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ABSTRACT: Lasso peptides are a sub-class of ribosomally synthesized and post-translationally 
modified peptides with a slipknot conformation. Often with superior thermal stability, protease 
resistance, and antimicrobial activity, lasso peptides are promising candidates for bioengineering 
and pharmseutical applications. To enable high-throughput computational prediction and design 
of lasso peptides, we developed software, LassoHTP, for automatic lasso peptide structure 
construction and modeling. LassoHTP consists of three modules, including: scaffold constructor, 
mutant generator, and molecular dynamics (MD) simulator. Based on a user-provided sequence 
and conformational annotation, LassoHTP can either generate the structure and conformational 
ensemble as is or conduct random mutagenesis. We used LassoHTP to construct eight known lasso 
peptide structures de novo and to simulate their conformational ensembles from 100 ns MD 
simulations. For benchmarking, we calculated the root mean square deviation (RMSD) of these 
ensembles with reference to their experimental crystal or NMR PDB structures; we also compared 
these RMSD values against those of the MD ensembles that are initiated from the PDB structures. 
The results show that the RMSD values of the LassoHTP-initiated ensembles are highly similar to 
those of the PDB-initiated ensembles with the ∆RMSD ranging from 0.0 to 1.2 Å and averaging 
at 0.5 Å. LassoHTP offers a computational platform to develop strategies for lasso peptide 
prediction and design.  
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1. Introduction 

 Lasso peptides are a sub-class of ribosomally synthesized and post-translationally modified 

peptides (RiPPs),1, 2 some members of which exhibit antibacterial,3-7 antiviral,8 and antitumor 

activities9. Their bioactivities and favorable stability make lasso peptides good candidates for drug 

development campaigns.6, 7, 10-12 Lasso peptides are a natural example [1]rotaxanes, a class of 

mechanically-interlocked molecules.13 The [1]rotaxane slipknot conformation enables lasso 

peptides to be resilient towards thermal degradation (via the presence of bulky stopper residues) 

and proteolysis (via burial of the amide backbone).14-17 The slipknot conformation can be formally 

represented by the C-terminus peptide tail threading into the macrolactam ring. The ring is 

connected by an isopeptide bond between the nitrogen of the N-terminus and a glutamate or 

aspartate carboxylate carbon located at the 7th, 8th, or 9th amino acid position.18, 19 Two sterically 

bulky amino acids, called steric locks or upper and lower plugs, situated above and below the ring 

maintain the strained lariat-knot conformation. By definition, the lasso peptide loop refers to the 

amino acid sequence between the macrolactam ring and the upper plug; and tail between the lower 

plug and the C-terminus (Scheme-1).  

 

Scheme-1. Conformational annotation for lasso peptide.   
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Computational studies have elucidated the physical basis of folding, threading, and 

thermally-actuated switching for specific lasso peptides.6, 11, 15, 16 Ferguson et al. showed that 

uncyclized microcin J25 can spontaneously adopt a left-handed coil configuration using replica-

exchange molecular dynamics (MD).6 Allen et al. applied classical classical MD simulations with 

umbrella sampling to study the energetic preference of different pulling mechanisms for astexin-3 

unthreading.16 Using a poly-alanine model system, they demonstrated the relationship between the 

bulkiness of steric plugs and threading barrier. Yang et al. performed multiscale simulations on 

benenodin-1, a thermally-actuated molecular swtich between two conformers that differ by the 

position of the steric plug Q15.15 By combining classical MD and large-scale quantum mechanics 

calculations, they quantified the entropy and enthalpy that accompany the conformational 

switching and elucidated the roles of steric plugs in mediating entropy-enthalpy compensation.  

Molecular modeling studies deepen the insight into lasso peptide structure and dynamics. 

They rely on an experimentally-determined lasso peptide structures as a starting point or a 

reference. Given the large amount of natural lasso peptide sequences whose three-dimensional 

structure is undetermined,1, 2, 20 computational structure prediction can greatly accelerate the 

process of investigating lasso peptide conformational dynamics and thermodynamic properties. 

