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Direct comparison of high-resolution mass spectrometry (HRMS) data acquired with 

different instrumentation or parameters remains difficult as the derived lists of molecular 

species via HRMS, even for the same sample, appear distinct. This inconsistency is the 

result of inherent inaccuracies caused by instrumental limitations and sample conditions. 

We propose a method that classifies HRMS data based on the differences in the number of 

elements between each pair of molecular formulae within the formulae list to preserve the 

essence of the given sample. The novel metric, Formulae Difference Chains Expected 

Length (FDCEL), allowed for comparing and classifying samples measured by different 

instruments. FDCEL metric was implemented for both spectrum quality control and for 

examination of samples of various nature. We also demonstrate a web application and a 

prototype for a uniform database for HRMS data serving as a benchmark for future 

biogeochemical applications. 
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1 Introduction 

Natural organic matter (NOM) is an important part of the organic carbon pool, cycling through 

different environments where recalcitrant species can accumulate with time while labile organic 

pools are degraded1,2. Under specific conditions, labile NOM can be conserved in its fresh form, 

e.g., preserved by ice in permafrost, and released during thawing seasons or due to global 

warming3,4. The study of NOM stabilization became an intriguing topic for scientific research5,6.  

Employing powerful high-resolution analytical techniques, patterns of NOM behavior and 

origin are explored: from preliminary carbon sequestration to its transformations, stabilization 

mechanism, and mineralization7–10. Breakthroughs in this field were achieved by employing 

ultra-high resolution Fourier transform mass spectrometry (FTMS), which reaches molecular 

level resolution and reveals the extreme complexity of NOM: elucidating the exact elemental 

composition of thousands of detectable ions simultaneously7,11–13. 

HRMS application in environmental studies grows exponentially: for the last twenty years, 

thousands of works have been published (see Supplementary Fig. 1). The next logical step is the 

development of a molecular library for NOM based on this data. However, the infirmity of 

untargeted HRMS, like in metabolomics14, makes this a challenging prospect. Recently, the 

reproducibility of NOM molecular studies was called into question: different HRMS instruments 

produced drastically different formulae lists for the same NOM samples15,16.  These variations, 

regardless of their causative agents (e.g. instrumentation settings, different adducts formation, 

partial fragmentation), make the employment of formulae lists to compare/or classify samples 

extremely difficult, bringing into question the value of HRMS for NOM studies. 
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We propose a novel method of data analysis that explores robust spectral features relevant 

to the geochemical origin of the samples, allowing for samples to be compared based on HRMS 

data acquired on different instruments. Evidence of these features can be found in interlaboratory 

comparisons where it was determined that there is a correlation of integral number averaged 

values from the spectra15,16. NOM is the natural mixture of secondary metabolites, which 

underwent biochemical, photo, and chemical reactions; therefore, we hypothesize that the 

connection between molecular formulae can be considered as a fingerprint of such 

transformations and, consequently, it should be more robust to changes in instrumentation 

settings compared to the formulae themselves. This hypothesis is based on the intelligible 

principle, which has been suggested for metabolomics data treatment. Ab initio metabolite 

networks can be constructed directly from FTMS data17 because all metabolites are precursors 

and reaction products, thus, the mass differences in the spectrum correspond to the specific 

organism’s biochemical processes18, characterizing the sample independent of instrumentation. 

Similarly, successful attempts at the construction of molecular networks for NOM have been 

made 19,20, but only a limited number of chemically meaningful mass differences have been 

considered in detail. The molecular network itself is a concatenation of complex and interwoven 

relationships which are impossible to directly examine. Instead, we suggest employing statistics 

based on all differences between formulae within the formulae list (hereinafter, formulae 

differences, or FDs) to reveal reliable sample features and to calculate a new FD-based measure 

that will enable researchers to compare samples based on their origin. This approach was applied 

to data published in interlaboratory studies and used to extract the necessary features for the 

construction of the first NOM classification database. 
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2 Results 

