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ABSTRACT (max 200 words) 

Molecular dynamic (MD) simulations offer a way to study biomolecular interactions and their dynamics at the 

atomistic level which is not possible with the current experimental methods. There are only a few studies of 

RNA-protein complexes in MD simulations, and here we wanted to study how force fields differ when 

simulating RNA-protein complexes. We tested three non-polarizable force fields: Amber protein force fields 

ff14SB and ff19SB with RNA force field OL3, and the all-atom OPLS4 force field. Due to the highly charged 

and polar nature of RNA, we also tested the polarizable AMOEBA force field. Our results show that the non-

polarizable force fields overestimate the electrostatic interactions between the RNA and the protein which 

leads to compact and stable complexes. This effect is not seen in the polarizable force field, but it is 

computationally much more demanding. As a conclusion, all the tested force fields can be used to simulate 

RNA-protein complexes. If computational resources are not limited or if lengthy simulations are not needed 

for the studied problem, the polarizable force field AMOEBA is the best choice. 
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Introduction 

Molecular dynamics (MD) simulations are routinely used to study the structure and dynamics of biomolecules 

at the atomistic level. Even though the models are by their very nature wrong in many ways, they are useful 

in showing us atomistic details of phenomena which cannot be directly observed experimentally.1 MD 

simulations have led to advances in drug and enzyme design and material science, and they have greatly 

increased our understanding of the interactions of biomolecules at the atomistic level.  

During the last few years, there have been some studies published about RNA-protein complex 

simulations.2–15 While this field is starting to gain interest, it is unfortunate to see that there are no studies 

published which would compare different force fields in studying RNA-protein complexes. The selection of 

force field and other simulation parameters depends on the studied system,16 and thus some time should be 

spent testing suitable options for each study case. One can argue that polarizability of a force field could help 

in simulations containing RNA, as strong electrostatic interactions are in dominant role in these systems.17 

This has made it difficult to optimize the parameters for the traditional fixed charge non-polarizable force 

fields for nucleic acids. In this study, we wanted to find if there are differences between traditional non-

polarizable point-charge force fields and a polarizable force field. The test case used in this study was 

complex of argonaute-2 (Ago2) with two strands of RNA.   

Ago2 is a crucial component of the RNA-induced silencing complex (RISC) which when bound to an RNA 

molecule inhibits gene expression.18 The preprocessed structure of Ago2 in complex with a guide and target 

RNA strands which we used for the simulations is shown in Figure 1.19 The guide RNA binds to Ago2 mainly 

from the 5’ end which contains the seed sequence (nucleotides 2-7) which are crucial to the binding to the 

complementary mRNA strand.20 The other end of the RNA, 3’ end is bound to the most flexible part of Ago2, 

the PAZ domain.11 The target RNA is mainly forming interactions with the guide RNA strand, with a few 

flanking nucleotides interacting with the Ago2 surface.  

We tested the MD simulations of an Ago2-RNA complex using three traditional non-polarizable force fields: 

Amber RNA force field OL321 with protein force fields ff14SB22 and ff19SB,23 the all-atom force field 

OPLS4,24 and the polarizable AMOEBA17,25 force field. The results show that the non-polarizable force fields 

tend to over-estimate the electrostatic interactions between the polarized RNA backbone and the protein. 

This leads to less freedom of movement for both molecules and might hide some biologically relevant 

conformational changes. The polarizable force field shows more flexibility especially in the RNA backbone 

and smaller number of H bonds between the protein and the RNA. However, there is a significant loss of 

simulation speed when using a polarizable force field. 

