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ABSTRACT   

The COVID-19 pandemic has resulted in millions of deaths around the world. Multiple 
vaccines are in use, but there are many underserved locations that do not have adequate access to 
them. Variants may emerge that are highly resistant to existing vaccines, and therefore cheap and 
readily obtainable therapeutics are needed. Phytochemicals, or plant chemicals, can possibly be 
such therapeutics. Phytochemicals can be used in a polypharmacological approach, where 
multiple viral proteins are inhibited and escape mutations are made less likely. Finding the right 
phytochemicals for viral protein inhibition is challenging, but in-silico screening methods can 
make this a more tractable problem. In this study, we screen a wide range of natural drug 
products against a comprehensive set of SARS-CoV-2 proteins using a high-resolution 
computational workflow. This workflow consists of a structure-based virtual screening (SBVS), 
where an initial phytochemical library was docked against all selected protein structures. 
Subsequently, ligand-based virtual screening (LBVS) was employed, where chemical features of 
34 lead compounds obtained from the SBVS were used to predict 53 lead compounds from a 
larger phytochemical library via supervised learning. A computational docking validation of the 
53 predicted leads obtained from LBVS revealed that 28 of them elicit strong binding 
interactions with SARS-CoV-2 proteins. Thus, the inclusion of LBVS resulted in a 4-fold 
increase in the lead discovery rate. Of the total 62 leads, 18 showed promising pharmacokinetic 
properties in a computational ADME screening. Collectively, this study demonstrates the 
advantage of incorporating machine learning elements into a virtual screening workflow.  



INTRODUCTION  

            Since its start in December 2019, the COVID-19 pandemic has caused more than six 
million deaths worldwide,1 long term health effects in many who have recovered from acute 
infection,2 and severe global economic damage. Moreover, zoonotic disease-driven pandemics 
are likely to become more prevalent and severe over time.3 Thanks to the extraordinarily rapid 
development of vaccines, transmission of COVID-19 has been attenuated and its symptoms have 
been greatly reduced in a large fraction of global societies. Although more than 60% of the world 
is fully vaccinated as of July 2022,4 large inequities remain. As the virus mutates, however, and 
modifies its structural and functional components, existing vaccines may become less effective.5 
Vaccines developed against the early variants of SARS-CoV-2 are already less effective against 
the more infectious delta and omicron variants, hindering progress toward herd immunity.6 7 

Identifying chemicals with therapeutic potential against SARS-CoV-2 and related viruses would 
(1) provide additional protection, even for the vaccinated members of the global community, (2) 
offer supplementary treatment options for individuals with medical conditions or personal beliefs 
that preclude vaccine use, and (3) provide treatment for less developed regions of the world. 
Some antiviral drugs, namely the polymerase inhibitors Remdesivir (GS-5734, Veklury) and β-
D-N4-hydroxycytidine (NHC, Molnupiravir, Merck), as well as the protease inhibitor PF-
07321332 (Nirmatrelvir, Pfizer), have all received at least an EUA (emergency use 
authorization) from the FDA.8 However, mono-drug therapy, as the HIV/AIDS epidemic taught 
us, carries in the risk of rapid development of drug resistance.9 Already, mutations that confer 
resistance to Remdesivir10 and Paxlovid11 have been discovered, and there is concern that other 
monotherapies like Molnupiravir may cause drug resistance if they are not used as part of a 
treatment that targets multiple viral components.12 13 Moreover, certain Omicron subvariants 
have documented resistance towards sera from vaccinated individuals, demonstrating resistance 
against spike protein neutralizing antibodies.14 Hence, combinational drug therapy that 
simultaneously targets several viral proteins and possibly also benefits host anti-viral and anti-
inflammatory mechanisms is desirable as it would reduce viral replication and could delay, if not 
abrogate, the development of resistant variants. 15  

Thus, therapeutic drug regimens will ideally be (i) effective against multiple arising 
variants of SARS-CoV-2 as well as (ii) quickly accessible for disparate communities across the 
globe. Identifying such therapeutics is a critical, yet challenging endeavor due to the resource-
intensive process of drug development and the rate at which many infectious disease agents 
mutate to evade these same treatments. A potential solution for the first challenge of developing 
a broadly effective therapeutic is through polypharmacology (i.e., using a cocktail of drugs that 
target multiple distinct protein functions of the virus.16 Polypharmacology has shown remarkable 
results for other devastating diseases such as HIV.17 A key advantage of this combinatorial drug 
approach is that the virus would need to undergo multiple simultaneous mutations in order to 
become resistant to each individual drug in the combination. Plant-derived phytochemicals that 
are generally regarded as safe (GRAS), are an attractive resource for drug development. 
Although there have been concerns about the transparency of the process by which compounds 
are added to the GRAS list,18 we focus our efforts on them because, provided they are used in 



physiological doses, they would not require pre-clinical animal testing nor phase I and II safety 
trials in humans. Phase II efficacy trials could be implemented rapidly upon development of a 
reproducible protocol. Among the many tens of thousands of diverse compounds produced by 
plants, hundreds of these phytochemicals have already been identified as having antiviral, 
antibacterial, and anti-inflammatory properties.19 Thus, antiviral phytochemicals offer a 
promising starting point for the screening and discovering of specific drugs that are effective 
against SARS-CoV-2. 

Computational molecular docking has experienced a surge of advances in recent years 
largely due to the continued rise in processing power, refinement of score functions, and 
increased availability of high-resolution molecular structure data. Thanks to the fast response by 
the scientific community, thousands of structures of the structural and non-structural protein 
components of SARS-CoV-2 have been generated and made publicly available.20 Using a 
combination of crystallographic and modeled structures, recent studies have explored the use of 
computational simulations to identify small molecules that bind to SARS-CoV-2 proteins. Much 
of this work has focused on inhibition of the main protease (Mpro)21 22 23 24 as well as the RNA-
dependent RNA polymerase,25 spike protein,26 and replicase.27 Further work describes the 
potential for phytochemicals to make a positive impact on treating COVID-19 and provides 
evidence for benefits elicited from flavonoids,28 polyphenols,29 and alkaloid drugs.30  

The advent of machine learning (ML) in drug discovery and development has also 
facilitated and accelerated predictive processes through the use of Bayesian models,31 structure-
based algebraic topology,32 convolutional neural networks,33 and transfer learning.34 The 
application of ML has prevailed in various stages including target identification and validation, 
compound screening and lead discovery, preclinical development, and clinical development.35 

          In this study, we use the extensive structural datasets in combination with a refined and 
annotated collection of anti-viral phytochemicals to evaluate which naturally derived medicines 
have the highest potential for evoking strong binding interactions to SARS-CoV-2 proteins to 
preclude or disrupt the viral infection process. Previous docking studies have typically examined 
one or a few protein targets. Here, we screen several non-structural proteins (NSP1, the NSP3 
macrodomain, NSP5, the NSP7-NSP8 complex, NSP9, NSP10, NSP13, and NSP15) and two 
forms of the structural spike protein (the receptor binding domain and the full-length spike) 
because of their essential contributions to viral replication and infection. For instance, the main 
protease (NSP5) is responsible for cleaving individual SARS-CoV-2 protein chains from a 
translated polyprotein chain.36 The helicase (NSP13) has an essential role in viral replication due 
to its function in unwinding RNA and DNA.37 The NSP7-NSP8 heterodimer binds to NSP12 to 
form the core RNA-dependent RNA polymerase,38 and the NSP3 macrodomain is responsible for 
hydrolyzing ADP ribose modifications made by the host cell for regulating the immune response 
to viral infection.39 NSP1 is a virulence factor responsible for inhibiting host cell translation by 
binding to the mRNA channels of the ribosome,40 and NSP15 is responsible for cleaving viral 
RNA to evade immune detection.41 Lastly, NSP10 binds to NSP14 and NSP16 in order to 
activate their functions,42 and NSP9 is an important RNA binder.43 We used the modeling 



software Rosetta 3.12 to conduct ligand docking simulations (structure-based virtual screenings 
or SBVS), to obtain the estimated binding free energies between our phytochemicals and protein 
structures. We identified lead compounds with high affinity toward individual protein structures 
by analyzing the distributions of the docking energy scores for each protein. 

