model ac-
curately predicts the conversion of CO and C2H4 for the more complicated mixtures that
contain H2 ( Figure 6c-f). There is only a slight deviation for the CH4 profile at high temper-
atures and at low temperatures for C2H6. Overall, a good agreement with the experiments
can be achieved by minor adjustments of the barriers of the most important elementary steps
within their uncertainty range, while the rest of the model is based on first principles and
approximate first-principles-based relations (eg. BEP relations).

The discrepancy between the model and experiment for the case of pure CO and CH4 conver-
sion can be explained by the morphological changes of the Pt crystals. Due to the absence of
reductive gases, especially H2, Pt is more prone to oxidation at lower temperatures, and the
available surface area of the more active metallic phase could be reduced.77 Moreover, the
surface coverage and oxidation state of the Pt crystals can change across the packed-bed,
as observed in operando experiments for the CO oxidation under lean combustion condi-
tions.76,77 Under stoichiometric conditions, these changes could be even more facile due to
the complete depletion of the reductive gases and O2 at full conversion. Although, the in-
corporation of surface oxidation can be done in a somewhat ad hoc manner by adjusting the
active surface area,9,73,92 a more rigorous and predictive description can only be achieved
with ab-initio computations.93 Figure S11 shows that the microkinetic model can reproduce
the experimental results by only adjusting the active surface area. Additionally, the devia-
tion can also be caused by the assumption that only the static Pt(111) facet is the active
site, which is a strong simplification of the complex multifaceted Pt crystals on the support
that can also transform dynamically during the experiment depending on the local gas at-
mosphere.94,95 Avanesian et al.96 observed a major but still reversible reconstruction of the
Pt nanoparticles when they were exposed to a CO atmosphere at elevated pressure. Conse-
quently, we think that the discrepancies between the model and the recorded concentrations
for the experiments without H2 and also for the small deviations for the experiments with
H2 are not caused by missing reaction pathways, but rather are due to the omission of the
dynamic and multifaceted nature of the catalyst under reaction conditions, including the
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Figure 6: Comparison of the final microkinetic model with adjusted activation barriers of
the rate-controlling steps with the experiments. a) CO oxidation (#2), b) CH4 oxidation in
CO2 and H2O atmosphere (#3), d) +CO and H2 (#4), e) +C2H4 (#5), f) +C2H6 (#6), and
g) +C2H4 +C2H6 (#7).

noble metal’s oxidation state. Therefore, this study underscores the importance of includ-
ing morphological changes of the Pt crystals and the support, such as sintering,73 cluster
formation,95 re-dispersion, and oxidation76,77,94,97 and surface reconstruction96 into the mi-
crokinetic model and the automated mechanism generation procedure. However, such an
integration on a first-principles basis is beyond the scope of the present work.

Figure 7 displays the coverage profile for experiment #7, but this is similar for all cases. A
high CO* coverage is obtained at low temperatures under these stoichiometric conditions in
agreement with other studies.10,77 The surface is covered by O*, after CO is converted. In
addition, there is a small coverage of CH* at low temperatures, formed by the C-C scission
of CH* CH* from ethylene decomposition. The thermodynamic sensitivity analysis shows
that CO and C2H4 oxidation is sensitive to the heat of formation of CO*, whereas CH4 and
C2H6 are only controlled by the O* thermochemistry (see Figure S9). This is caused by the
coverage on the surface since CO and C2H4 are converted at low temperatures, where the the
CO* coverage is high. Additionally, the oxidation of CO* has a high DRC for both pathways
and the thermochemistry affects the rate of oxidation as well as the equilibrium. CH4 and
C2H6 are converted at high O* coverage.

A reaction path diagram for the conditions in Figure 5d, namely exp. #7 is displayed in
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Figure 7: Simulated coverage profile for the oxidation of the complete mixture from exp. #7
(CH4, H2, CO, C2H4 and C2H6).

Figure 8. CH4, C2H4, and C2H6 are converted to *CH through dissociation reactions without
the assistance of *O. This observation is also the outcome of most DFT-based mechanism
development studies.98 In contrast, Peela et al.6 showed that C2H6 can also be activated by
*O at high coverages via an Eley-Rideal step when the activation barrier was subjected to
a coverage-dependence. With the coverage-dependent heat of formation of *O in this study,
there is a considerable fraction of vacant sites present at all temperatures, which explains the
high reaction rate of C2H6 oxidation without the O-assisted pathway. However, the omission
of these pathways could contribute to the small deviation between model and experiments
at low temperatures, where *O coverage is high. Currently, although RMG can in principle
include Eley-Rideal reactions, this reaction family lacks reliable BEP rules and, therefore,
was not considered in the mechanism generation procedure.