2.1 Formulae difference networks 

We adopt formulae as input features and not mass peaks within the raw HRMS data to allow for 

the inclusion of existing HRMS datasets consisting of formulae lists as well as simplifying the 

computations associated with the introduction of difference between features as a new space. A 

formulae list derived for a sample can be represented as a formulae difference network (a 

compositional network, or a graph): each node is a molecular formula, and edges are the 

numerical vectors of differences in elements count between this formula and the rest of the 

formulae - FDs. Similar representations have been used for various applications20–22. Analysis of 

such networks can be targeted when FDs of interest are predefined. However, this approach is not 

appropriate for the comparison and classification of arbitrary samples: the consideration of a 

limited predefined FDs would bring bias in inter-sample network analysis. We demonstrated this 

by comparison formulae lists of two different soil samples obtained by different instruments, 

considering only the FDs series of CH2/CO2/H2/H2O. Clearly, in some cases a subset of FDs can 

cause a false impression that the two samples are the same (see Fig. 1 and Supplementary Figs. 2-

6). Therefore, to perform unbiased analysis and avoid misleading FDs targeting, we implemented 

the full FDs statistics considering all connectivities between all molecular species within a 

sample.
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 2.2 FDs statistics: distribution, series 

The analysis of FDs in their entirety is not trivial. The total number of FDs within a molecular 

species list is a 2-combination of all formulae, i.e. 𝑛
𝑛−1

2
, where 𝑛 is the number of formulae 

within a list (see Methods). The smallest number of formulae describing a sample within the 

available datasets was 1111 for SHA-Ctk-d with 616605 total and 54359 unique FDs, 

respectively. In the collected datasets, the number of unique FDs varied between 8 thousand and 

2 million (see Supplementary Table 1). 

We calculated occurrences of each unique FD within the formulae lists and formed vectors 

of unique FDs counts. Compared to the employment of formulae lists for the differentiation of 

samples, the counts of unique FDs allowed for a better classification of samples: the same 

samples analyzed at different laboratories formed more reasonable clusters based on Cosine 

distance measure. The advantage of FDs count is illustrated by comparison of PLFA and ESFA 

samples, measured by 17 different instruments. FDs counts allowed for the data to be clustered 

samplewise correctly, unlike the comparison based on formulae lists (see Fig. 2), despite the fact 

that the FDs counts analysis excludes the important information about relative intensities. This 

implies the robustness of FDs. It is important to note that Cosine measure analysis depends on 

the considered dataset: Supplementary Fig. 7 provides thresholding histogram for Cosine 

distance clustering. 

We have also employed various dimensionality reduction techniques (Multidimensional 

scaling (MDS), Principal component analysis (PCA), Non-negative matrix factorization (NMF), 

t-distributed stochastic neighbor embedding (t-SNE), Uniform Manifold Approximation and 
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Projection (UMAP)) to compare formulae lists. Out of the explored samples, only formulae lists 

detected for PLFA formed consistent clusters in all 2D and 3D visualizations (Supplementary 

Fig. 8). This can be associated with the consistent relative composition throughout the formulae 

lists detected for this sample (Supplementary Fig. 9, 10). While compositional analysis for other 

samples results in a lack of reasonable formulae-based grouping (Supplementary Fig. 11). In the 

case of dataset A, UMAP visualization of formulae lists (Fig. 3) showed that none of the lists 

were clustered sample-wise. At the same time dimensionality reduction techniques, when applied 

to vectors of FDs counts, lead to meaningful visualizations. UMAP applied to FDs counts 

showed nearly perfect clusters (Fig. 3). So, FDs counts distribution analysis allowed for a better 

grouping of formulae lists detected for the same sample. However, FDs counts distribution is 

sensitive to the composition of the compounds within the formulae list and this approach fails in 

some cases (Supplementary Fig. 12). In case of extreme deviations in the composition of the 

formulae lists (Supplementary Fig. 13) both formulae lists analysis and FDs counts distribution 

analysis fail (Supplementary Fig. 14).  

Therefore, the calculation of FDs counts has proven itself beneficial in some cases with 

known data labels, but apparently, its effectiveness is limited and comparable to the previously 

proposed number-averaged values15,16 which are computationally less complex. However, the 

number-averaged approach devalues the application of sophisticated and expensive HRMS 

instruments for NOM analysis because the provided resolution of thousands of molecular species 

has been condensed to several integral values. To capture the essence of formulae lists acquired 

with ultra-high resolution and simultaneously overcome the fundamental issue of instrumental 

inconsistency, we should introduce new statistics. Such statistics have to reflect the formulae list 
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while being robust to the changes in the detected chemical space of the sample in question, 

which requires the following: 1) to abandon the notion of the exact formulae values within the 

list, since these values are not reliable, as we demonstrated in the examples above; 2) include the 

intensity data to further distinguish the groups of formulae lists detected for the same sample. 