However, unlike globular proteins whose structure can be predicted with AlphaFold2,21 

computational tools for lasso peptide structure construction or prediction are yet to be developed. 

Although lasso peptides share a common threaded scaffold, the task for structure prediction still 

presents a nontrivial challenge. The challenge lies in the diverse constructs of lasso peptides. Based 

on the observation of structurally-known lasso peptides, the loop size is three (e.g., xanthomonin-

I and xanthomonin-II) for 7-membered ring,22 but ranges from four (e.g., lariatin A and lariatin 

B)23 to eighteen (e.g., ubonodin4, 5) for 8-membered ring, and from four (e.g., lihuanodin24) to seven 
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(e.g., caulonodin-V14) for 9-membered ring. In addition, the tail size can range from two in 

microcin J25,7 citrocin3 or ubonodin4 to eighteen in pandonodin25. Despite the constructional 

diversity for known lasso peptides, a significantly greater number of lasso peptides still remain to 

be discovered and their structures determined.2 With diverse scaffold constructs, the 

conformational ensembles are likely to be variable.  

Here, we report LassoHTP as a computational tool for automatic, high-throuput lasso 

peptide structure prediction and conformational ensemble sampling. LassoHTP converts user-

input lasso peptide sequences and conformational annotation to structure and conformational 

ensemble by employing three modules, including: the scaffold constructor, the mutant generator, 

and the MD simulator. LassoHTP can also be used to perform random mutagenesis with a template 

sequence or structural model. Finally, we benchmarked LassoHTP in the task of predicting the 

structure and conformational ensemble for eight known lasso peptides.  

2. Design and Implementation 

2.1 Architecture of LassoHTP. LassoHTP is designed to translate a user-defined lasso peptide 

sequence (with annotation of ring, loop, and tail) into a conformational ensemble (Figure 1). 

LassoHTP involves three modules to automate construction and simulation of lasso peptides, 

including: a scaffold constructor, a mutant generator, and an MD simulator. Specifically, the 

scaffold constrctor builds a poly-alanine lasso peptide scaffold; the mutant generator mutates the 

scaffold into a lasso peptide structure based on either user-defined sequence or random 

mutagenesis; the MD simulator parameterizes the lasso peptide structure and initiates MD 

simulations to output a conformational ensemble. The modular architecture ensures flexibility in 

application, which is similar to EnzyHTP, a software we developed for high-throughput enzyme 



 
   
 

5 

 

modeling.26 Any single module can be independently executed to build, modify, or model a lasso 

peptide. Or, the three modules can be sequentially operated in an automatic workflow to convert 

user-defined lasso peptide sequences to structural ensembles.  

 

Figure 1. The workflow of LassoHTP to convert user-input sequence into a conformational 

ensemble via three modules, including: scaffold constructor, peptide mutant generator, and 

molecular dynamics simulator. To initiate, a user inputs a lasso peptide sequence and indicates the 

length for the ring, loop, and tail. From the sequence and conformational annotation, the scaffold 

constructor module generates prototypical poly-alanine lasso peptide scaffold via its native 

scaffold library and the tail extender function. The peptide mutant generator mutates each residue 

on the poly-alanine lasso peptide structure to match the input sequence. The molecular dynamics 

simulator module automatically writes MD input files, constructs a solvent box and initiates each 

subsequent MD step leading up to production MD. 
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2.2 Scaffold Construction. With an input of lasso peptide sequence and conformational 

annotation, LassoHTP’s construction module uses a structural library in tandem with a tail-

extender function to create a poly-alanine scaffold template (Supporting Information, Figure S1). 

The template lasso peptide scaffold can be mutated by the mutant generator and is compatible with 

software AMBER27 used in MD simulator. 

