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ABSTRACT: Data-driven modeling has emerged as a new paradigm for biocatalyst design and 
discovery. Biocatalytic databases that integrate enzyme structure and function data are in urgent 
need. Here, we described IntEnzyDB as an integrated structure-kinetics database for facile 
statistical modeling and machine learning. IntEnzyDB employs a relational architecture with 
flattened data structure, which allows rapid data operation. This architecture also makes it easy for 
IntEnzyDB to incorporate more types of enzyme function data. IntEnzyDB contains enzyme 
kinetics and structure data from six enzyme commission classes. Using 1019 enzyme structure-
kinetics pairs, we investigated the efficiency-perturbing propensity for mutations that are close or 
distal to the active site. The statistical results show that efficiency-enhancing mutations are 
globally encoded; deleterious mutations are much more likely to occur in close mutations than in 
distal mutations. Finally, we described a web interface that allows public users to access 
enzymology data stored in IntEnzyDB. IntEnzyDB will provide a computational facility for data-
driven modeling in biocatalysis and molecular evolution.  

Keywords: Biocatalysis; Enzymology database; Mutations; Statistical analysis  

  



1. Introduction 

As a holy-grail challenge in modern chemical sciences, developing new enzyme catalysts 

provides solutions to transform chemically challenging reactions,1 expand substrate scope,2 control 

complex reaction selectivity,3 treat metabolic disorders,4 and degrade inert environmental wastes 

and pollutants5. Data-driven modeling methods have been extensively leveraged to innovate the 

approaches for enzyme catalyst discovery. They help elucidate the mechanisms of enzyme 

catalysis,6 predict the impact of mutations on enzyme functions,7, 8 and even design artificial 

enzymes9.  

Central to data-driven modeling, databases have been established for storing enzyme 

sequence, structure, and kinetics data (Table 1 and Supporting Information, Table S1). For 

example, Universal Protein Resource Knowledgebase (UniProtKB) contains ~36.7 million unique 

enzyme sequences.10 RCSB Protein Databank (PDB) contains 108,000 experimentally-determined 

enzyme structures.11 BRENDA12 and SABIO-RK13 store enzyme kinetic parameters, including: 

80,000 kcat values, 169,000 KM values, 33,000 kcat/KM values from BRENDA; and over 56,000 

KMs or pseudo-dissociation constants, and more than 52,000 velocity constants (Vmax and kcat) 

from SABIO-RK. These data cover thousands of enzyme commission (EC) classes that span over 

seven enzyme types (i.e., oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases, 

and translocases). In addition, databases have been established to annotate enzyme functions based 

on its structural, chemical, and metabolic relevance (e.g., EzCatDB,14 MACiE,15 KEGG,16 

FunCat,17 Reactcome,18 and MetaCyc19), to map enzyme sequence, structure, and function 

relationship (e.g., PDBSWS,20 SFLD,21 FunTree,22 IntEnz,23 ExploreEnz,24 and ExPASy25), to 

classify enzymes based structural and functional superfamilies (e.g., CATH26 and SCOP27, 28), and 

to store designed enzymes (e.g., ProtaBank29 and Design2Data4).  



Table 1. A brief summary of enzymology databases. 

Database Type Databases Data UniProt EC 
Number PDB ID 

Kinetics 

BRENDA Kinetics Yes Yes Part 

Sabio-RK Kinetics Yes Yes No 

STRENDA DB 
Kinetics with 
uniform data 
standard 

Yes Yes No 

Structure 

PDB PDB Structure Yes Yes Yes 

AlphaFold DB Predicted 
Structure Yes No No 

UniProt 
Sequence with 
Functional 
annotation 

Yes Yes Yes 

Kinetics and 
structure data for 
designed enzymes 

ProtaBank Kinetcs/Structure  Part Part Part 

Design2Data Kinetcs/Structure Yes Yes Yes 

 

To develop holistic, predictive models for enzyme catalysis, an integrated database is 

needed that merges related enzyme sequence, structure, and function data in one place. However, 

three challenges are identified. First, collecting data of various sources is difficult because 

databases involve different design (e.g., relational, object-oriented, or hybrid), storage hierarchy, 

query mechanism, and API protocol. As such, curating enzyme features consumes significant 

efforts. Second, data cleaning is tricky due to various data standards adopted by different databases. 

