
 
   
 

1 

 

ARMer: A Python Library for Adaptive Resource Allocation in High-Throughput 

Workflow  

Qianzhen Shao1 and Zhongyue J. Yang1-4,* 

1Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States 

2Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States 

3Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, 

United States 4Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United 

States 

ABSTRACT: High-throughput modeling requires allocation of different types of computing 
resources (e.g., GPU/CPU) for various computational sub-tasks in high-performance computing 
(HPC) clusters. To enhance efficiency of resource consumption, here we developed an adaptive 
resource allocation strategy to dynamically request computing resources based on the specific need 
of a certain modeling sub-task in the workflow. We implemented the strategy as a new Python 
library, i.e., adaptive resource manager (ARMer). As a proof of concept, we employed ARMer for 
allocating computing resources during the high-throughput enzyme modeling of fluoroacetate 
dehalogenase using EnzyHTP. The workflow involves four sequential sub-tasks, including: mutant 
generation, molecular dynamics simulation, quantum mechanical calculation, and data analysis. 
Compared to fixed resource allocation where both CPU and GPU are on-call for use during the 
entire workflow, the use of ARMer in the workflow can save up to 87% CPU hours and 14% GPU 
hours. In addition, ARMer allows parallel submission of multiple computational jobs in a job array 
and provides customized environment settings for each software used in the workflow.  
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1. Introduction 

High-throughput molecular modeling integrates multiple manual operations of simulation, 

such as input file preparation, software running, and data analysis, into one automatic workflow. 

In modern computational chemistry, high-throughput computation emerges as a new paradigm to 

address challenges in studying reaction mechanisms,1-3  screening catalysts,4-8 designing functional 

materials,9-13 discovering drug candidates,14, 15 and modeling enzymes16-18. With the advent of 

machine learning, these workflows allow facile collection of molecular features, or even provide 

high-accuracy computational data for model training.19-22 Boosted by advances of computer 

hardware and software, high-throughput molecular modeling workflows enable the operation of 

large amount and diverse types of computational tasks.  

As a common feature, high-throughput workflows involve multiple computational sub-

tasks that are conducted by interfacing external software. As such, the workflow needs to allocate 

different computing resources for different sub-tasks. For example, a workflow of enzyme 

modeling (e.g., EnzyHTP16) needs to perform CPU-based structure model construction, GPU-

based molecular dynamics (MD) simulation, CPU-based quantum mechanics (QM) calculation, 

and CPU-based data analysis. The diverse requirement of computing resources presents a 

challenge to operate high-throughput workflow in high-performance computing (HPC) clusters 

where a job scheduler is used to manage resource allocation.  

To address this, the most straightforward and commonly used strategy is to request 

sufficient computing resources in one-time job submission for the whole workflow. The resource 

demand will be estimated based on the CPU and GPU needs of the most computationally 

demanding sub-tasks, regardless of how much resource remains idle in other sub-tasks in the 
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workflow. With fixed resource allocation, significant resource waste is expected. This issue will 

become more severe as new hardware added to the workflow, such as tensor processing unit and 

quantum computing units.  

To enhance resource efficiency in HPC clusters, we developed an adaptive resource 

allocation strategy to dynamically request and distribute computing nodes for each sub-task in the 

high-throughput modeling workflow. The strategy was implemented as a Python application 

programming interface, known as adaptive resource manager (ARMer). As a proof of concept, we 

integrated ARMer with EnzyHTP16 to adaptively allocate CPUs and GPU for sub-tasks in the high-

throughput enzyme modeling of fluoroacetate dehalogenase (FAcD)23-27. Finally, we benchmarked 

resource and time consumption for adaptive resource allocation against fixed resource allocation. 

2. Design and Implementation 

The adaptive resource allocation strategy employs a “workflow script” that runs a single-

CPU thread to manage sub-tasks for the entire high-throughput workflow. Using commands 

implemented in the ARMer Python library, the workflow script configures, submits, and monitors 

new jobs in HPC clusters that pertain to the actual need of computing resources in a sub-task of 

the workflow. This is in sharp contrast to the fixed resource allocation scheme where maximal 

computing resources are requested.  

The ARMer Python library consists of two classes: the Job class and HPC class (Figure 1). 

The Job class (called ClusterJob in the code) defines variables and functions that are associated 

with job configuration, submission, and dynamic monitoring of job completion (Figure 2). The 

HPC class (subclasses of ClusterInterface in the code) supports the Job class with variables and 

functions to mediate external input/output in a local HPC cluster where ARMer is deployed. 
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Similar to subprocess.run in the Python standard library, ARMer library enables the “workflow 

script” to run shell commands - these commands are wrapped in the job scripts in the HPC clusters. 