The structural library is a collection of 70 lasso peptide scaffolds consisting of a diverse 

range of ring and loop size (Supporting Information, Figure S2). Ring sizes range from 7 to 9 

amino acids (Figure 2). Loop sizes range from 2 to 10 amino acids for 7- and 9-membered ring 

scaffolds and from 2 to 18 for 8-membered ring scaffolds. Each scaffold is composed almost 

entirely of alanine residues apart from the isopeptide moiety, which is the side chain of either an 

aspartate or glutamate residue (informed in the user-input sequence), of the lasso peptide ring.  
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Figure 2. Representative structures in the LassoHTP scaffold library exhibiting various ring sizes 

with an aspartate isopeptide linker and loop length of 5. Backbone heavy atoms, alanine side-

chains, and only polar hydrogens are shown for clarity. The ring, isopeptide bond, and loop 

moieties are colored cyan, yellow, and gray, respectively.  

 The poly-alanine scaffolds were mostly constructed through steered MD28, 29 simulations 

using AMBER27 (Figure 3 and detailed in the Computational Methods section); some scaffolds 

were truncated directly from known lasso peptide PDB structures (noted in Supporting Information, 

Figure S2). All scaffolds adopt a right-hand wrapping conformation.30 The isopeptide bond of each 

scaffold adopts trans-isopeptide bond configuration. As a future plan, we will diversify the 

scaffold library by incorporating scaffold with left-hand wrapping topology and with cis-

isopeptide bond configuration. 

 

Figure 3. The workflow for constructing a poly-alanine scaffold using steered MD simulation. A 

linear peptide thread (colored in gray) is docked within the isopeptide ring (colored in cyan). 
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Through steered MD a pulling force brings the nitrogen of the N-terminus, which is capped with 

an acetyl group, to 2.0 Å from the carboxylate carbon of the isopeptide linker’s C-terminus. 

Based on the tail length defined by the user, the tail-extender function complements a 

selected scaffold by appending additional alanine residues to the C-terminus residue with trans-

configuration peptide bond via a rotation matrix. The resulting lasso scaffold lays the foundation 

for the subsequent modules.  

2.3 Mutant Generation. LassoHTP’s mutant generator takes a lasso peptide scaffold as input, and 

mutates the scaffold’s residues to any of the 20 canonical amino acids. LassoHTP allows users to 

either build a mutant structure based on input sequence and conformational annotation, or conduct 

random mutagenesis on a lasso peptide structure (Figure 4). The input scaffold received by mutant 

generator can be an output of scaffold constructor (i.e., a poly-alanine scaffold) or a stand-alone 

lasso peptide structural model.  
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Figure 4. Conversion of the poly-alanine lasso peptide scaffold into the lasso peptide that is 

consistent with the user-input sequence using the mutant generator module. Using the initial input 

sequence, the mutant generator module mutates each alanine to match the input amino acid 

sequence. Sequence shown is xanthomonin-II22 (PDB ID: 2MFV). 

The mutant generator operates on a given lasso peptide scaffold as a Python object. 

Specifically, the module recognizes the scaffold as a structural object and divides it into subunits 

such as residues and atoms. Using seq_parse.py, the module parses these subunits in accordance 

with the major sections of a lasso peptide, including the ring, loop, upper and lower plugs, and tail 

(detailed in the Supporting information, Text S1). Inspired by the framework of EnzyHTP,26 the 

parser treats each individual amino acid in the lasso peptide sequence as a “flag” in the form of 

‘[X#Y]’ where X is the original residue, # is the positional index, and Y is the mutated residue. 
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The function uses tLEaP in AMBER to mutate each alanine residue on the scaffold by adding and 

removing atoms as needed. The module does not mutate the acidic residue that forms the isopeptide 

moiety to preserve the scaffold’s lariat-knot conformation. tLEaP reparameterizes the mutated 

amino acids and the isopeptide bond (Supporting Information, Table S1).11  

Regarding random mutation of certain scaffold positions, the mutant generator also allows 

the user to perform selective mutations on any major sections of a given lasso peptide scaffold 

(Supporting Information, Figure S3). As such, users can manually input the peptide sequence, 

choose to randomly generate a sequence, or manually or randomly mutate only certain positions 

of the scaffold. 