Because of the time-consuming nature of high-resolution docking simulations, it was 
infeasible to run SBVS for all phytochemicals of interest. Therefore, we implemented machine 
learning algorithms to predict potential lead compounds from a separate, larger phytochemical 
library. We used unsupervised learning to cluster the screened anti-viral phytochemicals in our 
initial library, aiming to extract the chemical features of identified leads. We then identified lead 
clusters by ranking the fractions of lead phytochemicals within each cluster. Then, we employed 
supervised learning to classify the un-screened phytochemicals from the larger library into the 
established clusters. Of the new library compounds, only those classified into our lead clusters 
were subjected to docking simulations to evaluate their ability to bind SARS-CoV-2 protein 
targets (Figure 1). Overall, our study has identified 62 lead compounds that may inhibit one or 
more SARS-CoV-2 proteins. Eighteen of those leads show promising results in a SwissADME 
screening. In our investigation, the use of machine learning significantly sped up the ligand 
screening process, giving rise to a 4-fold increase in lead compound yield. 

 

Figure 1. Overview of the structure and ligand-based virtual screening workflow. Numerous SARS-CoV-
2 protein structures and 272 anti-viral phytochemicals were first prepared for the Rosetta protein-ligand 
docking (SBVS). After docking (I), lead phytochemicals were chosen based on the highest performing 
(lowest docking energy) simulations (II). The initial phytochemical library (272 compounds) was then 
clustered according to chemical similarity (III). Lead clusters were then identified as the clusters that had 
the highest proportions of lead phytochemicals (IV). The ligand-based virtual screening then classified 
973 phytochemicals from a distinct database into the established clusters (the newly classified 
phytochemicals are represented by the hollow circles added to the clusters) (V). New phytochemicals 
classified as belonging to lead clusters were identified and subjected to high-resolution structural docking 
(VI). The ligand based virtual screening began only once the structural based virtual screening of the 272 
initial phytochemicals was completed. 
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METHODS 

Ligand Preparation for In Silico Docking 

The Rosetta protein-ligand docking protocol requires two inputs: a PDB file containing 
the protein and ligand structures, and a .params file. A list of 343 antiviral phytochemicals was 
initially obtained from the USDA Phytochemical and Ethnobotanical Databases.19 Three-
dimensional structures of 272 of these phytochemicals were downloaded from the ZINC and 
PubChem databases in SDF format for the initial SBVS. The remaining 71 phytochemicals did 
not have SDF files that could be found within publicly available databases. OpenBabel,44 a 
chemical file conversion and manipulation application, was then used to protonate ligand 
structures for a pH of 7.4, in order to better simulate in-vivo conditions. Ligand conformational 
space sampling was then performed using the BCL::Conf  application.45 This application 
generates 100 conformers for each ligand by segmenting the ligand into fragments and 
recombining them based on information contained in a small molecule fragments database.46 
Afterwards, a Python script in the Rosetta package named “molfile_to_params.py” was used to 
generate a .params file and a ligand PDB file.47  

Protein Preparation for In Silico Docking 

All SARS-CoV-2 protein structures in the apo form (Table 1, Figure 5B) were obtained 
from the Protein Data Bank.20 When multiple structures existed for a single protein, priority was 
given to those with higher resolution. Structural files were cleaned by removing unnecessary 
components such as water molecules, solvated ions, and non-targeted oligomers using both 
PyMOL48 and a script within Rosetta named “clean_pdb.py”.47 The spike protein receptor 
binding domain (RBD) was manually excised from the PDB file 6XM4 using PyMOL. Lastly, 
the cleaned protein structures were concatenated with the ligand PDB files prior to docking. 

Table 1: Protein structures obtained for docking  

Protein Names(s) PDB ID Crystal Structure 
Resolution (Å) 

Starting Coordinates 
Sampled in PDB (x,y,z)a Reference 

NSP1 7K3N† 1.65 (-8.23, 23.87, 42.82) Ref  49 

NSP3 
Macrodomain/ADP 
Ribose Phosphatase 

6WEN† 1.35 (18.38, 9.09, 7.12) Ref  50 

NSP3 
Macrodomain/ADP 
Ribose Phosphatase 

6WEY 0.95 (1.96, 17.18, -12.84) Ref  51 

NSP5/Main Protease 6Y2E 1.75 
(-13.67, -26.75, -0.99),          
(-29.43, -21.15, 26.23),      
(-13.09, -11.27, 18.19) 

Ref  52 

NSP5/Main Protease 7AR5† 1.40 (7.82, -3.33, 24.55),    
(25.22, 5.79, -4.22) Ref  53 

NSP7-NSP8 
complex 6XIP†* 1.50 (21.72, 3.23, 6.96) Ref  54 



NSP7-NSP8 
complex 6YHU 2.00 (-26.01, 27.66, 65.30),        

(-35.96, 36.89, 67.50) Ref  55 

NSP9 6WXD† 2.00 (56.77, 2.28, 21.60) Ref  56 

NSP9 6W9Q†* 2.05 (-11.77, -7.87, -4.06),          
(-6.35, -25.85, -24.59) Ref  56 

NSP10 6ZCT 2.55 (7.91, 86.52, 19.97) Ref  57 

NSP13/Helicase 6ZSL†* 1.94 

(-16.51, 26.99, -65.81),       
(-40.15, 37.82, -73.08),          
(-35.46, 17.58, -71.92),          
(-17.75, 5.97, -72.65) 

Ref  58 

NSP13/Helicase 7NIO†* 2.20 

(-25.12, 23.71, -36.28),       
(-13.77, 45.04, -16.14),      
(-25.82, -8.97, -38.29),       
(-47.86, 18.62, -22.20) 

Ref  58 

NSP15/Endoribonuc
lease 6VWW† 2.20 

(-78.37, 34.30, -27.01),      
(-77.69, 17.05, -17.30),      
(-71.85, 25.17, -8.45),        
(-65.18, 27.79, -37.56) 

Ref  59 

Spike protein (closed 
state) 6VXX†* 2.80 

(212.96, 179.67, 235.36), 
(237.65, 229.12, 244.34), 
(176.30, 229.44, 246.03) 

Ref  60 

Spike RBD 6XM4b† 2.90 (176.00, 222.46, 148.56), 
(193.40, 229.39, 109.43) Ref  61 

aThese coordinates were obtained via our CASTp protocol described in “Protein-Ligand Binding Site Prediction”. They are the 
centers of 3D regions sampled by the ligands during docking. 

bThe receptor binding domain of the spike protein was manually removed from the structure 6XM4 and then submitted for 
docking, since no PDB structure for the RBD in the unbound form could be found. Thus, 6XM4 was not docked as a complete 
structure.  

†A limitation of many protein crystal structures is that a large number of them (approximately 70% and increasing as of 2015) 
have missing or uncertain regions in their PDB files.62 Often, these unresolved regions are disordered N-/C- termini and highly 
flexible loops with large B-factors, indicating uncertainty in atom positions.63 Many of these regions are also added sequences 
that help stabilize crystal structures.64 Of our 15 protein structures, 11 (marked with †) had missing or uncertain regions in their 
PDB files, most of which were under 10 residues in length and were in or near high B-factor regions. Many of these regions were 
termini. However, we did not sample the entire protein surfaces during docking (as detailed in Protein-Ligand Binding Site 
Prediction). For 6 of the 11 structures that had uncertain regions, our ligand docking protocol did not sample positions near those 
uncertain regions. 
*Protein structures marked with this asterisk had uncertain areas close to the areas sampled by Rosetta during docking (within 8 
Å. Protein structures marked with † but not the asterisk had uncertain regions, but those regions were not close to the areas 
sampled during the dockings. 

Protein-Ligand Binding Site Prediction 

            To locate potential binding sites on our proteins prior to the docking runs, we utilized the 
CASTp (Computed Atlas of Surface Topography of Proteins) webserver to obtain pocket 
structural information and the center coordinates of each unit sphere that comprised the 
pockets.65 CASTp applies geometric techniques to identify surface pockets and internal cavities 
within a protein structure (Figure 3A). Two metrics (pocket volume and surface area) were 



employed to sample CASTp-identified pockets, since sampling each of the numerous pockets 
during docking would have been computationally unfeasible. Once potential pockets were 
determined, the center coordinates of the spheres that made up the pockets were used as initial 
coordinates for high-resolution docking.  