Although unified data reporting standards have been reported (e.g., STRENDA30 and 

EnzymeML31), existing enzyme data entries still involve missing or inaccurate mutational spot 

labels, experimental conditions, or other information. Additionally, manual typos and rounding 

errors are not uncommon, leading to obstacles for data validation. Third, data joining between 

enzyme structure and kinetics is challenging because they do not have consistently shared keys. 



Enzyme kinetics databases store data entries by EC number and do not always have PDB ID for 

mapping with the structure database (Table 1). Although UniProt is used across databases, one-to-

one mapping between structure and kinetics is difficult because one UniProt may correspond to 

tens of PDB IDs.  

Here, we developed an integrated structure-kinetics enzymology database, IntEnzyDB, for 

facile data-driven modeling and machine learning. We have previously reported the beta-version 

of IntEnzyDB as a hydrolase database.32 In this work, we expanded IntEnzyDB to incorporate data 

from six enzyme commission classes. IntEnzyDB allows fast operation of large amount of enzyme 

structure data and enables mapping between enzyme kinetics and structure. Using these data, we 

analyzed the propensity of catalytic efficiency enhancement, neutrality, and deletion for mutations 

that are close or distal to the active site. Finally, we introduced the web-interface for IntEnzyDB 

that allows public users to freely access and analyze the data.  

2. Computational Methods 

Database Construction. IntEnzyDB is a relational database with flattened data structure. 

IntEnzyDB adopts one data table to store all enzyme records of the same structural hierarchy (i.e., 

chain, residue, or atom) or property (i.e., kinetics). The current version of IntEnzyDB consists of 

five data tables, including: one table storing enzyme kinetic parameters such as Michaelis constant 

(KM) and apparent turnover number (kcat); three tables storing enzyme chain-level, amino acid-

level, and atom-level structural information; and one table for one-to-one mapping of enzyme 

structure, substrate, and kinetics. Notably, the number of data tables can be easily expanded as we 

further develop IntEnzyDB to incorporate more enzyme properties (e.g., stability, mechanism, 

etc.). 



Data Collection. The kinetics data in IntEnzyDB were extracted from BRENDA,12 

SABIO-RK,13 ProtaBank29 and Design2Data4 databases; the structure data from RCSB Protein 

Databank (PDB)11 and the sequence data from UniProt10. The enzyme kinetics table contains EC 

number, UniProtKB, organism, substrate, experimental temperature, mutational information. 

Using UniProt Retrieve/ID mapping tool and PDB Data API, we collected 8086 protein structures 

associated with the PDB IDs under UniProtKBs in the kinetics table.  

The PDB structure data are stored in three tables. The enzyme chain table stores the general 

information of a PDB structure, including PDB ID, EC number, enzyme type, enzyme name, 

mutation, organism, chain ID, resolution, FASTA sequence, active site location, number of 

residues, and missing residues. The enzyme amino acid table stores the amino acid level structural 

information, including PDB ID, chain ID, amino acid name, amino acid index, and center-of-mass 

spatial coordinates of amino acid. The enzyme atom table stores the atom level structural 

information, including PDB ID, chain ID, atom name, atom index, amino acid name, amino acid 

index, atom coordinates. The database is open to the public and can be accessed through website 

interface (http://ec2-18-117-226-14.us-east-2.compute.amazonaws.com/). Any change will be 

posted on the website interface. 