2.4 MD Simulation. LassoHTP’s MD simulator conducts classical MD simulations of mutant 

lasso peptides. The input structure can either derive from the mutant generator or provided by the 

user based on experimentally-determined structures. For any lasso peptide, the module 

automatically generates input files for minimization, heating, equilibration, and production MD 

and automatically initiates each stage in the MD process (Supporting Information, 

input_prmtop_inpcrd.zip file). The production MD yields a final output of MD trajectories for a 

given lasso peptide, which can then be sequestered into conformational ensembles. The 

conformational ensembles can be evaluated for structural features such as NMR restraints and 

thermodynamic properties such as free energy and conformational entropy. Although classical MD 

is the default setting for the module, enhanced sampling such as umbrella sampling31 can also be 

conducted. 

3. Computational Methods 
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3.1 Steered MD. We employed steered MD to construct lasso peptide scaffolds in the library 

(Supporting Information, Text S2). Each scaffold is built in two stages. The first stage is building 

an isopeptide ring-linear peptide thread complex (refer to as ring-thread complex below). 

AMBER’s tLEaP module is applied to build a linear poly-alanine peptide thread that is capped at 

the N- and C-terminus with acetyl and N-methyl groups, respectively. The 9-membered 

macrolactam isopeptide ring is extracted from astexin-3 PDB structure (PDB ID: 2M8F).32 The 7- 

and 8-membered rings were manually constructed by adapting the structure of 9-membered ring 

using PyMOL. Each residue on the ring is converted to alanine using PyMOL’s mutagenesis 

feature. To parameterize the isopeptide bond, we adopted the force field parameter from the prior 

work11 by Lai and Kaznessis and determined atomic charges using the AM1-BCC model33, 34 

(Supporting Information, Table S1). For the canonical amino acids in the peptide, ff14SB force 

field is employed.35 Finally, the ring-thread complex is constructed by docking the peptide thread 

in the center of the ring in an orthogonal position using com_placement.py.36 This is accomplished 

by docking the center of mass (CoM) of the linear peptide thread’s C-terminal residue in the 

isopeptide ring’s CoM and along the ring’s z-axis. The final output is a PDB file that geometrically 

defines the ring-thread complex (right, Figure 3). 

The second stage is constructing the loop of the lasso peptide scaffold. Using tLEaP, the 

ring-thread complex is solvated in a TIP3P water37 octahedral solvent box with a 40 Å buffer. 

PMEMD.CUDA38, 39 is used to minimize, heat the system towards 300K, and equilibrate the 

system. In equilibration, restraints are applied to the N-methyl cap and C-terminal alanine to 

prevent unthreading (20 kcal/mol·Å). A 30 ps steered MD is conducted using SANDER to direct 

the peptide thread’s N-terminal residue towards the C-terminus of the isopeptide ring using a 

harmonic restraint of 2000 kcal/mol·Å (i.e., the main chain carboxylate on the glutamate or 



 
   
 

12 

 

asparate). For steered MD, the nitrogen atom of the N-terminal alanine and the carbon atom of the 

isopeptide ring’s C-terminus are defined as target points (middle, Figure 3). The target distance for 

steered MD simulation is set to be 1.5 Å. The resulting structure from the steered MD will be 

converted to to a lasso peptide scaffold by tLEaP. Speifically, tLEaP is used to bond these the two 

target atoms (i.e., C and N) and remove the acetyl group and extraneous hydrogen and hydroxyl 

groups. The final output is a PDB file that defines the lasso peptide’s ring and loop structures.  

3.2 Classical MD simulation. For each lasso peptide used in the benchmark, we performed 

classical MD simulations using the pmemd.cuda engine of AMBER with one NVIDIA Pascal 

GPU.38, 39 The LassoHTP workflow first generates the force field parameters using ff14SB force 

field, constructs a 10 Å octahedral solvent box and then automatically composes the input files 

(Supporting Information, Figure S4), with preset parameters, for 20,000 cycles of minimization, 

40 ps heating to 300K, 1 ns NPT equilibration (backbone atoms restrained with a harmonic 

potential of 2 kcal/mol·K), 1 ns NVT equilibration (unrestrained), and 100 ns production MD. 