Defined in the Job class, a job object is instantiated using the constructor config_job(), where the 

arguments commands, cluster, env_settings, and res_keywords are provided by the user 

(Supporting Information, Figure S1). Specifically, commands refers to the target shell commands 

for running external software for a specific enzyme modeling sub-task (e.g., commands = "g16 < 

filename.gjf > filename.out"); cluster refers to an HPC class object that contains miscellaneous 

details about the local HPC (e.g., cluster = Accre(), in which ACCRE refers to our local HPC at 

Vanderbilt University); env_settings states environment settings of external software (e.g.,    

env_settings = '''module load Gaussian/16.B.01'''). Even for the same external software (e.g., 

Gaussian 16), the environment settings likely differ in different HPC clusters. Finally, 

res_keywords configures computing resources for the job (e.g., res_keywords = {'core_type' : 'cpu', 

'nodes':'1', 'node_cores' : '8', 'job_name' : 'EnzyHTP_QMCluster', 'partition' : 'production', 

'mem_per_core' : '3G', 'walltime' : '24:00:00'}), in which the parameters depend on the 

computational task (e.g., 8-24 CPUs for QM calculation, 1 GPU for MD calculation, etc.). 
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Figure 1. Two classes in the ARMer Python library: Job class and HPC class.  

 

Figure 2. Variables and functions for job configuration, submission, and dynamic monitoring 

defined in the Job class.  

With the job object instantiated, a job script for the required task can be generated (Figure 

3) and then submitted by the submit() method (Figure 2 and Supporting Information, Figure S1). 

Notably, the format of the job script, the submission commands, and other HPC-dependent 

information are obtained from the HPC class object that is instantiated and passed to the cluster 

argument described above. Once the job has been submitted, a job ID is added to the object by the 

function. By tracing the job ID, the “workflow script” can monitor the status of a job object in the 

queue, and mediate the status by killing, holding, or releasing the job (Figure 2). Furthermore, the 

“workflow script” can dynamically detect the timing of the job completion by retrieving error or 

completion messages from the output file. Notably, the capability of dynamically monitoring the 

job completion status is vital to high-throughput modeling workflow. This is because the workflow 
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involves multiple different types of simulation sub-tasks that must be sequentially operated. In the 

case of running enzyme modeling workflow using EnzyHTP, after submitting an MD sampling 

task, the “workflow script” must put the rest of the sub-tasks on hold and wait for the 

conformational ensemble to generate before submission of the subsequent QM calculations.  

 

Figure 3. A sample job script that performs QM calculation using Gaussian 16. The job script is 

generated by the “workflow script” using commands implemented in ARMer.   

Two methods have been implemented to achieve dynamic monitoring – they are: 

wait_to_end()and wait_to_array_end() method. The wait_to_end() method checks the status of a 

job in the job queue with a certain period of time (i.e., every 30 seconds) and exits upon the 

detection of messages that indicate job completion, error, or cancellation. The 

wait_to_array_end() method takes multiple job objects and submits them in one job array. 

Similarly, the method monitors the status of all jobs in the array regularly, and dynamically append 

new jobs to the array up to the maximal capacity (i.e., array size).   
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The HPC class files are stored in a folder named “cluster”. These files allow users and 

developers to easily modify ARMer Python library to be compatible with their local HPC cluster. 

The instances of the HPC class are used as input for generating the Job instance. The methods of 

the HPC class are used by the Job instance to interface with a local HPC cluster. To make the Job 

class work properly with the HPC classes, an abstract HPC class, that defines code interfaces, is 

designed to generate concrete HPC classes. For example, a classmethod submit_job() defines the 

specific syntax for job submission in a local HPC cluster. If the user wants to customize the HPC 

class for their use, they need to refer to requirements in the abstract class. The inheritance of 

classmethods from the abstract HPC class will be automatically confirmed during the instantiation. 

3. Results and Discussion 

3a. Model System and Workflow. We employed fluoroacetate dehalogenase (FAcD)23-27 as a 

model system and conducted a high-throughput workflow of enzyme simulations using 

EnzyHTP.16 The workflow consists of four sequential sub-tasks, namely, 1) mutant structure 

construction, 2) MD simulation, 3) QM calculation, and 4) post-analysis. Notably, the model 

system and workflow have been applied in our previous work to test the throughput capability of 

EnzyHTP.16 However, unlike the previous workflow that sampled 100 variants with minimalist 

resource cost, the current workflow only tested one enzyme variant (i.e, K83D) with MD and QM 

simulations set up to meet resource demand in actual computational research (Supporting 

Information .zip).  