Potential binding pocket sampling criteria were established based on the statistics of the 
binding pockets of protein-ligand complexes obtained from the CASF-2016 dataset. This dataset 
contains 285 unique, high resolution crystal structures (Figure S1, Table S1, and Table S2).66 
The CASF-2016 dataset was chosen because it had many protein complexes similar in size to the 
SARS-CoV-2 nonstructural proteins we docked. Our pocket sampling criteria first ranked all 
pockets for a particular protein structure by volume from largest to smallest, and then compared 
each pocket to the largest volume pocket. All pockets that had volumes at least 10% of the 
largest pocket volume were considered potential binding pockets. If any pocket had a volume 
less than 10% of the largest pocket volume, then their surface areas were compared to the surface 
area of the previously ranked (larger by volume) pocket. Such small binding pockets were only 
considered potential binding pockets if their surface areas were larger than that of the previously 
ranked pocket. All other pockets with volumes less than 10% of the largest pocket volume were 
not considered and not sampled during docking.  

 Two separate methods for binding site coordinate extraction were developed: one 
optimized for smaller pockets (Figure 3A in green), and another for large pockets (Figure 3A in 
red). For small pockets, defined as having volumes less than 1000 Å3, the center of the largest 
sphere within that pocket was extracted as a starting coordinate for the docking simulation. For 
large pockets, multiple starting coordinates were extracted (Figure 3B in red). These coordinates 
were the centers of spheres within the pocket whose volumes were larger than 5% of the total 
pocket volume. The distance between pairs of coordinates in the large pockets also had to be at 
least 30 Å to avoid sampling space overlap during docking simulations. All chosen coordinates 
within the potential binding pockets were embedded in the “start_from” mover in the Rosetta 
docking script.67  

Docking Data Analysis 

          One thousand models (docking poses) were generated for every sampled binding pocket 
for each protein-ligand combination we had. Each model supplied data that described its docked 
structure. Among the data from the simulations, the index “Interface_delta_X” (energy score) 
was used to indicate the free energy of the binding event. Because binding likelihood is inversely 
related to the energy score,68 the lowest energy score from all model scores generated for a given 
protein-ligand pair was used to represent the binding favorability of that docking. We performed 
exploratory data analysis on all lowest scores for each protein structure, and we fit these scores 
to a normal distribution per protein structure. Phytochemicals with scores at least two standard 
deviations below the average of all compounds’ scores for a specific protein were designated as 
lead candidates against that specific protein. 

 



Rosetta Score Function Selection 

Score functions are used to calculate the energies of proposed biomolecules during each 
step of the docking simulation. A score function is the sum of weighted energy terms that include 
both physical forces and statistical parameters. In order to determine which score function was 
best suited for this study, we examined a paper by Smith et al. which tested the following 
Rosetta score functions: RosettaLigand (Pre-talaris2013), Talaris2014, Ref2015, and 
Betanov16.69  This study revealed that RosettaLigand outperformed all of the other Rosetta score 
functions in a scoring test, which measured the ability of a score function to linearly correlate 
computational binding affinity with experimental binding affinity. RosettaLigand also 
outperformed all the other Rosetta score functions in a ranking test, which assessed the score 
functions’ abilities to rank experimental binding affinities of different compounds against the 
same target, and in a docking test, which assessed the score functions’ abilities to distinguish 
actual ligand binding orientation from other poses. These analyses were conducted on the CASF-
2016 dataset, a well characterized set of 285 protein-ligand complexes specially curated for the 
testing of score functions.66 Overall, the authors determined that RosettaLigand performs well 
relative to the best score functions available. Thus, we decided to implement RosettaLigand as 
our score function in this study. 

Phytochemical Structure Embedding 

           To quantitatively cluster and classify molecules, our phytochemicals were converted into 
numerical form. We used a circular molecular fingerprint method, extended-connectivity 
fingerprints (ECFPs),70 to generate molecular descriptors that store the structural information of 
a given molecule. These descriptors were mapped on a 1024-bit vector, where each bit indicated 
the appearance of a specific feature within a molecule. 

ECFPs treat each atom in a molecule as a center and iteratively examine immediate 
neighbors with increasing scope. A hash function is used to produce an identifier (hash value) 
that describes structural features. Identifiers from the previous iteration serve as the input for the 
subsequent generation of a new identifier that encompasses more of the molecular structure. For 
example, a single atom is examined during iteration zero and the input (i.e., the initial identifiers) 
are six properties of that atom, which are the daylight atomic invariants: the number of heavy 
atom connections, the number of hydrogen bonds, the atomic number, the atomic mass, the 
atomic charge, and the number of attached hydrogens.70 These invariants are hashed into an 
identifier which stores information from the chosen atom. In the next iteration (iteration one), the 
identifiers of connecting atoms are hashed into a new identifier which describes the structural 
information of the whole expanded neighborhood. The list of identifiers is updated each time 
when progressively larger circular substructural neighborhoods are included. The iteration 
proceeds until it reaches a user-specified number of iterations, or until no new identifier is 
generated.  

           Once all identifiers were obtained, the remainders obtained from dividing each identifier 
by 1024 were computed. These remainders were the vector indices where the bit is 1. By these 



means, we obtained a fixed-length vector (1024-bits) where 0 and 1 indicate the absence and 
presence, respectively, of identifiers.  

Unsupervised Phytochemical Clustering   

 Unsupervised learning is a type of machine learning that identifies data patterns in 
unlabeled data. We used the algorithms from Sci-Kit library71 to cluster our structure-screened 
anti-viral phytochemicals by structural similarities given only their feature representations (0s 
and 1s). Four clustering methods were compared for our clustering analysis: Agglomerative 
Hierarchical Clustering with the Ward linkage criterion,71 72 Spectral Clustering,71 73 Affinity 
Propagation,71 74and Ordering Points to Identify Cluster Structure (OPTICS).75 76 Descriptions of 
each of these clustering methods are available in the Supporting Information in the section titled 
“Ligand Clustering Methods Tested”. 

After molecule clustering, we used Shannon entropy (Eq 1) to measure the distribution of 
phytochemicals among all clusters. A high Shannon entropy indicates that a similar number of 
phytochemicals have been assigned to each cluster. In this way, identifying a clustering method 
that yields high Shannon entropy helps to avoid challenges associated with imbalanced 
classification. 77 78 79 

                                     𝐻(𝑋) = −' 𝑃(𝑥!)	𝑙𝑜𝑔"𝑃(𝑥!)
"
!#$                                       (Eq. 1) 

In the above equation, n is the number of clusters and P (𝑥!) is the fraction of molecules in 
cluster i over all clustered molecules. 

 

Figure 2. Phytochemical Clustering and Classification Scheme. The ECFP algorithm was used to encode 
molecule structural information into fixed-length vector representations. The molecule clustering is based 
on the distance calculations of vector representations of molecules. The un-clustered molecules (green) 
were classified into already-formed clusters by supervised learning. 

Supervised Classification for Potential Lead Prediction 

           The fraction of identified lead phytochemicals in each cluster was determined and clusters 
with the highest fractions were labeled as lead clusters. A classifier was then built to classify new 
phytochemicals that had not undergone high-resolution docking into the formed clusters using 
supervised learning. We designated the new phytochemicals classified into lead clusters as 
predicted lead phytochemicals. 