Each simulation uses a time step of 2 fs, Langevin thermostat, and Berendsen barostat. From a 100 

ns MD trajectory, 1000 snapshots are evenly extracted to form a conformational ensemble. We 

characterized the derivation of the conformers from the experimentally-determined structure by 

calculating the root mean square deviation (i.e., RMSD) of the backbone heavy atoms relative to 

either the first structure of the NMR ensemble or crystal structure. We used Xmgrace to visualize 

and produce histograms for each RMSD analysis. 

4. Results and Discussion 

As the first test, we employed LassoHTP to predict the conformational ensemble (called 

LHTP-initiated MD, Figure 5) for the wild-type caulosegnin-II14 (PDB ID: 5D9E) and 
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benchmarked its consistency against the MD ensemble initiated from the experimentally-

determined structure (called PDB-initiated MD, Figure 5). Caulosegnin-II has a glutamate-linked 

9-membered ring, a 6 amino acid (aa) loop, and 4 aa tail. We employed wild-type caulosegnin-II 

as our first test because a well-resolved crystal structure (resolution: 0.86 Å) is known for this 

lasso peptide (Met17 was oxidize to methionine sulfoxide during crystallization).14 The 

comparison between the two MD conformational ensembles normalizes the impact of force field 

parameters on conformational sampling. Both LHTP-initiated and PDB-initiated MD ensemble 

were constructed by evenly extracting 1000 snapshots from a 100 ns MD trajectory. The RMSD 

of the heavy backbone atoms (i.e. Cα, N, C, and O) of each conformer was computed relative to 

the crystal structure (Supporting information, Text S3).  
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Figure 5. Distribution of RMSD for LassoHTP-initiated and PDB-initiated MD conformational 

ensemble for caulosegnin-II. Both ensembles are constructed by 1000 snapshots that are evenly 

extracted from 100 ns MD trajectories. The RMSD distributions for the full peptide as well as sub-

structures (i.e., ring, loop, and tail) are shown. A cartoon representation of caulosegnin-II is shown 

in the inset with the ring, loop, and tail colored in cyan, gray, and pink. For both ensembles, RMSD 

was calculated using backbone atoms (i.e., Cα, N, C, and O) with reference to the experimentally-

determined PDB crystal structure.  

The average RMSD for the LHTP-inititated and PDB-inititated MD ensemble are 1.48 Å 

and 1.55 Å, respectively (top left, Figure 5). To further confirm LassoHTP’s fidelity, we calculated 

backbone heavy atom RMSD for the ring, loop, and tail substructures with the reference taken 

from the corresponding structural moeity in the crystal structure. In contrast, the average RMSD 

for the LHTP versus PDB ensemble is 0.70 Å vs. 0.66 Å for the ring (top right, Figure 5), 0.70 Å 

vs. 0.67 Å for the loop (bottom left, Figure 5), and 0.84 Å vs. 0.85 Å for the tail (bottom right, 

Figure 5). These results show that the RMSD values calculated from the LHTP-initiated ensemble 

closely align with those from the PDB-initiated ensemble regarding the full peptide and its 

substructures. The alignment in the tail substructure is especially impressive because the tail is 

generated in situ by the tail extender function in LassoHTP and is the most flexible part of the 

peptide. The consistency of the RMSD values in the ring is somewhat expected because of its 

conformational rigidity. The close match in the loop RMSD values can be attributed to the use of 

caulosegnin-II loop conformation in the LassoHTP scaffold library (Supporting Information, 

Figure S2), although the residues are replaced by alanine in the library. The similar RMSD 

distributions between both ensembles show that LassoHTP yields a reliable lasso peptide 

molecular model and conformational ensemble.  
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In addition to caulosegnin-II, we further tested LassoHTP using seven distinct lasso peptide 

structures that have been determined by NMR (Figure 6 and Supporting Information, Table S2). 

