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ABSTRACT: An 8-step synthesis of a known pentacyclic intermediate towards the natural product pleurotin (1) is described. 
Pleurotin and related benzoquinone natural products are of great interest for their powerful anticancer and antibiotic ac-
tivities.  The route features a regio- and diastereoselective intermolecular Diels-Alder cycloaddition and an alkoxy-radical-
induced HAT-mediated C–H epimerization to construct pleurotin’s carbon framework with appropriate relative stereo-
chemical relationships. The synthesis concludes with a ring-forming benzylic C–H oxidation to deliver oxepane 19.

In 1947, Robbins, Kavanagh, and Hervey described 
the isolation of large amber-colored crystals from an ex-
tract of the culture fluid of the basidiomycete fungus, Pleu-
rotus griseus.1 A solution of these crystals inhibited the 
growth of Staphylococcus aureus, and the crystalline anti-
biotic was named pleurotin. The intricate polycyclic struc-
ture of this new antibiotic was revealed by a systematic 
study of its chemical transformations by Schelling and 
Arigoni2 and confirmed by an X-ray crystallographic anal-
ysis by Dobler.3 Two additional characterizations of pleu-
rotin by the method of X-ray crystallography also de-
scribed the isolation of this metabolite from the basidio-
mycetes, Hohenbuehelia geogenius4 and Nematoctonun ro-
bustus.5 While the sequence of reactions by which pleu-
rotin arises in nature is still unknown, Arigoni proposed 
that its molecular skeleton may evolve from farnesylhydro-
quinone 2 by several cyclization, rearrangement, and oxi-
dation steps.6 Pleurotin, shown as 1 in Figure 1, comprises 
a benzoquinone, two heterocyclic rings, a tetrasubstituted 
trans-hydrindane framework, and eight contiguous stere-
ocenters. The intriguing possibility that a bioreduction of 
the pleurotin quinone could give access to a bis-bioalkyla-
tion agent in the form of transient quinone methides was 
suggested by Moore.7 In addition to its inhibitory activity 
against Gram-positive bacteria, pleurotin (1) displays anti-
tumor activity against Erlich’s ascites carcinoma, L-1210 
lymphoid leukemia, and a slow-growing mammary tumor 
in mice.8 

In the period of 1997–2006, there was a renewed 
interest in the therapeutic potential of pleurotin through 
the discovery that this natural product is a potent irreversi-
ble inhibitor of the thioredoxin-thioreductase system (IC50 
= 170 nM).9 By this action, pleurotin (1) significantly re-
duces the levels of HIF-1α in cancer cells and thereby in-
hibits the transcription of cancer-related genes that medi-
ate cellular adaptations to hypoxia, angiogenesis (via VEGF 
production), and glucose transport and metabolism.10 

 While the lack of available pleurotin hampered its 
continued advance as an anticancer lead compound, Ship-
ley, Newman, and coworkers developed an improved  



 

process for producing this natural product via the fermen-
tation of Hohenbuehelia atrocaerulea.11 Pleurotin is also ac-
cessible by the concepts and methods of organic synthesis 
and was synthesized for the first time in 1988 by the labor-
atory of Hart, a milestone achievement featuring an im-
pressive diastereoselective radical cyclization and requir-
ing 26 steps.12 Our laboratory was drawn to the considera-
ble challenge of synthesizing pleurotin in few steps via a 
flexible design that would also permit short syntheses of an 
expanded family of pleurotin-like anticancer screening 
candidates, as well as the related natural products pleu-
rogrisein (3)6 and the potent hepatitis C virus inhibitor 4-
hydroxypleurogrisein (4).13 Herein, we describe an 8-step 
formal synthesis of pleurotin (1) that intersects the pio-
neering synthesis by Hart at the stage of compound 19.              