Data Curation. The kinetics data are curated based on the following criteria: (1) at least 

one wild-type kinetics parameter (kcat and KM) exists under one UniProtKB, (2) at least one PDB 

structure exists under one UniProtKB, (3) substrate information exists for each kinetic parameter, 

(4) experimental temperature is known for each kinetic parameter, (5) mutation is known for each 

kinetic parameter, and (6) mutations are single amino acid substitution. The curation yields 4037 

kcat/KM values derived from 686 enzymes and 2540 enzyme mutants (i.e., single amino acid 

substitution) combined with 929 substrates. The experimental temperature of the kinetic 



parameters ranges from 295.15 to 343.15 K (Supporting Information, Figure S1). These enzymes 

span over six types of enzyme commission (EC) classes, including: Oxidoreductases (EC 1), 

Transferases (EC 2), Hydrolases (EC 3), Lyases (EC 4), Isomerases (EC 5), and Ligases (EC 6).   

To conduct one-to-one mapping of enzyme kinetics to structure, we adopted a three-step 

curation workflow. Step-1, we extracted PDB IDs from the research articles associated with the 

enzyme kinetics using text mining method (Supporting Information .zip file). Step-2, for the 

kinetic values where the PDB IDs are not available from the research paper, we manually identified 

the PDB structure by aligning the mutation spot annotation (taken from PDB file). Step-3, under 

each UniProtKB, we selected the PDB structures with active-site annotation, top resolution, and 

the least number of missing residues. This three-step approach allowed us to one-to-one map the 

kinetic data with the PDB structure through UniProtKB, yielding 159 PDB structures precisely 

paired with 1019 kcat/KM values. For the curated dataset, we evaluated the distribution of structure 

resolution and number of unresolved residues (Supporting Information, Figure S2). These data 

allow in-depth analysis of enzyme structure-function relationship. Data collection and curation are 

performed in Python and R software, and all statistical analysis are performed in R software. The 

curated kinetic and structural data tables, and data curation codes can be found in the Supporting 

Information zip file. 

3. Results and Discussion 

3a. Design Architecture and Data Processing Efficiency of IntEnzyDB. Unlike object-oriented 

databases that store each enzyme record in an individual data table (or file),11 IntEnzyDB adopts 

a relational database architecture with a flattened data structure (detailed in the Computational 

Methods section). This allows IntEnzyDB to be expandable to incorporate other types of enzyme 

function data such as stability33 and solubility34. The database employs five tables to store enzyme 



kinetics and structure information (top, Figure 1), including three tables for cleaned enzyme 

structure data derived from RCSB PDB (i.e., ① chain, ② amino acid, and ③ atom table), one 

table for kinetics derived from BRENDA and Sabio-RK (labeled as ④), and one reference table 

(labeled as ⑤). The chain, amino acid, and atom tables share PDB ID and Chain ID as foreign 

keys. The chain table contains general protein structure information, including enzyme name, 

organism, gene, FASTA sequence, active site, and resolution; the amino acid table stores amino 

acid attributes, properties, and physiochemical parameters, including residue name, residue 

sequence number, amino acid weight, center of mass coordinate; the atom structure table stores 

the atom types and coordinates, including atom name, atom sequence number, residue name, 

residual sequence number, atomic weight, and atom Cartesian coordinates.  

The kinetics table contains kinetic parameters, enzymology assay information, and 

sequence data, including UniProtKB, EC number, organism, substrate, mutation, experimental 

temperature, apparent turnover number (kcat), Michaelis constant (KM), enzyme efficiency (kcat/ 

KM), and change of free energy barriers for a mutant compared to the wild-type enzyme (ΔΔG‡, 

converted from kcat/KM according to eq 1). Kinetic table uses UniProtKB (sequence ID) as the 

foreign key. The reference table (table ⑤, Figure 1) contains one-to-one mapping relationship 

between kinetics and PDB based on foreign keys PDB ID, Chain ID, and UniProtKB (detailed in 

Computational Methods section). This table can be used to identify PDB structure for a given 

kinetic data of interest. The data from the table can also be used to investigate structure-kinetics 

relationship.  