Supervised learning uses labeled datasets to learn the mapping function from inputs 
(features) to outputs (labels). In our case, the features were the 0s and 1s contained in each 
molecule-describing vector, and the labels were their cluster IDs. The 272 structure-screened 
phytochemicals were split into 80% training and 20% testing sets. The classification accuracy 
rate was obtained from the testing sets only. In order to get a high accuracy rate, we compared 
four classification methods: K-nearest Neighbors (KNN), Support Vector Machine (SVM), 
Random Forest (RF), and Linear Discriminant Analysis (LDA). KNN uses distance metrics to 
compute the distance between data points and classify them based on the majority votes of their 
surrounding k neighbors.80 In our model, k was chosen to be three, and the distance metric used 
was Tanimoto.76 The weights in the weight function for points closer to neighbors were higher 
than the weights for points further away. SVM classifies data points by moving data to a high 
dimensional space, where the soft margin between classes is maximized. Hyperplanes were 
created to separate classes.81 Radial Basis Function (RBF) was used to transform features into a 
high dimensional space. RF is an ensemble learning method that generates many classifiers 
(decision trees) and takes the majority votes of generated classifiers to predict the final 
outcome.82 LDA is a Gaussian maximum likelihood classification method that assumes each 
class is under a Gaussian distribution. The estimated means and covariances were obtained 
directly from the data. LDA classifies new observations by creating a dimension where the 
means of projected classes are maximally separated and the variance within each class is 
minimized.83  

ADME Screening and Protein-Ligand Interaction Analysis  

The SwissADME webserver84 was used on all of the lead compounds in order to test 
various drug-likeness properties and other important metrics like solubilities, PAINS violations, 
Brenk alerts, and lead-likeness. PAINS violations detect potentially promiscuous binders, and 
Brenk alerts identify potentially toxic and/or metabolically unstable moieties in a molecule. 
Lead-likeness refers to similarities a given compound has to a “lead”, or a starting point for 
further drug development.84 The SwissADME drug-likeness category is based on the following 5 
rules: Lipinski, Ghose, Veber, Egan, and Muegge. The total number of violations each lead 
compound had is tabulated in Figure 8A. The lead compounds that had a maximum of 1 
cumulative violation in all the screened categories were designated as promising lead 
compounds. 

Interactions between promising lead compounds and the proteins they were leads for 
were analyzed using PyMOL and UCSF Chimera.85  Hydrogen bonding interactions were 
identified using both software, and all of the residues that had hydrogen bonding interactions 
with the leads are noted in Table 4. Hydrophobic and electrostatic interactions were visualized 
with UCSF ChimeraX.86    

RESULTS AND DISCUSSION 

Global docking is accurately guided by CASTp pocket identification. Prior to performing 
high-resolution docking between our phytochemical libraries and the individual SARS-CoV-2 



protein structures, CASTp software was employed to identify concave regions of the protein 
surface that may facilitate ligand binding.65 We hypothesized that limiting the docking search 
space to highly solvent exposed concave crevices (pockets) would sufficiently capture the true 
location of most small molecule binding interactions while significantly reducing the necessary 
computational time required for iterative high-resolution docking. To test this hypothesis, we 
used the CASF-2016 dataset66—composed of 285 crystal structures of reliably characterized 
protein-ligand complexes – to quantify how often the largest protein surface cavities are involved 
in ligand binding interactions. The numerous surface cavities of each CASF-2016 structure were 
calculated and ranked by volume using the CASTp webserver. We calculated the frequency of 
ligands binding to the ranked surface cavities (Figure 3C, Figure S1). This resulted in 87% (247 
/285) of the ligand binding events occurring in the either the largest or second largest pocket by 
volume, whereas only 2% (7 /285) of the true binding pockets were not identified via CASTp. 
These statistics, among others, were used to establish our pocket sampling criteria mentioned in 
Methods (Figure S1, Table S1, Table S2). Following this validation, we analyzed each of our 15 
SARS-CoV-2 protein structures (Figure 5B) using CASTp to obtain the configuration of each 
available pocket, described by an aggregation of small spheres (Figure 3A). We extracted the 
central coordinates from only the pockets that met our selection criteria and used these 
coordinates for the initial ligand placements during high-resolution docking (Figure 3B). 

 

Figure 3. Binding pocket identification and ranking. (A) Concave crevices (pockets) along the protein 
surface are calculated using CASTp. Distinct pockets are individually colored throughout the SARS-
CoV-2 helicase (PDB: 7NIO), shown here. Pockets are numbered according to pocket volume rank. (B) 
Central coordinates of the largest pockets determine the initial placement of phytochemical ligands during 
high-resolution docking. The shaded colored regions indicate the approximate space sampled by the 
ligand during docking. Multiple docking regions were explored for pockets having volumes greater than 
1000 Å3. In the example shown, pocket 1 (red) is subdivided into two spheres. (C) Method validation was 
conducted using 285 solved protein-ligand complex crystal structures from the CASF-2016 dataset 
(further details are given in the Supporting Information). The histogram shows the number of true binding 
events (y-axis) occurring at each CASTp ranked pocket (x-axis). As mentioned, 87% of the binding 
events occurred in the first largest (red) and second largest (blue) pockets by volume. 
 

Each SARS-CoV-2 protein we’ve chosen in this study plays an essential role in the 
overall function of the virus. We conducted docking at a maximum of five unique binding 
pockets for each of these proteins (Figure S1). The bottom panel of Figure S1 shows the pockets 



sampled during the docking of each structure. Many of these pockets overlapped with or were 
proximal to active sites and functional interfaces. For instance, the largest pocket (colored in red) 
depicted for both NSP3 structures (6WEN and 6WEY) coincides with where the NSP3 
macrodomain binds ADP ribose.87 This is important, since the function of the NSP3 
macrodomain is to hydrolyze modified ADP ribose which is produced by the infected cell in 
order to regulate an immune response.39 The largest pocket in the main protease structures 
(6Y2E and 7AR5) is in the location of the active site,88 and the second largest pocket (colored in 
blue) in the NSP9 structure 6W9Q contains residue S59, which plays a role in the binding of 
both RNA and ssDNA.89 Additionally, the largest pocket sampled in the NSP7-NSP8 structure 
(6XIP) is in close proximity (~10 Å) to the binding site between the NSP7-NSP8 heterodimer 
and NSP12,90 91 and the largest pocket sampled in NSP10 (6ZCT) is approximately 11 Å from 
the binding site between NSP10 and NSP16.92 The NSP7-NSP8 heterodimer and NSP10 are both 
subunits of larger protein complexes, and ligands docked near the binding sites of the subunits 
could potentially affect the ability of the subunits to assemble into functional oligomers via 
allosteric modulation.93 

 
Clustering and Classification of Phytochemical Ligands. The Ward hierarchical clustering 
method and the Random Forest method were selected to cluster and classify phytochemicals, 
respectively. Because the prediction is largely determined by classifying molecules, the 
classification accuracy rate is a key indicator of the performance of different models. We aimed 
to generate a balanced distribution of cluster sizes to reduce a learning bias toward the majority 
class (i.e. the class imbalance problem)77 78 and promote more efficient learning for the 
phytochemical classification task. While sensitivity and specificity work well for binary-
classification evaluation, they are less suitable for indicating performance within multi-class 
classification models, such as the models used in our study. Alternatively, calculating Shannon 
entropy (Eq. 1) reflects how close a distribution is to uniformity and is better suited for multi-
class cases.79 Thus, we used Shannon entropy to measure phytochemical distribution uniformity 
among our divided classes and then favor the model that yields high Shannon entropy. Model 
hyperparameters were tuned with different classification methods in order to obtain the best 
results (Figure 4A). Principal component analysis (PCA) was applied to reduce the 1024-
dimensional molecule representation to a 2-dimensional representation for a visualization of 
clustering results (Figure 4B). The color of each data point in Figure 4B indicates its cluster. The 
molecule points colored in black were noise, meaning they were in a group that did not belong to 
any of the clusters formed by the similarity search. 

The hyperparameter tuned for Ward hierarchical and Spectral clustering was the number 
of clusters. The best performing classification methods for hierarchical and spectral clustering 
were RF and KNN, respectively. When the number of clusters was increased, the accuracy rate 
decreased, while the Shannon entropy increased for both clustering methods. The accuracy rate 
dropped from 95% to 83% and from 96% to 71% for Ward hierarchical and spectral clustering, 
respectively. When the number of clusters was increased from 10 to 60, the Shannon entropy 
increased from 0.87 to 0.93 and from 0.1 to 0.57 for Ward hierarchical and spectral clustering, 



respectively. This trend supports the inference that a higher misclassification rate occurs when 
more clusters are formed. Because more clusters formed with a certain number of molecules, 
they were more evenly distributed among all clusters. However, the overall Shannon entropy for 
Spectral clustering was low since a large portion of molecules were classified as noise. 