To integrate the intensity data, we have to consider the formulae difference network, where 

FDs connect the individual formulae with corresponding relative intensities. We will not limit it 

to the selected FDs but consider all unique FDs as in the FDs counts distribution analysis 

discussed previously. To do that, we suggest the following approach, which is implemented in 

the developed FDS application23 (https://nommass.com). The formulae difference network 

consists of subgraphs, each formed by formulae pairwise connected via a certain unique FD. 

Every subset of formulae with corresponding relative intensities forms an FD series. (see 

Methods). Series can be compared for pairs of samples containing these FDs directly using any 

measure (e.g. Cosine). We highlighted above that the presence of an ion in the mass spectrum is 

not guaranteed. Hence, the FD series should be compared in a robust way independent of exact 

nodes’ positions within the graphs, while simultaneously accounting for the intensity of such 

nodes and the structure of the graph itself. The latter can be captured via statistics introduced for 

the connected components of the graph denoted further as chains (see Methods). 

To abandon the notion of the necessity of formulae to be detected consistently throughout 

the measurements for the same sample, we introduce FD Chains Expected Length (FDCEL) 

measure (see Methods). It employs the probability measure on the set of chains to rank the chains 

within the series according to their significance based on the length and nodes’ intensities. Then, 

https://nommass.com/


8 
 

the expected value for the length of chains within the series is calculated. In FDCEL, we use the 

absolute difference of expected values for the length of chains within the series for the common 

FDs found in the compared formulae lists. For similar series the differences is small and the 

expected values for the chains’ lengths are close. The method is illustrated in the flowchart 

(Supplementary Fig. 15). 

According to our hypothesis, FDs are the result of chemical transformations within a 

sample associated with the genesis of the latter. The number of products and their relative 

abundances in a mixture must depend on the source and these parameters are the integral parts of 

FDCEL. Respectively, we can expect that an array of similar series in terms of FDCEL measure 

throughout formulae lists detected for the same sample even with varying HRMS instruments 

can be used to represent this sample. Further, these series can be used to compare the sample 

with any input formulae list in terms of FDCEL to either classify it or check the quality of the 

input data. To demonstrate FDCEL implementation, we built the first NOM classification 

database23, described below, to serve as a benchmark for future biogeochemical applications. 

 

2.3 Database 

To describe a sample and, store it within the database, we require a group of several formulae 

lists that were either detected for this sample via different HRMS setups, or when the sample was 

separated into fractions, and the latter were analyzed via HRMS. The series of the same FDs are 

compared via FDCEL within every aforementioned group. We consider only FDs which can be 

found throughout the group of formulae lists: this allows for the preliminary selection of the 
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series which are characteristic to the sample regardless of the instrumentation. This reduces the 

time required for the calculations even though the FDs list remains excessive. 

At the next step important and representative FD series are selected, which for the same 

sample should have consistent expected lengths of chains regardless of the composition overlap. 

By “consistent”, we mean that the difference between expected values should be negligible 

rather than matching perfectly as it is shown below. Within the FDCEL measure, FD series are 

“weighted” for the compared lists according to the intensity of their nodes (see Methods). Note 

that the same FDs can be important for different samples and have different expected values. 

Important FDs can be additionally ranked samplewise according to their occurrence throughout 

the lists of selected FDs for other samples within the database. 

As a result, each sample can be stored in the database as a ranked list of representative FD 

series with corresponding expected values for the length of chains. Any sample analyzed by 

HRMS can be compared to this database for two purposes exemplified below: for quality control 

of the given formulae list in the case a known sample is present in the database and for pairwise 

comparison of a new sample against the database as part of geochemical research. The latter 

application requires an educated guess to avoid misinterpretation. The constructed database can 

be expanded with new samples represented by groups of formulae lists which can be obtained as 

described above. The comparison algorithm is described in Fig. 4. 