 

Figure 1. The architecture and relation map for IntEnzyDB. (Top) The database architecture 

involves five tables, including: three for enzyme structure tables (i.e., chain-level, amino acid-level, 

and atom-level), one for enzyme kinetics, and one reference table with foreign keys from structure 

and kinetics tables. The tables are mapped by the following keys: PDB ID, Chain ID, and 

UniProtKB. (Bottom) The mapping relationship between variables of different tables.  

We benchmarked the time of pulling enzyme structure data using IntEnzyDB against a 

manual curation strategy (Figure 2). In contrast, using IntEnzyDB, a user can directly filter and 

download cleaned and tabulated structural data using SQL language; for the manual curation 



strategy, a user needs to first download data from PDB, then read and reformat data by entry, and 

eventually combine them to one table on local computer. Figure 2 shows that IntEnzyDB is ~2 

times faster than the traditional approach for 200 enzymes (80 s vs 173 s) and ~6 times faster for 

1000 enzymes (151 s vs 905 s). The results indicate that the operating time by using IntEnzyDB 

is nearly independent of data size, which largely outperforms the manual operation strategy when 

operating on large amount of structural data (i.e., thousands or more).  

The high data processing efficiency of IntEnzyDB likely results from its flattened data 

structure. Comparing to the traditional approach where data tables and files are accessed serially, 

IntEnzyDB loads all data entries at one time. This approach makes IntEnzyDB slower when 

processing smaller amount of data (e.g., for one enzyme structure, 86 s vs 1.9 s), but can save 

tremendous amount of time for repeatedly opening and reading files when handling large amount 

of structure data (e.g., 3.5 mins for 5000 structures). Therefore, IntEnzyDB provides an efficient 

solution for extracting enzyme structural features for statistical analysis or machine learning.  

 

Figure 2. Operation time versus the number of PDB IDs by IntEnzyDB (blue line) and manual 

curation method (red line). The operation time of downloading, reading, and cleaning data in a 

tabulated form is measured for the tasks of processing 1, 100, 200, 400, 600, 800, and 1000 PDB 

structures. The data downloading and reading/cleaning are represented by the dotted and dashed 



lines (in light red), respectively. The total operation time for manual curation method is shown by 

the red solid line. All operation times are measured in seconds.  

3b. Statistical Analysis of Kinetic Parameters in IntEnzyDB. From IntEnzyDB, we curated 

4037 kcat/KM values for enzymes with single amino acid substitution. The dataset consists of 686 

wild-type enzymes, 2540 enzyme mutants, and 929 substrates (detailed in Computational Methods 

section). The number of kcat/KM values has tripled the size of hydrolase kinetics data we reported 

in the prior work (i.e., 1240).32 Among the 4037 kcat/KM values, 29.0% are oxidoreductases (EC 

1), 20.9% are transferases (EC 2), 30.7% are hydrolases (EC 3), 9.3% are ligases (EC 4), 5.2% are 

isomerases (EC 5), and 4.9% are lyases (EC 6) (left, Figure 3). To evaluate the impact of mutation 

on enzyme catalysis, we investigated the distribution of ΔΔG‡ values derived from 2540 enzyme 

mutants, where ΔΔG‡ is converted from the ratio of catalytic efficiency in the mutant to that in the 

wild-type enzyme (eq1):   

∆∆𝐺‡ =–𝑅𝑇 ln "!"#
$%#"&#/$'

$%#"&#

"!"#
()*+,#-.//$'

()*+,#-./      eq1 

where R, T, kcat, and KM refer to the gas constant, experimental temperature, turnover number, and 

Michaelis constant, respectively. The distribution of ΔΔG‡ follows a right-skewed Gaussian that 

ranges from -5.5 to 11.2 kcal/mol with a mean of 1.3 kcal/mol (right, Figure 3). The breadth of the 

distribution is wider than that of hydrolases (i.e., −4.2 to 9.4 kcal/mol), but the mean value is 

similar (i.e., 1.2 kcal/mol).32 We categorized the mutants to be efficiency-enhancing (ΔΔG‡ ≤ -0.5 

kcal/mol), -neutral (ΔΔG‡ > -0.5 and ≤ 0.5kcal/mol, and -deleterious (ΔΔG‡ > 0.5 kcal/mol). We 

observed 11.2% of the mutants to be efficiency-enhancing, 29.5% neutral, and 59.3% deleterious. 