We next tuned the damping factor for Affinity Propagation clustering. The damping 
factor is the degree to which the current value is maintained relative to incoming values and is 
used to avoid numerical oscillations when values are updated.71 The overall accuracy of this 
model was not as good as the accuracy of the Ward hierarchical method. Damping factors in the 
range [0.59, 0.79) had no effect on the clustering outcome, as was indicated by the constant 
Shannon entropy. When the damping factor was beyond 0.79, only one cluster formed; therefore, 
the multiclass classification could not be performed. Since Affinity Propagation clustering 
depends on the values (availability and responsibility) sent between pairs of data points, the total 
cluster number is determined by the provided data rather than the user. Thus, we were not able to 
tune the number of clusters for this method. 

For the last clustering method, OPTICS, the minimal samples parameter (MinPts) was 
tuned. MinPts is the minimal number of points in a neighborhood used to consider a point as a 
core point.75 The KNN and RF classification methods generated a higher accuracy than SVM 
and LDA. When MinPts was increased from two to nine, the accuracy rate increased from 0.62 
to 0.8 and 0.62 to 0.75 for RF and KNN, respectively. However, the Shannon entropy decreased 
from 1 to below 0.3. This suggests that when more points are needed to decide a core point 
(cluster centroid), fewer clusters are formed which makes classification easier. However, this 
density-based clustering method caused many molecules to be categorized as noise. 

Comparing the different methods, we concluded that Ward hierarchical clustering with 
Random Forest classification produced the best results with 52 clusters formed, an 88% 
accuracy, and 0.943 Shannon entropy. Spectral clustering and OPTICS treated many molecules 
as noise indicated by the black data points, and Affinity Propagation generated skewed cluster 
sizes indicated by its color distribution (Figure 4B). The details of the molecule clustering results 
are in Table S8 of the Supporting Information. 



 

Figure 4. Comparison of phytochemical clustering and classification models. (A) Model hyperparameter 
tuning combined with classification methods. The left side of the y-axis indicates accuracy (colored solid 
lines) and the right side of the y-axis indicates Shannon entropy (black dashed line --) (B) 2-Dimensional 
representations of clustered molecules using PCA. The color shows the distribution of molecules into 
different clusters. Black data points represent molecules that were treated as noise because the clustering 
algorithm(s) were unable to group them.  

 

 

Identification of Lead Phytochemicals and Lead Clusters.  

We identified 34 lead phytochemicals and 8 lead clusters by combining clustering and SBVS 
results. Because different SARS-CoV-2 protein structures generated different energy score 
distributions, all energy scores were standardized by using z-scores to compare the binding 
ability of phytochemicals across different structures. We chose to use z-scores because our 
docking scores had approximately normal distributions, like we hypothesized initially. The z-
scores indicate the number of standard deviations from the sample means. In this study, the 
sample means were the averages of all lowest energy scores for the dockings of the initial 272 
anti-viral phytochemicals (in the SBVS) against specific protein structures. In the heatmap of z-
scores (Figure 5A left), each column represents a different protein structure and, therefore, has a 
different mean and standard deviation. The dark blue and purple cells indicate significantly 
greater-than-average binding affinities of phytochemicals to particular protein targets (two or 
more standard deviations below the mean energy score). The yellow and green cells indicate 
binding affinities that are only slightly greater than the average, and the white cells indicate 
binding affinities that are equal to or weaker than the average. Using a z-score of -2 as the 
threshold to identify lead candidates, we identified 34 lead compounds from the initial 272 anti-
viral phytochemicals. (Table S3) Among them, there were several with strong specificity toward 
a single protein structure. For example, (-)-epicatechin-3-o-gallate shows a strong binding ability 
to NSP13 (6ZSL), gambiriin-b3 and procyanidin-a-2 show strong binding ability to NSP10 
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(6ZCT), and procyanidin b2 shows a strong binding ability to NSP5 (6Y2E). There were also 
certain phytochemicals that demonstrated a high binding affinity to multiple SARS-CoV-2 viral 
proteins, i.e., a polypharmacological/multi-target behavior. For example, agathisflavone 
demonstrates a high binding affinity to the helicase (7NIO), main protease (7AR5), and NSP15 
(6VWW), and hypericin demonstrates strong binding to the main protease (6Y2E), NSP9 
(6WXD), and the spike protein (6VXX). Other molecular docking studies have shown that our 
main protease leads agathisflavone,94 amentoflavone,95 ginkgetin,96 procyanidin b2,97  bilobetin,96 

and hypericin98 are good binders against the main protease. Moreover, we found that other 
molecular docking studies mention some of the same interacting residues that we observed for 
our main protease leads hypericin,99 ginkgetin,100 bilobetin,100 and procyanidin b2.97 For 
example, Zhu and Xie found that procyanidin b2 forms hydrogen bonding interactions with GLY 
143 and GLU 166,97 and Dey et al. found that bilobetin forms hydrogen bonding interactions 
with GLU 166 and HIS 163.100 We observed these same interactions among others. 

The dendrogram graph shows the hierarchical orders of formed clusters (Figure 6A 
right). Clusters 5 and 50 are closely related and have a large dark area in the heatmap. Other 
noticeable patches of dark areas were observed for clusters such as 5, 36, and 51, which indicate 
that many of their constituent phytochemicals bind strongly to more than one SARS-CoV-2 
protein structure. There is a risk that the multi-target behavior exhibited by some of these 
compounds may indicate molecular promiscuity. We used the PAINS detector in SwissADME 
on all of our leads to check for molecular promiscuity and filter out any compounds that 
performed poorly (Figure 8A); Notably, cluster 5 consists mostly of flavones (Figure 6), which 
are a subgroup of flavonoids. Many flavonoids have been documented to be promiscuous 
molecules;101 however, after we conducted the SwissADME screening, none of the flavones that 
passed our filtering criteria were found to have any PAINS violations. Hypericin and 
pseudohypericin (the only compounds in cluster 51) had strong binding affinities to several 
targets, but they also had PAINS and other violations. Thus, they were not considered among the 
18 promising compounds which passed our SwissADME filtering criteria. 

The number of lead phytochemicals within each cluster was counted for each protein 
structure (Figure 6) in order to link cluster specificity to different SARS-CoV-2 structures. We 
identified the following clusters as lead clusters for our viral proteins (Table 2). 

Table 2: Lead clusters and the proteins that they contained leads for. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster Number Proteins Targeted by 
Cluster 

Cluster 5 
NSP1, NSP3, NSP5, NSP7&8, 
NSP9, NSP13, NSP15, Spike 

protein, Spike RBD 
Cluster 7 NSP10 
Cluster 30 NSP1 

Cluster 36 NSP3, NSP7&8, NSP13, 
Spike RBD 

Cluster 42 NSP5, Spike RBD 
Cluster 49 NSP7&8 

Cluster 50 NSP1, NSP7&8, NSP13, 
NSP15, Spike RBD 

Cluster 51 NSP3, NSP5, NSP9, NSP13, 
NSP15, Spike protein 

 



 

 



Figure 5. (A) Heatmap of docking energy z-scores of 272 anti-viral phytochemicals initially used in 
SBVS (left) and the cluster dendrogram with cluster ID labels (right). The phytochemicals are grouped 
into their clusters, and their names and numerical IDs are given in Table S8 of the Supplemental 
Information. Phytochemicals are also grouped into approximate chemical categories on the left side of the 
heatmap. (B) Docked structures for lead candidates (PDBs are available in Supporting Materials and can 
be found by following instructions in the Data and Software Availability section).  

 

Figure 6. Frequency (black bars) and normalized frequency (gray bars) of identified leads within each 
molecule cluster. Molecule cluster IDs are given on the x axis, and the approximate chemical classes 
which most phytochemicals within a cluster belong to are also specified on the x axis.  

Evaluation of LBVS Model. The inclusion of our ligand based virtual screening (LBVS) 
increased the rate of lead identification from 2.18% (SBVS only) to 16.44% (SBVS + LBVS). 
The 973 new phytochemicals from the larger phytochemical library were classified into 52 
formed clusters, and 53 of those compounds were classified into lead clusters (shown in Table 
2). Based on the specificity of clusters, we ran a total 298 docking simulations between these 53 
predicted lead phytochemicals and their corresponding protein structures. Among z-scores of the 
298 dockings, 49 cases (16.5%) were below -2, 214 cases (72.05%) were between -2 and 0, and 
34 cases (11.45%) were above 0 (Table S5). Compared to the z-scores of the initial dockings of 
the 272 anti-viral phytochemicals, we introduced a negative distributional shift of z-scores 
(Figure 7A). To further validate the improved predictive power afforded by the ligand-based 
approach, we docked 298 randomly selected phytochemicals that had been classified into non-
lead clusters (Figure 7B). A z-test analysis was performed on sample z-scores of the two 
populations (phytochemicals in lead clusters and those in non-lead clusters). The p-value of 
9.41*10-24 indicated that the mean difference of these two samples is statistically significant, 
suggesting molecule clustering and classification methods improved lead and non-lead class 
separation by using the extracted chemical features of strong binders to identify others. The 



additional phytochemicals that we predicted as lead compounds and confirmed by their docking 
energy scores are available in Table S4. 