Our initial approach to the molecular skeleton of 
1 was based on an intramolecular Diels-Alder addition of a 
transient o-quinodimethide to a tethered hydrindenone 
(not shown). Despite promising early studies by the Kraus 
laboratory14 and extensive efforts in our group,15 this strat-
egy proved untenable (see Supporting Information). In-
stead, we turned to an intermolecular light-mediated 
Diels-Alder coupling of the known aryl aldehyde 6 and 
readily accessible enone 5 to rapidly generate the carbon 
framework of 1. This powerful concept for ring annulation, 
discovered by Yang,16 pioneered in synthesis by Nicolaou,17 
and improved by Gao,18 has been shown to be exceptionally 
tolerant of steric crowding in the dienophilic partner and 

specifically to engage β,β-disubstituted cyclohexenones ef-
ficiently.  However, in order to obtain the correct facial se-
lectivity in the pivotal merger of enone 5 with an o-
quinodimethide derived from 6, it would be necessary to 
maintain the unnatural configuration at the indane ring 
junction (Fig. 1b, C–H highlighted in orange in 5). If 7 could 
be formed in a regio- and stereocontrolled fashion, we 
would approach the challenging problem of converting the 
cis-fused hydrindane in 7 to the desired trans-fused dia-
stereoisomer 8 on the foundation of a tried and true tactic 
in organic synthesis: a reactive oxygen-centered radical, to 
be generated from the primary alcohol in 7 (or a derivative 
thereof), would effect a downhill 1,5-hydrogen atom trans-
fer (HAT) reaction to give tertiary carbon radical 9.19 An 
exogenous HAT reagent could then transfer a hydrogen 
atom to the underside of radical 9 in a kinetically-con-
trolled step to complete the needed epimerization and for-
mation of trans-fused isomer 8. From trans-hydrindane 8, 
a C–H oxidation to close the oxepane ring generating 19 
would intercept Hart’s synthesis of pleurotin.  

Our synthesis commenced with a scalable Refor-
matsky reaction between n-butyl bromopropionate and 
methoxyindanone 10 to form indenyl ester 11 (Scheme 1).20 
The butyl ester of bromopropionate was selected as it 
yielded superior diastereoselectivity to simpler alkane con-
geners in the subsequent hydrogenation. Butyl ester 11 was 
subjected to heterogeneous hydrogenation (with in situ H2 
generation from ammonium formate) in the presence of 



 

 

3 

catalytic Pearlman’s catalyst, yielding alkylindane 12 in 
nearly quantitative yield as a 6:1 ratio of diastereomers. In-
dane 12 could be carried forward without chromatographic 
purification into a reduction-hydrolysis sequence, wherein 
12 was first reduced to the alkoxide with lithium aluminum 
hydride, immediately followed by an ammonia-free Koide-
Birch reduction.21 The reaction was quenched and acidified 
with 6 M aqueous HCl, which induced hydrolysis of the in-
termediate enol ether in 13 and isomerization to the α,β-

unsaturated cyclohexenone 5 (13  14  5). This one-pot 
procedure afforded 5 in 40% yield, representing an average 
yield of 80% for each of the four discrete transformations.  

With an eye toward the eventual generation of a 
reactive alkoxy radical to drive an epimerization of an un-
activated stereocenter (vide supra), we elected to install an 
N-alkoxyphthalimidoyl moiety via a high-yielding 
Mitsunobu reaction with N-hydroxypthalimide. Among 
several options,22 this radical progenitor was selected for 
its ease of installation and well-established behavior under 
reductive conditions for the generation of alkoxy radicals.23 
Additionally, its installation at this stage served a dual pur-
pose as a hydroxyl protecting group in the subsequent 
Diels-Alder reaction.   

To set the stage for the key intermolecular Diels-
Alder cycloaddition, known aryl aldehyde 6 was prepared 
in two straightforward steps (Scheme 2). Dimethoxyben-
zyne derived from dimethoxybromobenzene 20 was sub-
jected to a [2+2] cycloaddition with the enolate of acetal-
dehyde (generated in situ from the decomposition of lithi-
ated THF) by the method of Dong,24 affording benzocyclo-
butanol 21; this compound was smoothly incised under 
basic conditions to form 6 in high yield.25  

 

  With both partners of the pivotal Diels-Alder cou-
pling in hand, their exposure to the modified conditions of 
Gao and coworkers18 resulted in the formation of tetracycle 
16 as a single isolated regio- and endo-diastereomer in 57% 
yield. By adding aldehyde 6 dropwise to enone 15 at 0 ⁰C 
under 365 nm irradiation, the relative concentration of in 
situ generated photoenol was kept low, minimizing unde-
sired reactivity (particularly the dimerization of 6). Cool-
ing was required to curtail the facile dehydration of 16 to 
its corresponding chalcone. Presumably the superb dia-
stereoselectivity of this transformation arises from a lower 
transition state energy leading to a cis-indane rather than 
the isomeric trans-indane. 