The assessment of the formulae list detected for an arbitrary sample in relation to the 

samples present within the database can provide a researcher with several insights. First, if the 

investigated sample is present within the database, the input formulae list should be correctly 
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classified. If it can’t be correctly attributed, the researcher might get an idea that his particular 

experimental setup is way off, even according to the measure which specifically aimed at 

avoiding direct formulae-intensities comparison, to account for the differences in sample 

preparation, differences in ionization processes, and the exact HRMS instrumentation. Second, if 

the sample is not present within the database, the proposed method assigns several parameters to 

the formulae list, which can be used for further evaluation: 1) the number of FD series 

characterizing each database sample present within the considered formulae list; 2) the 

“distance” in terms of FDCEL measure calculated on each set of FD series characterizing the 

samples within the database. This can roughly point out the database samples related to the 

examined one. 

Validation of the method included the comparison of the publicly available formulae lists 

acquired for samples present within the database (namely, SRFA) but using different ionization 

techniques: electrospray ionization (ESI: SRFA-r24, SRFA-t11, SRFA-u25), laser 

desorption/ionization (LDI: SRFA-s26), paper spray ionization (PSI: SRFA-v25), and paper spray 

chemical ionization (PSCI: SRFA-w25). In Fig. 5, the results of the comparison of formulae lists 

against the database are presented. Despite clear differences between the formulae lists and even 

a lack of formulae overlap for different ionization methods, all of the formulae lists were 

correctly assigned to the corresponding sample (SRFA) based on the top 9000 FD series 

representative of samples except for SRFA-t and SRFA-r. SRFA-t mislabeling can be associated 

with its sheer size as it includes 16471 molecular species while the average molecular lists 

throughout the samples are under 6000 formulae. The number of unique FDs within SRFA-t is 

more than 2 million, while the average FDs number for samples in the database was under 300 
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thousand. Out of 9000 representative FDs most samples from the database shared over 8000 

(average is 8465, with SD of 747) with the SRFA-t. Consequently, within the FDCEL space (see 

raw FDCEL values in Supplementary Interactive Fig. 1) SRFA-t appears close to all of the 

samples within the database since there are not enough series within SRFA-t that do not match 

the representative sets. As to SRFA-r, its mass-spectrum was bimodal, which is not typical for 

SRFA and other NOM samples (Supplementary Interactive Fig. 2,3). The FDCEL measure 

indicated this remarkable inconsistency. This highlights the applicability of FDCEL-based 

comparison for quality assessment. 

Another application of the database23 is the estimation of the geochemical relevance of any 

HRMS analyzed samples to the samples from the database. Fig. 6 illustrates 13 formulae lists for 

samples of different origins compared against the database. SLNOM was isolated from the 

organic-rich lake (Sion Lake27) by solid-phase extraction using two types of resin: XAD-8 (the  

International Humic Substances Society (IHSS)28 protocol) and modern Bond Elute PPL29. 

Interestingly, SLNOM-XAD was closer to the SRNOM (Suwannee River NOM), while 

SLNOM-PPL would be attributed to SRFA (Suwannee River Fulvic Acids (FA)). Full organic 

matter from the Suwannee River is richer in aromatic constituents as compared to SRFA. This is 

corroborative with the investigation of resin selectivity: XAD resin is slightly more selective 

toward aromatic species30. The comparison of the sample isolated from the Panikovka river on 

PPL resin31 against the database gives an interesting perspective. This sample of a shallow cold-

water river fed mainly by spring waters. According to FDCEL, the corresponding formulae list 

(PRNOM) is closest to PLFA (Pony Lake FA), which is composed exclusively of the bacterial-

derived NOM32. This result implies that PRNOM is formed with a negligible contribution from 
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soil drains. A clear analysis interpretation can be derived for the extract from the gray forest (GF) 

soil33. Despite the fact that other soils and even water extracts (Soil Dissolved OM: SDOM-Ctk 

(from the Mollisol), SDOM-PD (from the sod-podzolic soil)) are also present within the 

database, SDOM-GF was the closest to ESFA, which by IHSS definition was extracted from the 

arable gray soil34. Thus, despite differences in the isolation procedure, the implementation of 

FDCEL enabled correct geo-chemical assignment. Still, note that the extraction procedure may 

bias the results, especially, under harsh conditions. This is highlighted below using the examples 

of alkali-isolated humic substances. 