As expected, the mutations that slow down catalytic rate are much more populated than those that 

are neutral or beneficial to catalysis. The efficiency-enhancing mutations appear to be more 

abundant in the database than their natural abundance.35, 36 This phenomena might be caused by 



the observational bias (e.g., researchers are more likely to report beneficial mutants) or the lack of 

deleterious mutations whose kinetic parameters are beyond the detection limit of biochemical 

assays.  

 

Figure 3. Statistics of kinetics data for enzymes mutants with single amino acid substitution in 

IntEnzyDB. (Left) The distribution of kinetics data for six EC classes. (Right) The distribution of 

ΔΔG‡ values for 2540 enzyme variants-catalyzed reactions with a bin size of 0.5 kcal/mol. 

Efficiency-enhancing mutant is defined as ΔΔG‡ less or equal to -0.5 kcal/mol (red), efficiency-

neutral mutant is defined as ΔΔG‡ greater than -0.5 kcal/mol and less or equal to 0.5 kcal/mol 

(light grey), efficiency-deleterious mutant is defined as ΔΔG‡ greater than 0.5 kcal/mol (dark grey).  

3b. Mutation Effects for Close versus Remote Mutations. After joining enzyme kinetics with 

structure data using the reference table (Figure 1), we obtained 1019 one-to-one mapped enzyme 

structure-kinetics pairs, including 376 oxidoreductases, 95 transferases, 313 hydrolases, 119 

ligases, 76 isomerases, and 40 lyases. Noticeably, the data entries for hydrolase (313) is less than 

the amount of data (i.e., 403) curated in our prior work 32. This is because in this work, we applied 

a stricter filtration condition that traces every kinetic entry to the corresponding structure in 

literature using text mining (detailed in the Computational Method section) rather than simply 

relied on UniprotKB to map kinetic entry with the best-resolved structure as done previously. In 



addition, there are 3018 kcat/KM values from the kinetics table whose corresponding enzyme 

structures (either wild-type or mutant) or the active-site annotation is not known. To address this, 

we will obtain the missing structures using enzyme structure prediction tools (e.g., AlphaFold237 

and RoseTTAFold38); we will also curate the active site annotation from M-CSA database39 or 

label them manually.  

Using 1019 structure-kinetics pairs, we investigated the difference in the efficiency-

perturbing propensity for mutations that are spatially close versus distal to the active site residues 

(Figure 4). This analysis has been conducted for hydrolases in our prior work.32 In contrast, the 

current dataset involves a greater number of enzymes with a wider converge of enzyme types. As 

such, the statistical study can potentially inform a more holistic trend for the spatial dependence 

of efficiency-perturbing mutations. The distance between a mutation spot and active site was 

measured between the mutation residue’s Cα coordinate and the geometric center of the active-

site residues’ Cα coordinates. Using 15 Å as an empirical cutoff, the efficiency-enhancing 

propensity of the close mutations (8.0%) is found to resemble that of the distal mutations (8.6%). 

However, the efficiency-deleterious mutations are much more populated for the close (72.0%) than 

the distal mutations (46.0%). As a compensation, the efficiency-neutral mutations are about 26% 

more observed for distal mutations. 