We followed a similar approach to our testing protocol for caulosegnin-II. The first structural 

model of each peptide’s NMR-resolved structural ensemble was used to inititate the sampling of 

MD conformational ensemble. We also used the first structural model as a reference structure for 

RMSD calculations in both LHTP- and PDB-initiated MD ensembles. The seven lasso peptides 

used in the benchmark are: benenodin-1 conformer 1 (PDB ID: 5TJ1),17 benenodin-1 conformer 2 

(PDB ID: 6B5W),17 citrocin (PDB ID: 6MW6),3 the RGD variant (i.e., G12R, I13G, and G14D) 

of microcin J25 (mccJ25 RGD, PDB ID: 2MMW),12 streptomonomicin (PDB ID: 2MW3),40 

ubonodin (PDB ID: 6POR),4, 5 and xanthomonin-II (PDB ID: 2MFV)22. They involve a wide range 

of lasso constructs. Xanthomonin-II has a 7-membered ring; citrocin, mccJ25 RGD, ubonodin, and 

benenodin-1 have 8-membered rings; and streptomonomicin has a 9-membered ring. The loop size 

ranges from 4 aa in xanthomonin-II to 18 aa in ubonodin.  

Using LassoHTP, the sequence of each lasso peptide, along with the annotation of ring, 

loop, and tail size, is converted to a lasso peptide structural model. In the benchmark, the poly-

alanine scaffolds used to construct the lasso peptide structures were derived from either PDB, 

including: citrocin (i.e., ring size: 8 aa and loop size: 9 aa), MccJ25 RGD (i.e., ring size: 8 and 

loop size: 11 aa), and ubonodin (i.e., ring size: 8 aa and loop size: 18 aa), or steered-MD 

simulations, including: benenodin-1 conformer 1 (i.e., ring size: 8 aa and loop size: 6 aa), 

benenodin-1 conformer 2 (i.e., ring size: 8 aa and loop size: 7 or 8 aa),  streptomonomicin (i.e., 

ring size: 9 aa and loop size: 4, 5, or 6 aa), and xanthomonin-II (i.e., ring size: 7 aa and loop size: 

2, 3, or 4 aa). In addition, only one scaffold construct was used for benenodin-1 conformer 1, 

citrocin, MccJ25 RGD, and ubonodin due to the adjacency between the steric plugs; multiple 
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scaffold constructs with various loop/tail sizes (i.e., translational isomers) were employed for 

benenodin-1 conformer 2, streptomonomicin, and xanthomonin-II because the upper and lower 

steric plugs in these peptides are gapped by one or a couple of amino acids (Supporting 

Information, Text S4). In this way, LassoHTP can maximize sampling of the conformational space 

by automatically modeling multiple translational isomers of the lasso peptide. For these peptides, 

the RMSD value is averaged over ensembles of all possible constructs.  

 

Figure 6. Averge RMSD values of LHTP-initiated (colored in blue) and PDB-initiated (colored 

in orange) MD ensembles for eight lasso peptides involved in the benchmark. The structures of 

the lasso peptides were determined mostly by NMR except for caulosegnin-II by X-ray 

crystallography. Average RMSD calculations include backbone heavy atoms (i.e., Cα, N, C, and 

O) with reference to the crystal structure or the first structure of the NMR ensemble. For 

streptomonomicin, xanthomonin-II, and benenodin-1 confromer 2, the average RMSD values for 

the LHTP-inititated MD ensembles account for multiple LassoHTP constructs with various loop 

and tail sizes. 
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In terms of deviation from the reference NMR structure, the average RMSD values of the 

LHTP-initiated ensembles range from 1.93 Å for mccJ25 RGD to 3.64 Å for streptomonomicin; 

those of the PDB-initiated ensembles range from 1.21 Å for benenodin-1 conformer 2 to 3.04 Å 

for ubonodin. In both MD ensembles, the sampled conformers deviate reasonably from the 

reference structure. Two peptides, ubonodin and streptomonomicin, involve an average RMSD 

values higher than 3.00 Å in the LHTP-initiated MD ensemble. By inspecting the RMSD values 

of the substructures, we observed that ubonodin involves a flexible loop (i.e., 2.96 Å), while 

streptomonomicin involves a flexible tail (i.e., 2.93 Å by averaging over three constructs, 

Supporting Information, Table S2).  