Compound 16, with its reducible N-alkoxy-
phthalimide group (E0

1/2
red ~ -1.35 V vs. SCE in MeCN),23b 

would be useful to us only if it were capable of undergoing 

the needed epimerization at C-11 (pleurotin numbering). 
Our hopes were buoyed by creative methodological exam-
ples of radical epimerizations in the recent literature,26 but 
we were wary of several concerns inherent in this transfor-
mation: (1) a premature HAT to the ephemeral alkoxy rad-
ical would simply generate compound 7 (Fig. 1b); (2) a 
competing and unavoidable 1,5-HAT involving the equidis-
tant methylene group in the 5-membered ring, also leading 
to 7; and/or (3) a redox fragmentation leading to an alde-
hyde27 or β-scission leading to a secondary alkyl radical 
could all undermine the desired pathway and reduce its ef-
ficiency. 

 

During initial optimization studies (See SI), we 
observed that irradiation of 16 with 450 nm light in the 
presence of stoichiometric Hantzsch ester (H.E.), a cata-
lytic amount of the reducing iridium photocatalyst fac-
Ir(ppy)3 (E0

½
III/II= -2.19 V vs. SCE in MeCN)28 and thiol ad-

ditive, the desired reduction occurs, generating a mixture 
of diasteromeric tetracycles (Table 1). The diastereomeric 
ratio of these products is strongly influenced by the steric 
crowdedness of the thiol. Unhindered thiols T1 and T2 
preferentially generated undesired isomer 7, while bulkier 
thiols produced both 7 and 8 in equal amounts. 2,6-
Dimesitylbenzenethiol T5 was found to be excessively 
crowded and overwhelmingly led to undesired byproduct 
formation. Thiols T3 and T4 were found to have the opti-
mal substitution in proximity to the sulfur atom, yielding 
the best product ratios. Both electron-rich and electron-
poor sterically unencumbered thiols were found to give 
poor diastereomeric ratios and low yields (See SI).  
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After extensive optimization, we were able to 
achieve modest stereocontrol (74%, 1.1:1 d.r) using 75 mol% 
TRIP thiol (T4) as HAT reagent in trifluorotoluene as sol-
vent. Lower concentrations of thiol led to a variety of un-
desired products. Since it was possible to chromatographi-
cially resolve the 1.1:1 mixture of 8 and 7 and difficult to im-
agine an alternative chemical process that could invert the 
configuration at C-11 in compound 7, we moved forward 
and were delighted that we could access the pleurotin-like 
trans-locked hydrindane from a compound that required 
only 5-steps to prepare. We envision that the reductive epi-
merization of 16 to 8 passes through the intermediacy of 
radicals 17 and 9 and features sequential intramolecular 
and intermolecular HAT reactions. 

 With the entire core architecture in place, a high-
yielding ionic deoxygenation (BF3·OEt2/Et3SiH) selectively 
excised the reactive benzylic hydroxyl group in 8 and af-
forded tetracyclic alcohol 18 in 96% yield. Finally, on expo-
sure to DDQ in hot chloroform, alcohol 18 underwent oxi-
dative cyclization to give the desired oxepane heterocycle. 
This etherification step completes the synthesis of penta-
cycle 19, and it was possible to confirm the constitution 
and relative stereochemistry of this compound by an X-ray 
crystallographic analysis.  

Hart and coworkers previously synthesized pen-
tacycle 19 in 21 steps and completed the first synthesis of 
pleurotin in five additional steps. A 13-step synthesis of 
pleurotin thus arises from the combination of the reactions 
described herein and Hart’s efficient end-game sequence. 
Our efforts to leverage this concise sequence of reactions 
in syntheses of novel structural relatives of pleurotin, in-
cluding compounds that would be inaccessible by struc-
tural modifications of naturally occurring pleurotin have 
started and will be reported in due course.  
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