The second set of samples was obtained from the thaws of yedoma ice complex deposit 

and from the watersheds in the Kolyma river basin as described in the previous publication31 

(AHF). According to the FDCEL measure, all samples were attributed to PLFA-like samples. 

This is supportive of, firstly, a high contribution of microbial-derived compounds in the 

permafrost thaw and, secondly, the significant presence of permafrost leachates in these Arctic 

rivers. The high contribution of microbial-derived compounds has been suggested according to 

the thorough 1H NMR study that explored long-chain aliphatic moieties. The only sample, which 

could be hardly unequivocally identified by the FDCEL using top-ranked 9000 FDs, was AHF-

RPP-10. Surprisingly, this isolate was equally attributed to the soil FA (SFA-Ctk) which would 

be mistaken even taking into consideration a closeness to the Chersky city because the isolate 

from the same tributary to the Kolyma River extracted one year later (AHF-RPP-11) was 

unambiguously designated as PLFA-like by FDCEL. Yet this result is corroborative with the 

higher long-wave absorbance coefficient of AHF-RPP-10 compared to AHF-RPP-1131. 
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The humic substances samples stand aside. Four samples were obtained using IHSS 

procedures – two humic acids (HA) and two fulvic acids (FA). The closest assignment of low-

moor peat humic acids (PHA-TTL35) was to sod-podzolic HA (SHA-PD). This was relevant 

since, like the peat, it is acidic soil while Mollisol soil (source for SHA-Ctk) is alkaline. 

However, the formulae list detected for coal HA (CHA-h36) was not unequivocally assigned to 

the CHA sample from the database: based on top-ranked 9000 FDs, SHA-Ctk suggested the 

lowest FDCEL distance, but CHA would be a second choice.  The unconventional result was 

also obtained for FA samples, which were isolated from the permafrost soil37. Supposedly, FA1-

Y-15 and FA2-Y-15 are represented by the low-transformed organic compounds well conserved 

under the ice shield. However, employing FDCEL, we would consider them ESFA- or SFA-Ctk-

like based on top-ranking 9000 FDs. We believe that such an assignment is a result of the 

extraction procedure engaging strong acid and base which destroys the integrity of NOM, 

leading to the condition-dependent molecular ensembles rather than source-dependent. In fact, 

the sample integrity and secondary reactions under the IHSS extraction procedure became a topic 

of scientific debates38,39.  Consequently, test permafrost FA-isolates were attributed to FA from 

the two temperate soils despite the drastically different nature of the parent soils. 

 

3 Discussion 

Our results demonstrate that the employment of FDs statistics is the key to the assessment of the 

NOM formulae space. The exploration of FDs space remains a crucial chemical task left for 

further research, however, we have already addressed some important issues, e.g. when the FD 
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series were sorted according to their importance for the representation of samples based on the 

FDCEL measure. The selected FD series do contain all the information which could be extracted 

from the formulae lists detected for the same sample: when recreating the original formulae lists 

as a superposition of the representative FD series, we found that the number of formulae with the 

corresponding intensities which were left out is negligible (see Supplementary Fig. 16). Thus, the 

representation and storage of samples as a collection of FD series is valid. 

The database we are showcasing here23 includes a limited number of samples, and it exists 

as a proof of concept. FDCEL measure bypasses the flaws of direct comparison of formulae lists 

acquired via different HRMS setups. The characteristic example of FDs advantage over formulae 

lists is HRMS data for SRFA samples ionized by different methods (Fig. 5). The overlap of 

formulae detected in each experiment was negligible since LDI and ESI are drastically different 

ionization methods. However, the employment of the first version of the database (limited to 

comparison according to 9000 FD important series stored for each sample) showed that all of 

these ionization methods successfully managed to yield FD series, which are characteristic for 

SRFA. Consequently, it is possible to aggregate various molecular data regardless of the 

ionization method, which eases the interlaboratory studies. For the same sample, various 

molecular species ionized by different methods are still connected by the same important FDs 

which have a clear geochemical basis, a non-trivial discovery upon which the database was 

created. To verify this, we added three samples (ISDY, SDOM-Ctk, SDOM-Pd) to the database 

which were not analyzed by different HRMS instruments: for each of the samples the 

fractionation was performed and fractions were measured by a single instrument. The overlap 

between fractions of the same sample varied, and in extreme cases, there were no common 
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molecular species at all. Still, validation showed that such entries are still eligible for the 

database, which highlights the importance of the FDs in describing the sample, creating an 

important precedent. In fact, independent of the elemental composition, aromaticity40, or the 

position on the van Krevelen diagram41, molecular species are connected by the same important 

FDs, which reflect biochemical and chemical processes in NOM. 