The first sub-task of the workflow uses the mutant generation module in EnzyHTP to 

generate a mutant structure (i.e, K83D, Supporting Information Figure S2a) and then optimizes 

the structure with molecular mechanics using the PMEMD module in AMBER28. The time cost 
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for mutant structure construction is nearly negligible and that for minimization takes ~30 seconds 

on 1 GPU. The second sub-task samples 100 conformers from a 100 ns MD trajectory simulated 

by the PMEMD module. The time cost of this step is ~14 hours on 1 GPU. Similarly, the 

computational cost for automatic preparation of MD input files can be omitted. Based on each of 

the sampled snapshot, the third sub-task conducts QM calculations of single point energy on the 

active site cluster (i.e., substrate + Asp110, Supporting Information Figure S2b) at the level of 

PBE0/def2TZVP using Gaussian 16.29 In total, 100 independent QM calculations should be 

conducted. With 8 CPUs, each calculation takes ~2 minutes to complete. The last sub-task involves 

post electronic structure analysis to obtain electrostatic stabilization energy30, 31, which is derived 

from the projection of protein electric field (computed by the point charges of enzyme residues 

with built-in EnzyHTP function) to the dipole of reacting bond (computed by Multiwfn32). The 

whole analysis take ~0.1 hours using 1 CPU. Overall, the entire workflow involves different types 

of modeling sub-tasks with diverse requirement of computing resources.   

3b. Fixed Resource Allocation versus Adaptive Resource Allocation. We benchmarked the 

resource and time consumption of the workflow for two strategies: fixed resource allocation versus 

adaptive resource allocation, on our local HPC at Vanderbilt, i.e., advanced computing center for 

research and education (ACCRE). 

Using fixed resource allocation, all computing resources (i.e., 1 GPU and 8 CPU) involved 

in the workflow are requested by a single submission script in one shot. Figure 4 shows the 

simulation type, time cost (i.e., vertical axis), and resource demand (i.e., GPU in orange and CPU 

in blue) associated with each sub-task in the workflow. Both CPU and GPU are requested for the 

entire workflow (Figure 4). However, resource waste is observed. Specifically, in the ~14 hours 

of MD simulation, only one GPU is used but the CPUs are primarily in idle mode (time-waste: 
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~8x14 = ~112 CPU hours); in the 3 hours of QM calculations, CPUs are used but the GPU is not 

(time-waste: 3 GPU hours). In the minimization and post-analysis sub-tasks, CPU and GPU are 

also not exploited, albeit the resource cost is trivial. Apparently, with fixed resource allocation, the 

collective resource waste is significant.  

 

Figure 4. The high-throughput workflow of FAcD modeling using fixed resource allocation 

strategy, in which 1 GPU (in orange) and 8 CPUs (in blue) are requested in the beginning of the 

workflow. The type of modeling sub-tasks, time cost, and resource consumption are noted on the 

Figure.    

Using adaptive resource allocation, a 96-hour wall-clock time, single CPU job is submitted 

that operates a Python “workflow script” to allocate resources for sequential sub-tasks involved in 

the workflow (Figure 5). The “workflow script” manages the sub-tasks using commands 

implemented in the ARMer library (detailed in the Design and Implementation section). Compared 

to fixed allocation strategy that directly execute sub-tasks using the allocated CPU or GPU, this 
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workflow script configures resource-demanding sub-tasks (i.e., need >1 CPU or ≥1 GPU) in a new 

job script and then submits the job to the queue (i.e., setting ifcluster = ‘True’ in the code).  

In the MD simulation sub-task, the workflow script configures shell commands that run 

AMBER simulations in a job script along with the GPU request and environment settings. The 

workflow script then submits the MD job and regularly monitors the completion status of the job. 

After confirming the completion of MD, the workflow script will continue operating the QM 

calculation sub-task in the workflow. Since the 100 QM calculations are independent, the 

workflow script can submit multiple QM jobs (8 CPU each) simultaneously to the job array so that 

they can run in parallel up to the size limit of job array (i.e., 25 jobs) in local HPC cluster (Figure 

5). New jobs will be submitted once the “workflow script” detects open slots on the array (see 

discussion of parallel computing using Python subprocess module, Supporting Information Text 

S1). With an array size of 25 jobs, one would expect an ideal time acceleration by a factor of 25 

given the ideal condition of no job queueing time (i.e., ~2.4 hours as compared to 60 hours with 

all job running serially). Overall, with adaptive resource allocation, the resource waste can be 

minimized.  



 
   
 

11 

 

 

Figure 5. The high-throughput workflow of FAcD modeling using adaptive resource allocation 

strategy, in which a “workflow script” the runs on a single-CPU thread operates the modeling sub-

tasks (i.e., mutation, MD, and QM) by configuring, submitting, and monitoring new job scripts. 

The MD job requests 1 GPU (in orange) and each QM job 8 CPUs (in blue). To submit and run 

individual QM calculations in parallel, a job array with a size of 25 is employed. The type of 

modeling sub-tasks, time cost, and resource consumption are noted on the Figure.  