 



Figure 4. The proportion of efficiency-enhancing (red), -neutral (light grey), and -deleterious (dark 

grey) mutations for close mutation (≤15 Å) and distal mutation (>15 Å). The distance is defined 

based on the distance of the mutation residue Cα coordinate to the geometric center of the active-

site residues Cα coordinates. Efficiency-enhancing mutant is defined as ΔΔG‡ less or equal to -0.5 

kcal/mol (red), efficiency-neutral mutant is defined as ΔΔG‡ greater than -0.5 kcal/mol and less or 

equal to 0.5 kcal/mol (light grey), efficiency-deleterious mutant is defined as ΔΔG‡ greater than 

0.5 kcal/mol (dark grey). 

 The efficiency-perturbing propensity may be dependent on the choice of the spatial cutoff 

values. To reduce arbitrariness, we evaluated the proportions for the close versus distal mutations 

using different spatial cutoffs sampled from 10 to 20 Å with 1 Å interval (Supporting Information, 

Table S2 and Figure S3). The cutoff values below 10 Å were not tested because of the scarcity of 

mutations falling into the category of close mutation (especially beneficial mutations). The 

efficiency-enhancing propensity is estimated to be 7.3 ± 1.5% for the close mutations and 8.6 ± 

1.1% for the distal mutations – they remain highly similar. Despite the fluctuation, the propensity 

of rate deletion is still much higher for the close mutations (72.9 ± 5.7%) than for the distal 

mutations (45.5 ± 4.8%). This trend remains to be compensated by the efficiency neutral mutations 

(19.8 ± 4.2% for close mutations and 45.9 ± 5.7% for remote mutations). Notably, the same trend 

still exists when separately analyzing the data for the three major enzyme classes: oxidoreductases, 

transferases, and hydrolases (Supporting Information, Figure S4-S6). 

The statistical studies show that close mutations are equally probable in inducing efficiency 

enhancement as distal mutations, indicating that efficiency-enhancing mutations are globally 

distributed. This result is consistent with the observation that the Whitehead group reported for E. 

coli-expressed amidases;36 and supports prior statistical study by the Kazlauskas group that both 



close and distal mutations can improve activity (based on 55 rate-enhancing enzyme variants) 40. 

For enzyme engineering, given the smaller number of residues in the active site than the distal 

spots, strategies that emphasize the mutagenesis of active site residues are likely to be more 

statistically productive, such as the combinatorial active site saturation test (i.e., CASTing41). In 

addition, our statistical results show that distal mutations are much less likely to induce efficiency 

deletion than close mutations. This illustrates the important roles of distal mutations in avoiding 

rate-deletion and induce neutral drift on the fitness landscape, explaining the broadly reported 

observation of distal mutation in beneficial mutants during directed evolution.42  

3d. IntEnzyDB web interface. To allow IntEnzyDB accessible by public users, we developed a 

web interface that has a backend link to IntEnzyDB on MongoDB (Figure 5). The web interface 

allows users to dynamically connect to MongoDB and generate data tables based on search queries. 

The dynamic connection scheme also makes it easy for users to obtain the most updated data as 

we continue expanding the database. The website contains general information about the database 

architecture and scope under the “Home” and “Research” page. Under the “Database” page, a user 

can find kinetics data (i.e., “Kinetics Data” tab), structural data (i.e., “Structure Data” tab), and 

mapped structure-kinetics data (i.e., “Kinetics-Structure Reference” tab). Under the “Kinetics Data” 

tab, the user can find 4037 curated kinetics data for enzymes with single amino acid substitution 

where both kcat and KM are available. The data table contains variables including EC number (e.g., 

3.1.1.2), UniProtKB (e.g., P27169), organism (e.g., Homo sapiens), substrate (e.g., phenylacetate), 

mutation (e.g., H115W), experimental temperature (e.g., 298.15K), and change of free energy 

barrier ΔΔG‡ (e.g., 1.7 kcal/mol, converted from eq 1). Under the “Structure Data” tab, the user 

can find general structural information, including the PDB ID (e.g., 1V04), enzyme name (e.g., 

arylesterase), active site index (e.g., 115), and resolution (e.g., 2.2 Å). On the “Kinetics-Structure 



Reference” tab, the mapped kinetics-structure pairs are shown. For each entry in this reference 

table, the UniProtKB matches an entry in the kinetics table and PDB ID in the structure table. 