Each sample in the database is built based on the superposition of 4, 7, and 17 lists 

depending on the availability of the data for this sample. The important feature, which is worth 

noting, is that records of standard samples in the database (e.g. SRFA, SRNOM) are reliable. 

These standards are used for FTICR instrument tuning in all laboratories working with NOM. 

So, the tuning may vary but, ultimately, while the sample is still recognized correctly when 

compared to the database via FDCEL, experiments are valid. In the example from Fig. 5, SRFA-

r and SRFA-t spectra represented inconsistent instrument tuning, which requires revision. 

The application of the database for explorative geochemical research is also tempting. In 

Fig. 6, we showed some illustrative examples. But the database should be used carefully for this 

kind of task. Due to computational resource limitations, the current version of the database23 

stores each sample as a vector of its 5000 most important FDs and the corresponding expected 

values. In most cases, the list of important FDs is much bigger. In fact, the success of sample 

attribution to the database depends greatly on the number of used FDs. Such a drawback is 

clearly illustrated in Fig. 6 on the example of FA samples from the permafrost and some riverine 

samples. Based on the FDCEL measure, they could be also attributed to SRNOM- and SRFA-

like samples. This is the result of the heterogeneity of SRNOM and SRFA samples that happen 
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to contain FDs which are important for FA and Arctic River samples at the top of their ranked 

FDs list. The current database is a prototype that requires extension with many various NOM 

samples while also having to limit computational time with fair sample attribution. 

In this work, the FDCEL measure was calculated based on novel FDs statistics. We 

showed that such an approach is independent of the exact detected formulae composition, and the 

same FDs may be important for samples without common significant molecular formulae 

overlap. That means that, ultimately, we do not need molecular formulae by themselves. Clearly, 

the described method can and will be extended to the processed mass spectrometry peak lists 

instead of formulae lists. In this case, instead of a formulae difference network, a mass difference 

network would be constructed. Moreover, molecular compositions are never assigned to all 

peaks in mass spectra. Therefore, by skipping the translation of original raw m/z space into 

molecular space, we might be able to account for peak shifts more adequately. Employing a 

highly resolved m/z axis instead of a discrete molecular formulae axis could lead to important 

mass differences, which would unambiguously define any sample. This is beneficial because 

when working with formulae lists, we found that important FDs do overlap between the samples; 

and while they still allow for a corrected assignment based on the FDCEL measure since the 

expected values for the same important FD vary between the samples, the growing number of 

samples within the database raises a concern — the overlapping important FDs might hinder the 

effective FDCEL distance so we would have to increase the number of considered FDs. Hence, 

the next step would involve the employment of mass difference statistics instead of FDs, which 

allows for the ultimate HRMS data analysis independent of experimental setups. 
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4 Methods 

The starting point for our approach is a list of assigned formulae for each considered sample. If 

the data was taken in raw MS form instead of the formulae list, it was assigned molecular species 

via the lab-made Transhumus software based on a total mass difference statistics algorithm42,43. 

 

4.1 Definition of FDs, Series, Chains 

The formulae list can be described as 𝑆𝑢 =  {( 𝑓𝑖, 𝐼𝑖)}𝑖=1
𝑛  — a set of 𝑛 formulae (each formulae 𝑓𝑖 

is represented by 𝐶, 𝐻, 𝑂, 𝑁, 𝑆-elements occurrence vector, i.e. 𝐶𝑡𝐶
𝐻𝑡𝐻

𝑂𝑡𝑂
𝑁𝑡𝑁

𝑆𝑡𝑆
 is 

[𝑡𝐶  𝑡𝐻  𝑡𝑂 𝑡𝑁 𝑡𝑆]) and the corresponding intensities 𝐼𝑖 found in the sample 𝑆𝑢. Instead of using the 

formulae lists to compare samples, we calculate all the differences between formulae { 𝛿𝑓𝑖}𝑖=1
(2

𝑛)
  

(where (2
𝑛)is 2-combinations: (2

𝑛) = 𝑛
𝑛−1

2
) for each list. These differences are counted and the 

resulting vectors are compared between samples (Supplementary Note 1). 