3c. Comparison of Computational Cost. We compared the computational cost (Figure 6) and 

wall clock time (Figure 7) for different sub-tasks of the workflow using fixed resource allocation 

(in red) versus adaptive resource allocation (in green) on ACCRE. The computational cost is 

represented by core-hours or SUs. To normalize the computational cost across CPU and GPU, a 

weighting factor (i.e., 1 SU of GPU = 54 SUs of CPU) is applied based on the high-performance 

linpack benchmark. In contrast, fixed resource allocation involves 14% resource waste in GPU-

based MD simulation and 87% in CPU-based QM calculations, while adaptive resource allocation 

makes full use of these computing resources in every sub-task of the workflow (Figure 6). For wall 
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clock time, both strategies differ most significantly in the QM calculation sub-task (Figure 7). 

Enabled by parallel submission of individual QM jobs to a job array (i.e., 25 jobs per array), 

adaptive resource allocation strategy completes 100 QM calculations by 0.35 hours. With fixed 

resource allocation (i.e., 8 CPUs), the calculations are completed by 2.8 hours. Noticeably, the 

magnitude of efficiency acceleration (8-fold) is less than the ideal condition with parallel job 

submission (25-fold). The discrepancy is mainly caused by difference of CPU performance in 

ACCRE and the queueing time (Supporting Information Text S2). However, with larger QM 

system size and higher theory level, the QM resource consumption will be more significant. As 

such, the waste of resource and time for fixed resource allocation is expected to inflate. 

 

Figure 6. The comparison of computing resource cost (represented by core-hours) between fixed 

resource allocation (in red) and adaptive resource allocation (in green) for each sub-task in the 

enzyme FAcD modeling workflow using EnzyHTP. The resource time-waste is colored in white.  
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Figure 7. The comparison of wall-clock time cost between fixed resource allocation (in red) and 

adaptive resource allocation (in green) for each sub-task in the enzyme FAcD modeling workflow 

using EnzyHTP.  

With new jobs generated, submitted, and monitored on the fly by adaptive resource 

allocation strategy, the resource waste observed by fixed resource allocation is no long expected 

because resources are requested and distributed based on the need of individual suc-task in the 

workflow. We should note that one potential caveat of adaptive resource allocation strategy is the 

time spent for queueing. In our test, the total amount of time spent for job queueing is about 12 

minutes, which is relatively trivial. On extremely crowded HPC, we assume job queueing time to 

be much longer. The fixed resource allocation scheme suffers less from the queueing, but the 

overall cost of time and resource is substantial.     

Besides being resource-efficient, adaptive resource allocation scheme also prevents 

conflict of software environment setting. Under the adaptive resource allocation scheme, the 
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workflow script can customize specific environment setting based on the requirement of an 

individual job. In contrast, the fixed resource allocation scheme will have to load all environmental 

variables in the beginning of the submission job, which can cause conflict for different software 

as the workflow proceeds.  

4. Conclusion 

We developed a Python library, ARMer, to adaptively allocate resources for computational 

sub-tasks in a high-throughput molecular modeling workflow in HPC clusters. The ARMer Python 

library consists of two classes: the Job class that defines variables and functions for job 

configuration, submission, and monitoring; the HPC class that supports the Job class to mediate 

external input/output in a local HPC cluster. Using commands implemented in ARMer, a 

“workflow script” can run on a single CPU thread to generate, submit, and monitor new jobs that 

call external software to execute sub-tasks.  

As a proof of concept, we employed ARMer to manage the sub-tasks in the enzyme 

modeling workflow for FAcD using EnzyHTP. The sub-tasks include enzyme mutant structure 

construction, 100 ns MD simulation, 100 QM calculations, and electronic structure analysis. We 

compared the consumption of time and resource between two allocation strategies: fixed resource 

allocation versus adaptive resource allocation. Fixed resource allocation involves significant 

resource waste: in the 14 hours of MD simulation, only one GPU is used but the CPUs are primarily 

in idle mode (time-waste: 8x14 = 112 CPU hours); in the 3 hours of QM calculations, CPUs are 

used but the GPU is not (time-waste: 3 GPU hours). In contrast, the adaptive resource allocation 

makes full use of both computing resources in the corresponding sub-tasks of the workflow. 



 
   
 

15 

 

Moreover, ARMer allows parallel submission of multiple smaller computational jobs in a job array 

and provides customized environment settings for each software used in the workflow. 

With the development of high-throughput molecular modeling workflow and the advent of 

more heterogenies HPC architecture (e.g., CPU, GPU, QPU, etc.), ARMer provides a general, 

easy-to-use, and easy-to-extend python interface to achieve adaptive resource allocation in HPC 

clusters. 
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