Methods 

System preparation 

The complex used for the simulations is the crystal structure of Ago2 bound to guide and target RNA 4W5O in 

PDB (Protein Data Bank).19 The missing nucleotides in the PDB model were built manually in PyMOL (Version 

2.5.1).26 The missing loops in the protein structure were modelled in BioLuminate (Schrödinger 2021.3), and 

afterwards the built loops were refined using Prime (Schrödinger 2021.3).27 The N-terminal was not present in 

the crystal structure and is unstructured in all argonaute crystal structures. It was thus omitted and the residue 

numbering starts from 22. N-termini was capped by adding ACE (N-acetyl group), while C-termini was left as 

a charged carboxyl group. Both 5´-phosphate and 3´-phosphate were eliminated from the ends of RNA 

molecules to prevent possible errors due to the lack of parametrization for them in the Amber force fields. The 

model was prepared in Protein Preparation Wizard (Schrodinger 2021.3)27 - the water molecules were deleted 

beyond 5.0 Å from het groups, the states of het groups were generated using Epik in pH 7.4 ± 2.0; the 

optimization of H-bonds was performed with PROPKA28,29 in pH 7.4 followed by restrained minimization of 

them in OPLS4.24 The system was then converted to Amber atom names using the pdb4amber script. 

Amber simulations – ff14SB and ff19SB 

The Amber simulation systems were prepared with the tleap tool of AmberTools21.30 The RNA-protein 

complex was solvated with truncated octahedron water box with 15Å buffer using 0.15M NaCl solution with 

SPCE or OPC water model for ff14SB and ff19SB protein force fields, respectively. The ions used 

parameters specified with the corresponding water model, and the RNA was parameterized with the RNA 
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force field OL3.21 To use the larger timestep (4 fs), the hydrogen masses were repartitioned to the carbon 

atoms using ParmEd software.31 

For the ff19SB23 simulations, the minimization and equilibration steps were following: 1) all non-water atoms 

constrained, 2) heavy atoms constrained, 3) protein back bone constrained and 4) no constraints. The 

constraint force was 50 kcal/mol in the minimizations and 10 kcal/mol in the equilibration simulations. The 

minimizations 1-4 used the steepest descent algorithm with a maximum of 10,000 steps. The equilibration 

steps 1-3 consisted of 400 ps simulations, and step 4 was a 4,000 ps simulation. In the first equilibration 

step, the system was heated to 310 K. The temperature and pressure were maintained with Langevin 

thermostat and Berendsen barostat in the equilibration simulations. For the ff14SB, steps 2-4 were used in 

the minimization procedure and steps 2 and 4 for the equilibration runs of 20 ps and 2000 ps, respectively. 

The simulations followed similar parameters as the ones described for ff19SB.  

During the production runs for each system the NPT ensemble was used: the 1.0 bar pressure was 

maintained with the help of Monte Carlo barostat and 310 K temperature was controlled by Langevin 

thermostat. Frames were recorded each 0.1 ns. The files were made ready for analysis by aligning and 

centering the complex, stripping away water molecules and writing the output in the format of xtc 

(compressed Gromacs trajectory) using cpptraj tool. The Amber production simulations were 4*500 ns in 

length for both force fields, resulting in 2 μs of total simulation time. 

Desmond simulations – OPLS4 

The RNA-protein complex was solvated with truncated octahedron water box with 15Å buffer using 0.15M 

NaCl solution with SPCE water model. The simulations consisted of the default minimization and relaxation 

protocol, and parameters for the production run were like those of the Amber simulations: recording interval 

each 100 ps, ensemble class NPT with temperature 300 K and pressure 1.01325 bar. The Desmond 

simulations were 8*250 ns in length, resulting in 2 μs of total simulation time. 

OpenMM simulations – AMOEBA 

The RNA-protein complex solvated with the Amber protocol was used to start the AMOEBA simulations in 

OpenMM.32 To avoid clashes and high energy conformations in this slower force field, we used the last 

frame of an Amber trajectory as the starting conformation. The system was then minimized using Verlet 

Integrator with 1 ps timestep for a maximum of 100 iterations. The production simulations were run with the 

default parameters using Langevin integrator, 1/ps collision frequency and 2 fs timestep. The total simulation 

time was 10*10ns for the initial short simulations and the longer simulations were 2*100ns (exactly 106.2 ns 

and 105.6 ns). The simulation frames were saved every 0.02 ns.  

Analysis of simulations – cpptraj  

The resulting simulations were stripped from water atoms, wrapped into a single periodic box, centered 

around the protein and converted to .xtc-format to save disk space. These stripped simulations were then 

analyzed using the in-house cpptraj scripts to calculate the RMSD, RMSF, radius of gyration and hydrogen 

bond count. The principal component analysis (PCA) was carried out using the coordinates of the heavy 

atoms of the guide RNA on each snapshot, and the average coordinates of each respective simulation set 

was used as the reference.  