We define the difference series as follows. A series is an ordered subset 𝑆𝑢(𝛿𝑓 ) of set 𝑆𝑢, 

the former includes pairs ( 𝑓𝑖, 𝐼𝑖), for which there are neighboring formulae at 𝛿𝑓, i.e. 𝑆𝑢(𝛿𝑓 )  =

 {( 𝑓𝑘, 𝐼𝑘)  ∈  𝑆𝑢  | ∀ 𝑘 ∃ 𝑗: | 𝑓𝑘 − 𝑓𝑗|  = 𝛿𝑓 }. Such series can be compared directly for matching 

{ 𝛿𝑓 }𝑖=1
𝑝   throughout samples using cosine measure. The resulting distance matrices are 

clustered, so each distinct cluster includes a set of { 𝛿𝑓𝑖 }𝑖=1
𝑞

which either reflects similarity or 

difference between samples.  

We consider the graph 𝐺 with vertex set 𝑆𝑢(𝛿𝑓 ), where any two vertices ( 𝑓𝑖, 𝐼𝑖) and 

( 𝑓𝑗 , 𝐼𝑗) are connected by an edge if | 𝑓𝑖 − 𝑓𝑗|  = 𝛿𝑓. The connected components of 𝐺 form the set 
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of chains {𝐶𝑘 }𝑘=1
𝑟 : each chain is characterized by its length (which is introduced as the number 

of nodes the chain includes 𝑙(𝐶𝑘)) and by its vertices 𝑉𝑘 =  {(𝐼𝑗
𝑘, 𝑓𝑗

 𝑘)}𝑗=1
𝑙(𝐶𝑘)

. 

 

4.2 FDs Chains Expected Length measure 

The chains are assigned weights according to their length and vertex intensities as follows 

𝜇: {𝐶𝑘}  → [0,1] by  𝜇(𝐶𝑘)  =  

∑ 𝐼𝑗
𝑙(𝐶𝑘)

𝑗:(𝐼𝑗
𝑘,𝑓𝑗

 𝑘)∈𝑉𝑘

∑ (∑ 𝐼𝑗
𝑙(𝐶𝑘)

𝑗:(𝐼𝑗
𝑘,𝑓𝑗

 𝑘)∈𝑉𝑘
)𝑖:𝐶𝑖∈𝑆𝑢(𝛿𝑓)  
. This probability measure on the set of 

chains (this measure can be redefined, e.g., if there are a lot of short chains which are not desired 

for the analysis, these chains may be dropped, and 𝜇(𝐶𝑘) can be defined on the resulting set of 

chains) determines how significant the particular chain of the series is. It allows for the 

calculation of the expected value for 𝑙(𝐶𝑘): 𝐸[𝑙(𝐶)]  = ∑ 𝑙(𝐶𝑘)𝜇(𝐶𝑘)𝑖:𝐶𝑖∈𝑆𝑢(𝛿𝑓)  . Thus, more 

significant chains within the series are defining the sample. 

As mentioned above, there are many inaccuracies (associated with sample preparation, 

ionization process, instrumentation) that make the direct comparison of samples based on 

formulae lists flawed. Instead, to compare two samples (𝑆𝑢 and 𝑆𝑑), we propose using the series 

which correspond to the common set 𝛥 =  {(𝛿𝑓𝑗 , 𝑤𝑗) }𝑗=1
𝑚 , where {𝛿𝑓𝑗  | 𝛿𝑓𝑗 ∈ {𝛿 𝑓 𝑖

𝑆𝑢}𝑖 ∩

{𝛿 𝑓 𝑖
𝑆𝑑}𝑖}  are the formulae differences found in both samples, and 𝑤𝑗 ∈ [0,1]is the weight of 

corresponding 𝛿𝑓𝑗 defined as 𝑤𝑗 =
∑ 𝐼𝑘𝑘:𝐼𝑘∈𝑆𝑢(𝛿𝑓𝑗)  + ∑ 𝐼𝑘𝑘:𝐼𝑘∈𝑆𝑑 (𝛿𝑓𝑗)