A random under-sampling confusion matrix was constructed to measure the performance 
of our classification (prediction) model (Table S6). The matrix was based on protein-ligand pair 
counting. The recall (true positive rate) of 0.73 and 0.68 were obtained when the energy z-score 
of -2 and -1 were used to determine actual positive and negative, respectively. This suggested 
that our model retrieved relevant lead phytochemicals. However, the F1 score of 0.27 and 0.41 
suggested that our model could be further improved. 

 

Figure 7. (A) Distribution of docking energy z-scores generated via SBVS alone (dark gray) and SBVS 
with the inclusion of LBVS (light gray). Overlap is shown in the darkest gray (B) Distribution of docking 
energy z-scores of phytochemicals classified to lead clusters (light gray) and those classified to non-lead 
clusters (dark gray) via LBVS. Overlap is shown in the darkest gray. The red, yellow, and green dashed 
lines label z scores of 0, -1, and -2 respectively. 

 

 



 

ADME Screening for all Identified Lead Phytochemicals. We used SwissADME to obtain 
certain drug property parameters for the 62 lead phytochemicals identified through both the 
initial SBVS and those identified through LBVS and SBVS combined (Figure 8A).84 Eighteen 
compounds (Table 3, Figure S3, Table S9) showed promising results with a maximum of 1 
cumulative violation in the following categories: drug-likeness, PAINS, Brenk, and lead-
likeness. This threshold was based on the fact that Doravirine, a small molecule drug approved 
by the FDA in 2018 for the treatment of HIV, had 1 cumulative violation (Table S7).102  

 

Figure 8. (A) The cumulative violations of each lead molecule in the drug-likeness, PAINS, lead-
likeness, and Brenk categories. (B) Plant sources for 17 promising phytochemicals identified through the 
drug-likeness screening (no plant sources could be found for 7-ethylcamptothecin, so it isn’t present in the 
diagram). Plant names are on the two sides and phytochemicals are in the middle. Mahonia japonica and 
Camptotheca acuminata are bolded and contain at least 3 of the promising phytochemicals. 

 

 

 

 

 

Table 3: Lead phytochemical compounds from LBVS and SBVS with favorable drug-likeness properties 
targeting structural and non-structural SARS-CoV-2 proteins. Bolded compounds were identified using 
LBVS rather than SBVS alone. The cytochrome interaction field identifies the number of main P450 
cytochrome isoforms (out of 5) that a compound interacts with. 



 

Some of the 18 promising phytochemicals like dihydrochelerythrine (alkaloid with 
antimicrobial and anticancer properties)103 104 were poorly soluble compared to the other leads 
despite having either 0 or 1 total violations in all categories. Poor solubility can impact 
biodistribution and bioavailability, preventing a drug from adequately reaching the tissues where 
it is most needed.105 Many of the promising leads were also identified as potential inhibitors of 
some or all of the five main cytochrome P450 isoforms: CYP1A2, CYP2C19, CYP2C9, 
CYP2D6, and CYP3A4. Inhibition of these cytochromes can potentially lead to undesirable 
drug-drug interactions, since they are responsible for the metabolism of many drugs.84 

Additionally, 11 of the 18 promising leads were identified as P-glycoprotein 1 substrates, which 
may impact their efficacy since that protein is responsible for the excretion of certain compounds 
out of cells.106 Of the promising compounds, Rhein stood out since it was classified as either 
soluble or moderately soluble in all the SwissADME solubility categories, and it was not 
identified as an inhibitor of any of the aforementioned cytochrome isoforms (no other 
compounds met this last criterion). Rhein was not identified as a substrate of P-glycoprotein 1, 
but it did produce one PAINS violation, indicating possible promiscuity in binding. Notably, 
none of the other promising compounds produced any PAINS violations. 

Target Lead Phytochemicals Cluster Category Cytochrome 
Interaction 

Solubility 
(mmol/L) 

NSP7&8 

Columbamine 

36 

Alkaloid 

3 0.04 

Dihydrochelerythrine 5 0.01 

Jatrorrhizine 3 0.04 

Palmatrubine 3 0.04 

Papaverine 5 0.12 

10-methoxycamptothecin 

49 

4 0.29 

7-ethylcamptothecin 5 0.07 

Camptothecin 3 0.40 

Hydroxycamptothecin 1 0.41 

Acacetin 5 

Flavone 

4 0.03 

5,4’-dihydroxy-3,7,3’-
trimethoxyflavone 

9 4 0.02 

Eupatilin 

50 

4 0.02 

Oroxylin A 4 0.03 

Pectolinarigenin 4 0.03 

Salvigenin 5 0.02 

NSP9 3,3’-dimethylquercetin 9 Flavone 4 0.03 

NSP13 

Columbamine 

36 Alkaloid 

3 0.04 

Coptisine 2 0.04 

Dihydrochelerythrine 5 0.01 

Rhein 0 Polycyclic 0 0.28 

Spike RBD Columbamine 36 Alkaloid 3 0.04 

 



Of the promising leads, rhein and camptothecin were compared with 3 COVID-19 anti-
viral medicines (Remdesivir, Molnupiravir, and Paxlovid) and the HIV drug Doravirine in 
another SwissADME screening (Table S7). The comparison indicated that rhein is more soluble, 
has a higher bioavailability score, has better gastrointestinal (GI) absorption, and has fewer drug 
likeness violations than Remdesivir (which has 11 drug-likeness violations). Rhein also has 
greater solubilities than Paxlovid in all of SwissADME’s solubility categories. Molnupiravir is 
more soluble than both camptothecin or rhein in all categories, but its GI absorbance is listed as 
“low”, and it has 3 drug-likeness violations and 1 Brenk alert (indicating possible toxicity and/or 
metabolic instability). Overall, both rhein and camptothecin are classified as either soluble or 
moderately soluble in all categories, and they both have fewer total drug-likeness violations, 
PAINS violations, Brenk alerts, and lead-likeness violations than each of the 3 COVID-19 drugs 
analyzed (Table S7). This information indicates that rhein and camptothecin may have good 
biodistribution and comparable pharmacokinetics to well-performing drugs like Doravirine,107 
but future laboratory work is needed to make any definitive analyses. Our assessment is in 
agreement with reports of the therapeutic potential of rhein108 109 and camptothecin.110  

Lastly, we built a phytochemical-plant network for 17 leads, in order to discover plants 
that contain more than one lead (Figure 9B) using data from Dr. Duke’s USDA Phytochemical 
and Ethnobotanical Databases. The network shows that the plant Camptotheca acuminata 
contains 4 leads, the plant Mahonia japonica contains 3 leads, and the rest of the plants have one 
or two connections to lead phytochemicals. 

Figure 9. (A) The two plants that contain 3 (Mahonia japonica) and 4 (Camptotheca acuminata) of the 
18 phytochemicals identified as promising in the SwissADME screening. The part of the plant most 
abundant in a specific phytochemical (leaf, sprout sapling, bark, stem, whole plant) are shown in the icons 
to the left of the compound names.111 112 113 114 (B) A SARS-CoV-2 virion and the four labeled viral 



proteins targeted by the compounds in panel A. Color coded circles in A correspond to the protein 
targeted by each compound. 

Protein-Ligand Interaction Analysis of Promising Leads 
 

All of the 18 compounds that showed promising results in the SwissADME screening 
were analyzed with PyMOL, UCSF Chimera, and UCSF ChimeraX in order to determine the 
intermolecular interactions they had with the protein structures they were leads for. Specifically, 
the best scoring (lowest binding energy) complex for each protein-ligand pair was selected for 
the analysis. 