Under this tab, a user can click on the UniProtKB or PDB ID hyperlinks to directly access UniProt 

and PDB website with more detailed structure and functional information.  

Besides the data tables, the user can access the “Search” tab and find specific enzyme data 

entries in the data tables using UniProtKB, PDB ID, or EC number as search queries. The user can 

also visualize the statistical analysis of enzyme kinetics data under the “Statistics”, including the 

number of enzymes in each EC class, the distribution of ΔΔG‡, and the frequency of mutations in 

IntEnzyDB. On the “Database Access” tab, the user can find instructions to directly access 

IntEnzyDB on MongoDB. This way, the user can access to the full database with 5 tables shown 

in Figure 1 and query enzymes of interest.   

 

Figure 5. Screenshots of IntEnzyDB web interface. (Left) The homepage for the IntEnzyDB 

website. (Right) The database tabs for the website.  

4. Conclusion 

Here we reported IntEnzyDB as an integrated structure-kinetics enzymology database. 

IntEnzyDB adopts a relational architecture with flattened data structure. The database consists of 



five data tables, including one kinetics table, three structure tables, and one structure-kinetics 

reference table. In the benchmark for processing 1000 protein structures, IntEnzyDB is six times 

faster than manual curation approach that relies on direct downloading from the PDB website and 

accessing from local directory. The high efficiency of IntEnzyDB is due to its flattened data 

structure: with all structure/kinetics data entries read into computer memory in the form of giant 

data tables, the time for repetitive file input/output operations can be saved.  

From IntEnzyDB, we curated 4037 data entries where both kcat and KM are known for 

enzyme mutants with single amino acid substitution. These data are primarily derived from three 

enzyme commission classes, including: oxidoreductases (29.0%), transferases (20.9%), and 

hydrolases (30.7%). Ligases, isomerases, and lyases are observed to occupy 9.3%, 5.2%, and 4.9% 

of the population, respectively. Through analyzing mutation effects, we observed 11.2% of the 

mutants to be efficiency-enhancing, 29.5% neutral, and 59.3% deleterious.  

Using 1019 enzyme structure-kinetics pairs, we investigated the spatial dependence of 

efficiency-perturbing propensity for mutations. Specifically, we categorized mutations to either 

close or distal to active site residues using various spatial cutoff values ranging between 10 and 20 

Å with 1 Å interval; under each cutoff value, we tested the proportion for efficiency-enhancing, -

neutral, and -deleterious mutations for both “close” and “distal” mutations. The efficiency-

enhancing propensity is estimated to be 7.3 ± 1.5% for the close mutations and 8.6 ± 1.1% for the 

distal mutations – they remain highly similar. Despite the fluctuation, the propensity of rate 

deletion is consistently higher for the close mutations (72.9 ± 5.7%) than for the distal mutations 

(45.5 ± 4.8%). This trend is compensated by the efficiency neutral mutations (19.8 ± 4.2% for 

close mutations and 45.9 ± 5.7% for remote mutations).  



Finally, we described the web interface for IntEnzyDB, which employs a backend link to 

MongoDB. The web interface allows public users to dynamically access and query data based on 

their need. Besides the kinetics, structure, and reference data tables, the web interface also contains 

instructions for users to directly access data tables on IntEnzyDB.  

As the next steps for developing IntEnzyDB, we will further expand the mapped structure-

kinetics data table by using predicted structures and active site annotation. Text mining strategies 

will be implemented to enable more comprehensive data validation and expansion. We will 

incorporate more types of enzymology data to IntEnzyDB, including stability, solubility, 

expressibility, and even molecular modeling data derived from high-throughput simulations43.  
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