∑ 𝐼𝑘𝑘:𝐼𝑘∈𝑆𝑢  + ∑ 𝐼𝑘𝑘:𝐼𝑘∈𝑆𝑑 

 (FD series weight). 𝑆𝑢 and 𝑆𝑑 

can be considered as elements of metric space which includes various formulae lists with 

FDCEL (FD Chains Expected Length) measure introduced as follows: 𝐹𝐷𝐶𝐸𝐿 𝛥(𝑆𝑢, 𝑆𝑑) =

1

𝐶𝑎𝑟𝑑(𝛥)
 ∑ 𝑤𝑗|𝐸[𝑙(𝐶𝑢,𝑗)]  −  𝐸[𝑙(𝐶𝑑,𝑗)]|𝑗: 𝑤𝑗∈𝛥 , where 𝐶𝑎𝑟𝑑(𝛥) is the cardinality of set 𝛥. The 
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properties of the FDCEL metric are detailed in Supplementary Note 2.  

The general scheme for FDCEL application is illustrated in Fig. 4. 

 

4.3 Data 

Both the proposed method as well as already established methods15,16 (Supplementary Note 3) 

were applied to the datasets A, B, F, I, G of formulae lists (Supplementary Table 1). Dataset A 

includes 6 types of samples: CHA, SFA-Ctk, SFA-Pd, SHA-Ctk, SHA-Pd, SRHA; each was 

analyzed by 7 different instruments16. Dataset B consists of 4 types of samples: ESFA, PLFA, 

SRFA, SRNOM; each was analyzed by 17 instruments15. Dataset F includes 3 types of samples: 

SDOM-Ctk, SDOM-Pd, ISDY; each sample was separated into 4 fractions, which along with the 

parent sample were measured by the same FTMS instrument44. Dataset I includes formulae lists 

acquired for SRFA with various ionization techniques: ESI (SRFA-r24, SRFA-t11, SRFA-u25), 

LDI (SRFA-s26), PSI (SRFA-v25), PSCI (SRFA-w25). Dataset G for geochemical application 

verification includes various formulae lists: SLNOM-XAD, SLNOM-PPL27; PRNOM, AHF-

RPP-10, AHF-RPP-11, AHF-RK5P-10, AHF-RK6P-10, AHF-AOP-1031; SDOM-GF33; PHA-

TTL35; coal humic acid CHA-h has been described elsewhere36 and it has been analyzed via 

Bruker Daltonics 12 Tesla Apex Qe FTICR-MS, housed at the College of Sciences Major 

Instrumentation Cluster (COSMIC) at Old Dominion University; FA1-Y-15, FA2-Y-1537.  

We selected 13 samples combining datasets A,B, and F as the database entries. 
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Figure 1: Cosine distances between targeted series for the samples SHA-Ctk and SHA-Pd 

detected at three laboratories. These series appear relatively similar for of SHA-Pd-e and 

SHA-Pd-g. Misleading cases:  CH2/CO2/H2/H2O series of SHA-Ctk-a are closer to 

corresponding series of SHA-Pd-a than to their counterpart subsets of SHA-Ctk-e. 
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Figure 2: Pairwise comparison in terms of Cosine distance of formulae lists detected for 

ESFA and PLFA datasets (left panel) and derived FDs counts (right panel). In case of 

formulae list comparison (left panel), ESFA-N,O,P,Q and ESFA-J,H,G are distinct from 

ESFA-A,B,C,D,F; ESFA-M is distinct from ESFA-N,O,P,Q, and ESFA-I is distinct from 

the rest formulae lists detected for ESFA sample. 

 

 

Figure 3: UMAP applied to formulae lists (left panel) and FDs counts (right panel). 
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Figure 4: FDCEL comparison (as implemented in the “compare against database” feature 

in FDS application23) of an input formulae list against a single sample within the database. 

 

Figure 5: The comparison of formulae lists acquired via HRMS with various mild ionization 

techniques as well as SRFA-O (the formulae list from the dataset employed for SRFA 

sample important FDs extraction) against the database (Supplementary Interactive Fig. 1). 
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Figure 6: The comparison of formulae lists acquired via HRMS for 13 samples (dataset G) 

against the database provides some geochemical insights on sample origin and source of 

organic compounds by pairwise similarity analysis. For details see an interactive plot 

(Supplementary Interactive Fig. 4). 