Table 4: Hydrogen bonding promotes ligand binding but is not required for high affinity interactions. 
Binding energy (Rosetta energy units; REU) for the 18 promising leads and their respective hydrogen 
bonding partners are shown.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
†These protein structures had regions of structural uncertainty within their PDB structures that were within 8 Å of the pocket bound 
by a promising lead. Specifically, a partially resolved C-terminus (6XIP) and flexible loop region (6ZSL) are proximal to binding 
pockets.       

Compound Protein(s) 
targeted 

Target 
PDB ID 

Number of 
h-bonds  

H-bonding 
residues 

Docking Score 
(REU) 

Acacetin NSP7&8 6YHU 2 V66, G64 -14.3 

Columbamine 

NSP7&8 6YHU 2 Q63 -14.4 

NSP13/Helicase 6ZSL† 2 D463, R165 -18.6 

Spike RBD 6XM4  0 N/A -16.8 

Oroxylin-A NSP7&8 6YHU 2 V66, G64 -15.4 

Salvigenin NSP7&8 6YHU 1 Q63 -13.8 

Pectolinarigenin NSP7&8 6YHU 2 V66, G64 -14.2 

Papaverine NSP7&8 6XIP† 4 R91 -17.0 

Eupatilin NSP7&8 6YHU 1 V66 -14.6 

Coptisine NSP13/Helicase 6ZSL† 3 S466, R165, 
K186 -18.5 

Dihydrochelerythrine 
NSP7&8 

6XIP† 3 R91, Q83 -16.8 

6YHU 1 G64 -16.6 

NSP13/Helicase 6ZSL† 2 R165, S465 -18.2 

Palmatrubine NSP7&8 
6XIP† 0 N/A -17.0 

6YHU 2 V66, G64 -15.4 

7-ethylcamptothecin NSP7&8 
6XIP† 1 N71 -17.0 

6YHU 0 N/A -13.4 

Camptothecin NSP7&8 6YHU 2 V167, Q158 -13.5 

Hydroxycamptothecin NSP7&8 
6XIP† 4 R106, R91 -16.6 

6YHU 1 G64 -13.7 

3,3’-dimethylquercetin NSP9 6W9Q 4 T67, S59, R39 -18.7 

10-methoxycamptothecin NSP7&8 6YHU 1 Q158 -14.0 

Jatrorrhizine NSP7&8 6YHU 0 N/A -13.7 

Rhein NSP13/Helicase 7NIO 9 
Q401, R564, 
R440, S286, 

K285 
-18.2 

5,4’-dihydroxy-3,7,3’-
trimethoxyflavone NSP7&8 6XIP† 1 R91 -16.6 

 



The interaction analysis revealed that V66 and G64 were common hydrogen bonding 
residues present in complexes with 6YHU, and R91 was a common hydrogen bonding residue in 
complexes with 6XIP. Additionally, R165 was a residue that participated in hydrogen bonding in 
all of the 6ZSL structures. Although 6XIP and 6YHU were both NSP7-NSP8 structures, they 
came from different crystal structures of differing global symmetry (oligomer assembly) and 
resolution, and they had different CASTp-identified potential binding pockets. Oligomerization 
is known to cause structural changes in protein monomers, potentially affecting pocket 
structure.115 Thus, the residues near the ligand positions ended up being different. Interestingly, 
the best scoring positions of jatrorrhizine against 6YHU, columbamine against the spike RBD, 
palmatrubine against 6XIP, and 7-ethylcamptothecin against 6YHU lacked any intermolecular 
hydrogen bonding interactions. This indicates that other binding interactions (e.g., hydrophobic 
interactions) may play an important role in those complexes. Pi stacking and pi-cation 
interactions were not observed in any of the complexes analyzed. While a greater number of 
hydrogen bonds didn’t correlate well with a better binding score in Rosetta (R2 = 0.227), all of 
the complexes in Table 4 that had binding energy scores below -18 REU had at least 2 hydrogen 
bonding interactions with neighboring residues. Notably, Rhein had a binding energy score of -
18.2 REU and the most hydrogen bonding interactions of any of the promising leads, with a total 
of 9 interactions (Table 4, Figure 11B). For further analysis, we examined the following 
compounds from the 18 promising leads: the ligand with the best docking score (3,3’-
dimethylquercetin), the ligand with the most hydrogen bonding interactions with its protein 
target (rhein), and the ligand with the best docking score out of the ligands that had no hydrogen 
bonding interactions with their protein targets (palmatrubine). 



Figure 10. (A) Surface map of the best scoring docked pose of 3,3’-dimethylquercetin against NSP9 
(6W9Q). The residues that have hydrogen bonding interactions with 3,3’-dimethylquercetin are shown in 
blue and the remaining residues within 5 Å of 3,3’-dimethylquercetin are shown in yellow. (B) The 3 
residues that have hydrogen bonding interactions with 3,3’-dimethylquercetin are shown and named. 
Hydrogen bonds are shown as turquoise lines. (C) Surface map showing electrostatic properties of 
residues neighboring 3,3’-dimethylquercetin. Residues colored in blue have a positive electrostatic 
potential, with darker blue indicating greater positivity. Red residues have a negative electrostatic 
potential, with darker red indicating greater negativity. (D) Hydrophilicity surface map of residues 
neighboring 3,3’-dimethylquercetin, where cyan indicates greater hydrophilicity and yellow indicates 
greater hydrophobicity. The darker the color, the more pronounced the hydrophilicity or hydrophobicity. 
 

3,3’-dimethylquercetin had the strongest binding affinity out of the 18 promising leads, 
with a docking score of -18.7 REU, and it had 4 hydrogen bonding interactions with the residues 
T67, R39, and S59 (Table 4, Figure 10B). 3,3’-dimethylquercetin likely had multiple favorable 
electrostatic interactions in its binding site, given that most surrounding residues had a positive 
electrostatic potential as indicated by the blue coloring, and these residues were near ligand 
oxygens with partial negative charges (Figure 10C). Some residues colored in pale red 
(indicating a weak negative potential) may have contributed to stabilizing the docked pose since 
they were near ligand hydrogens in hydroxyl groups that had a partial positive charge. 
Hydrophobic interactions also may have played a role in stabilizing the docked pose, since many 
of the surrounding residues had fairly hydrophobic side chains, as indicated by the dark yellow 
coloring (Figure 10D). 



 
Figure 11. (A) The best scoring docked pose of rhein against the Helicase/NSP13 (7NIO). Rhein is 
shown in pink, residues with which rhein forms hydrogen bonding interactions are colored in blue, and all 
other residues within 5 Å of rhein are colored in yellow. (B) The 5 residues that have hydrogen bonding 
interactions (shown as turquoise lines) with rhein are shown and named. (C) Surface map showing 
electrostatic properties of residues neighboring rhein. Residues colored in blue have a positive 
electrostatic potential, with darker blue indicating greater positivity. White residues have a neutral 
electrostatic potential. (D) Hydrophilicity surface map of residues neighboring rhein, where cyan coloring 
indicates greater hydrophilicity and yellow coloring indicates greater hydrophobicity. 

 
Rhein had a total of 9 hydrogen bonding interactions with neighboring residues, which 

was the most out of any of the promising leads. However, rhein was the only promising lead to 
have a PAINS violation shown by the SwissADME screening, indicating possible promiscuity in 
binding. A large number of hydrogen bond donors and acceptors in a molecule can lead to 
greater chances of hydrogen bonding, and this logically seems like it might cause promiscuity. A 
high density of hydrogen bonding groups in a molecule has been previously shown to indicate 
promiscuity in rhodanines and thiohydantoins,116 but it has also indicated selectivity in HIV-1 
protease inhibitors when they had more than 7 hydrogen bonding groups.117 Thus, it is difficult 
to state anything about the promiscuity of rhein based on its hydrogen bonding properties alone. 
The electrostatic potential map demonstrates that rhein likely had many favorable electrostatic 
interactions in its binding site since the surrounding residues had almost exclusively positive 
potentials, while rhein has 6 oxygens with partial negative charges that were part of carbonyl, 
hydroxyl, and carboxylate groups (Figure 11C). The hydrophilicity surface map indicates that 
hydrophobic interactions likely didn’t predominate in the docking since most of the neighboring 
residues were hydrophilic, as indicated by the cyan coloring (Figure 11D). Overall, hydrogen 
bonding and other electrostatic interactions likely contributed more than hydrophobic 
interactions to rhein’s binding energy of -18.2 REU. 