Furthermore, we compared the difference of the average RMSD values between the two 

ensembles (i.e., ∆RMSD, defined as RMSDLHTP – RMSDPDB). The ∆RMSD values range from 

~0.0 Å for benenodin-1 conformer 1 and citrocin to ~1.2 Å for streptomonomicin and benenodin-

1 conformer 2. Over seven lasso peptides in the benchmark, the average of ∆RMSD values is 0.48 

Å, which indicates the conformational similarity between the two ensembles. Benenodin-1 

conformer 2 and streptomonomicin involve the largest discrepancy between the two ensembles. 

Benenodin-1 conformer 2 involves a cis-isopeptide bond,15 which was not considered in the 

current version of LassoHTP. For streptomonomicin, the NMR structure was determined in 

methanol. The simulations using water box likely contribute to enlarge the deviation from the 

reference structure, albeit being more relevant to their biological environment. In the future version 

of LassoHTP, we will implement functions to construct cis-configuration for the peptide or 

isopeptide bond; we will also implement modules to allow using an organic solvent box for MD 

sampling of lasso peptides. We should note that the use of 100 ns classical MD might not 

sufficiently cover the conformational space for lasso peptides with a flexible loop or tail. In 
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practice, we would recommend using accelerated41 or replica-exchange42 MD for conformational 

sampling like what has been extensively demonstrated in the conformational studies of cyclic 

peptide.43-45  

5. Conclusion 

 LassoHTP is a new Python platform that allows automatic structure construction and 

conformational sampling in a high-throughput fashion. LassoHTP uses a user-input lasso peptide 

sequence and conformational annotation to construct a lasso peptide structure and generate the 

structure’s conformational ensemble. The LassoHTP workflow accomplishes this via three main 

modules: the scaffold constructor module, the mutation module, and the high-throughput MD 

module. The scaffold constructor module constructs the proto-lasso peptide structure (i.e., 

polyalanine scaffold) by selecting a ring and upper loop structure from the scaffold library 

followed by appending additional alanine residues to complete the tail length. The mutant 

generator module changes all alanines on the proto-structure to match the user-given amino acid 

sequence.  The MD simulator module automatically generates input files for the structure, 

optimizes the structure, and then performs MD sampling to construct a conformational ensemble. 

 To evaluate LassoHTP’s performance, we benchmarked LassoHTP against eight known 

lasso peptides, including one with a crystal structure (i.e., caulosegnin-II) and seven with NMR 

structures (i.e., benenodin-1 conformer 1, benenodin-1 conformer 2, citrocin, MccJ25 RGD, 

xanthomonin-II, streptomonomicin, and ubonodin). We applied LassoHTP to construct de novo 

structures of these lasso peptides and generate their conformational ensembles with MD 

simulations. Then, we generated conformational ensembles using the experimentally-determined 

structures as the initial structures. Using backbone RMSD as a metric and the first structure of the 
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NMR ensemble or, in the case of caulosegnin-II, the crystal structure as reference, we compared 

the two distinct conformational ensembles for each lasso peptide. All LassoHTP-generated MD 

ensembles are well consistent with their PDB-initiated MD ensembles, on average deviating no 

more than 1.2 Å in RMSD. The benchmark shows that LassoHTP can generate valid lasso peptide 

structures and conformational ensembles de novo. As such, lassoHTP provides a foundation for 

high-throughput computational lasso peptide prediction and design to facilitate experimental 

discovery.  
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