There are three pathways from *CH to *CO: via formyl (H*CO), hydroxymethylidyne (*COH),
and *C, with the first pathway being the main route at all temperatures considered here.
Formyl is formed from *CH by direct oxidation according to *CH + *O H*CO + *. A
side branch at low temperatures forms formyl from formaldehyde, which itself is produced
mostly by oxidative dehydrogenation reactions (see Figure S10). The *COH intermediate is
formed via abstraction of the H atom from *CH by *CO: *CH + *CO *COH + *. Car-
bon formation occurs through direct CH dissociation and by an oxidative dehydrogenation
reaction (*CH + *O *C + *OH). A higher temperature increases the fraction of *CO
produced through this carbon pathway. Most of the CO*

2 and thence CO2 is produced by di-
rect oxidation of *CO. Yet, the oxidation to carboxyl (*CO + *OH *COOH + *) and the
subsequent oxidative dehydrogenation reaction (*COOH + *O CO*

2 + *OH) contribute
to CO*

2 formation as well.

The simulation results demonstrate the importance of coverage-dependent thermochemistry,
since it significantly alters the rates, which affects the discovered pathways, especially at
low temperatures. Additionally, RMG needs better functionality for multidentate species to
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Figure 8: Reaction path diagram following the carbon element for a temperature of 350 °C.
The thickness of the arrow illustrates the reaction rate.

discover all the relevant pathways for reactions of larger adsorbates. However, we want to
stress that this problem is not unique to automated mechanism generation, and that multi-
dentate adsorbates are also challenging to consider during manual mechanism construction
due to multiple potential configurations. Thermophysical properties, principally heats of
formation, are highly important in microkinetic modeling, whether it is in the gas phase or
on the surface.24,27,87 When BEP relations are employed to estimate the activation barrier of
a reaction, the thermochemistry should be as accurate as possible to avoid the propagation
of an estimation error into the barrier, which could affect the entire mechanism.

Given that it is relatively inexpensive to perform geometry optimizations, especially in com-
bination with machine learning potentials from the OCP36 or MLP with active learning53 ,
the construction of large datasets with thermochemical properties for adsorbates is within
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reach at low cost and should receive a high priority for the construction of microkinetics with
RMG. The approach outlined in this study produces a first-principles-based microkinetic
model that can describe experimental results from a Pt monolith with remarkable accuracy
after the 5 elementary reactions with the highest degree of rate control were adjusted within
their uncertainties. The model fidelity suggests that Pt(111) could be the active site for the
oxidation of these molecules, which is controversially discussed.5,18,19,91 Larger Pt clusters,
which contain a higher fraction of terrace sites, exhibit a higher activity due to the weaker
interaction with *O support these findings.19,91 However, we have to consider the impact of
the parametric uncertainty from the DFT-based estimation routines and parameters, which
can lead to a broad range of possible solutions.32,87 To reduce the uncertainty margin further,
it is suggested to perform transition state calculations for the most important pathways to
refine the microkinetics, where the methodology proposed herein can serve as a hierarchical
refinement procedure.93 Additionally, other facets can and do contribute to the conversion
of the pollutants and the entire multifaceted nature of the crystals on the support need to be
considered in the microkinetic model.80,94,95 In principle, RMG can construct microkinetic
models for all possible Pt facets if accurate thermochemical tables and BEP relations are
provided. Through the usage of RMG within the framework described in the manuscript, the
microkinetics for the complex mixture can be constructed in a fraction of the time required
to build them manually, and RMG thus streamlines the entire process.

Conclusion

In this study, we have demonstrated how RMG can be applied to aid in the construction
of microkinetic models for heterogeneously catalyzed reactions. RMG was used to develop
a first-principles-based microkinetic model for the catalytic conversion of stoichiometric ex-
haust gases from typical gasoline engines on Pt(111). The thermophysical properties of
discovered adsorbates were refined at low computational cost by using a machine learning
potential from the Open Catalyst Project followed by electronic structure calculations with
the BEEF-vdW functional. ML acceleration strategies will be critical to the successful ap-
plication of RMG to even more complex chemistries and materials as the number of possible
adsorbate configurations increases. The approach will also increase in performance as more
accurate pre-trained graph potentials are released.99,100 Activation energies of important el-
ementary reactions were adjusted within confined uncertainty ranges, which resulted in a
good agreement with kinetic catalyst tests with a Pt/Al2O3 monolith. The comparison of
the microkinetic modeling results with the experiments suggest that the catalyst undergoes
morphological changes, such as oxidation and reconstruction during the treatment of emis-
sions from stoichiometric combustion conditions depending on the composition of the exhaust
gas mixture. This dynamic transformation of the Pt crystals has to be integrated into the
microkinetic models on a first-principles basis to accurately describe the conversion of the
emissions under the fully transient operating conditions in stoichiometric gasoline direct in-
jection engines. Additionally, the study has also unveiled current limitations in RMG, which
were critically discussed. The accuracy and functionalities of RMG are primarily limited by
the available data in its databases.
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(32) Kreitz, B.; Sargsyan, K.; Blöndal, K.; Mazeau, E. J.; West, R. H.; Wehinger, G. D.;
Turek, T.; Goldsmith, C. F. Quantifying the Impact of Parametric Uncertainty on
Automatic Mechanism Generation for CO2 Hydrogenation on Ni(111). JACS Au 2021,
1, 1656–1673.

(33) Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T. R.; Moses, P. G.;
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