 

Figure 12: (A) Surface map of the best scoring docked pose of palmatrubine against NSP7&8 (6XIP), 
showing all residues within 5 Å of palmatrubine in yellow. No hydrogen bonding interactions were 
observed (B) Surface map showing electrostatic properties of residues neighboring palmatrubine. 
Residues colored in blue have a positive electrostatic potential, with darker blue indicating greater 
positivity. Red residues have a negative electrostatic potential, with darker red indicating greater 



electronegativity. (C) Hydrophilicity surface map of residues neighboring palmatrubine, where cyan 
indicates greater hydrophilicity and yellow indicates greater hydrophobicity. 
 

Palmatrubine docked to NSP7&8 (6XIP) had the best docking score out of all the 
promising leads that didn’t have any identified hydrogen bonding interactions. Its docking score 
of -17 REU was better than 17 of the 25 best docking scores of the 18 promising leads (Table 4). 
Electrostatic interactions other than hydrogen bonds likely played a role in stabilizing 
palmatrubine’s docked pose, as indicated by the dark blue residues in its vicinity, which could 
have interacted favorably with the negatively charged oxygens in the hydroxyl and methoxy 
groups of palmatrubine (Figure 12B). The partial positive charge on palmatrubine’s hydroxyl 
hydrogen may have interacted favorably with the neighboring residues colored in red. 
Additionally, palmatrubine had a positive charge on its nitrogen (colored in blue), which could 
have formed a favorable interaction with the residues colored in red. Since palmatrubine was 
surrounded by many hydrophobic residues, it likely experienced some stabilizing hydrophobic 
interactions. Many hydrophobic residues were colored a dark yellow, so the interactions they had 
with palmatrubine could have been stronger that the hydrophobic interactions rhein had with 
residues in 7NIO (Figure 11D), which were more distant and colored with a paler yellow. Thus, 
hydrophobic interactions likely contributed more significantly to palmatrubine’s docking score 
than they did to Rhein’s docking score. 

Overall, rhein and 3,3’-dimethylquercetin stood out from the rest of the promising leads 
because they both had binding scores below -18 REU and relatively large numbers of hydrogen 
bonding interactions. However, this discussion demonstrates that compounds like palmatrubine 
also deserve closer analysis since they can yield promising docking results despite not having 
any detected hydrogen bonding interactions with their target. 

 
Inhibitory Activity of Certain Leads. Among the 18 promising leads generated by our 
computational study, a subset of these compounds have been previously reported to have 
inhibitory activity against COVID-19 based on in vitro or in vivo assays. Specifically, 
pectolinarigenin was found to inhibit SARS-CoV-2 replication in Vero cells with an IC50 of 12.4 
μg/mL.118 Of the remaining leads compounds that had more than 1 cumulative violation in 
SwissADME, emetine inhibited SARS-CoV-2 replication in Vero cells with an EC50 of 0.147 
nM,119 and hypericin resulted in 84% viral inhibition in vitro at a concentration of 10 μM.98 
Additionally, amentoflavone (a lead compound against the SARS-CoV-2 main protease in our 
study) had an in vitro IC50 of 8.3 μM against the SARS-CoV main protease,120 which may be 
unsurprising given the high structural similarity (RMSD = 0.86Å) and conserved active sites 
between the viral proteases.121 

 
CONCLUSIONS 

           In this project, we introduce a machine learning-assisted ligand docking workflow to 
expedite the discovery of lead compounds. We apply this novel approach in the context of 
efficiently sampling large libraries of naturally abundant phytochemicals to treat SARS-CoV-2 
in a polypharmacological manner. Within our workflow, we implement a Rosetta high-resolution 



protein-ligand docking protocol (SBVS) in combination with ligand clustering via machine 
learning strategies (LBVS) to identify combinations of promising phytochemical binders against 
several SARS-CoV-2 proteins (both structural and non-structural proteins). The initial structure-
based virtual screening identified 34 leads from a library of 272 anti-viral phytochemicals using 
molecular docking. Ward hierarchical clustering of ligands from the initial screen revealed 
flavone and alkaloid chemical features to be most predictive of lead compounds. These results 
informed our ligand-based virtual screen, giving rise to 28 newly identified lead compounds and 
a 4-fold increase in rate of lead discovery. Applying physicochemical filters on our panel of 62 
phytochemical leads, we refined the number of therapeutically promising compounds to 18. Of 
those, rhein and camptothecin with strong potential binding affinities to NSP13 (7NIO) and 
NSP7&8 (6YHU), respectively, stood out by showing drug-likeness properties superior to those 
of Remdesivir, and comparable in many aspects to those of Paxlovid, Doravirine and 
Molnupiravir. 

          The main purpose of this project is not to make any definitive claims about any 
compounds screened, but rather to introduce a computational workflow that helps expedite the 
discovery of phytochemicals that could be used in a polypharmacological manner for COVID-19 
prevention and treatment. Our analyses are based on high-quality simulation data, statistical 
inferences, and machine learning predictions. While recent experimental118 122 and 
computational123 findings corroborate the therapeutic potential of the lead compounds identified 
here in our work, future in vivo and in vitro studies are needed to validate ligand function and 
efficacy. We hope our results and workflow will help to improve the scope of drug discovery 
efforts and reduce the high failure rate prior to costly lab testing. 
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written order: Histogram showing the number of instances when a protein-ligand complex from 
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used to establish pocket surface area cutoff criteria (Table S2); protein targets, energy scores, and 
clusters of lead candidates identified with SBVS (Table S3); descriptions of the 4 clustering 
methods we tested; protein targets, energy scores, and clusters of lead candidates identified with 
LBVS (Table S4); percentage of docking energy scores within certain ranges relative to the mean 
after LBVS was applied (Table S5); random under-sampling confusion matrix used to evaluate 
LBVS model (Table S6); drug-likeness data comparison between promising leads and the 
antivirals Doravirine, Paxlovid, Molnupiravir, and Remdesivir (Table S7); docking script used in 
Rosetta (Figure S2); structures of the 18 lead compounds identified as promising in the 
SwissADME screening (Figure S3); phytochemicals used in SBVS named, labeled numerically, 



and organized into their clusters (Table S8); SwissADME results of the 18 lead compounds 
identified as promising in the drug-likeness screening (Table S9). 
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NOTES 
Data and Software Availability 

For the molecular docking, Rosetta 3.12 was used which can be obtained for free with an 
academic license (https://www.rosettacommons.org/software/license-and-download). Rosetta 
3.12 was installed onto a cluster maintained by the Michigan State University Institute for Cyber 
Enabled Research. Docking jobs on this cluster were submitted using the Slurm workload 
manager. The CIDs, names, and SMILES of the 272 phytochemicals initially used in SBVS are 
available in the supporting files in a spreadsheet titled “Ligand_Library_Key_SBVS”. The 
SMILES and names of all the additional compounds screened through LBVS are available in a 
spreadsheet titled “AdditionalLibraryForLBVS.” The complete SwissADME data for the 62 lead 
compounds is available in the spreadsheet titled “SwissADMEfinalresults.” The BCL:Conf 
ligand conformer generator was installed alongside Rosetta 3.12 on the cluster, and it was 
obtained for free with an academic license from 
http://www.meilerlab.org/index.php/bclcommons/show/b_apps_id/1. OpenBabel was obtained 
for free from http://openbabel.org/wiki/Category:Installation. Various python scripts were used 
to generate plots, process docking input files and generate docking jobs on the cluster, and they 
are all available at (https://github.com/ziruiwang1996/ligand_protein_docking). Matplotlib was 
also used for plotting data. R and the statistics module in Python were used for calculating 
sample means, covariances, correlations, and all other statistical parameters. Other files 
containing raw docking data, components for the LBVS algorithm, and PDB files of all the lead 
compounds docked against specific proteins are accessible via a link present in a README.md 
document located at the GitHub site linked previously. These other files are all inside a Google 
Drive folder titled “data,” which is accessed by clicking the link in the README file. Additional 
score function testing data is available at 
https://ziruiw.shinyapps.io/score_functions_on_sarscov2/. 
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