Results 

System flexibility and fluctuations – RMSD and RMSF 

The flexibility of the protein and RNA strands was calculated using the root-mean-square deviation (RMSD) 

to the crystal structure. The results were calculated separately for the protein backbone (Cα, C, N, O atoms), 

guide RNA backbone (sugar + phosphate moieties) and target RNA backbone (sugar + phosphate moieties), 

and they are presented in Table 1. The distribution of RMSD values in simulations is depicted at the 

frequency polygon plots for protein, guide and target RNA backbones in Figure 2. The root-mean-square 

fluctuations of Cα atoms of the protein and the C3’ atoms of the guide RNA are shown in Figure 2.  

The tight packing of the RNA and the protein are most clearly seen in the ff14SB protein force field 

simulations. Previously, ff14SB protein force field has been criticized to overestimate the helical content due 
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to TIP3P water model which leads to too tight packing of the protein core and less freedom of movement.23 

By changing the protein force field to ff19SB and the water model to OPC, the movements of the RNA are 

also affected. Due to the more freely moving protein, the RNA can also display more flexibility.  

The OPLS4 force field also displays a relatively rigid protein, like in ff14SB. The protein is still fluctuating 

more than in the ff14SB, and both RNA strands display a larger deviation from the starting structure (Figure 

2). The protein and the RNA strands are also fluctuating more than in the Amber force fields (Figure 3). 

The AMOEBA 10*10ns simulations display the lowest RMSD values among all the simulations, which is most 

likely an artifact arising from the very short simulation time. Because it is possible that the shorter simulations 

are not displaying equilibrium conditions, we ran two longer AMOEBA simulations (~100ns) to get a better 

overview of the RNA and protein movements. Indeed, the AMOEBA 2*100ns simulations display large 

deviations from the starting structure (Table 1) and more fluctuations than the short AMOEBA simulations 

(Figure 3). 

Radius of gyration  

A visual inspection of the trajectories reveals that the differences observed in the RMSD values arise from 

different behavior of the system in the traditional and polarizable force fields. This compacting of the RNA-

protein complex is clearly visible in the maximum radius of gyration calculated for the simulation snapshots 

(Figure 4). In this analysis, ff14SB and OPLS4 seem to form the most compact complexes. Even in the 

AMOEBA 10*10ns simulations, a shift to larger radius of gyration can be observed. With the longer AMOEBA 

simulations, the relaxation of the system is even more obvious. 

The simulations with Amber ff19SB protein force field do not show as much compacting as ff14SB or OPLS4 

which can be seen in the overlaid snapshots in Figure 5A. The unexpected compacting of OPLS4 

simulations is due to a formation of a strong hydrogen bond between the terminal 5’ OH-group of the guide 

RNA U1 and either of the phosphoryl oxygens of the target RNA A2 (Figure 5B). This behavior is common, 

as it was observed in 7/8 of the OPLS4 simulations. If the hydrogen bond forms, it will remain until the end of 

the simulation. In the other force fields, and in the single OPLS4 simulation, the terminal 5´ OH-group of the 

guide RNA U1 interacts with the protein residues Tyr509 or Gln525.  

Principal component analysis - PCA 

To study this opening-closing dynamic more closely, we conducted principal component analysis (PCA) of 

the guide RNA coordinates. This clearly shows that the 5´ end of the guide RNA is moving outwards only in 

the polarizable AMOEBA force field (Figure 6) (only the AMOEBA 10*10ns simulation data was used for this 

analysis). In the other force fields the main movements of the guide RNA are observed towards the 3´ end 

which is either not closely bound to the protein or is bound to the very flexible PAZ domain. 

The number of hydrogen bonds 

All the force fields show similar numbers for the hydrogen bonds between the RNA strands (Table 2). 

Theoretically, there should be 17 hydrogen bonds between the seed region of the guide RNA (nt 2-9) and 

the target RNA. As expected, during the simulations some of those bonds stretch or twist beyond the criteria 

specified here and thus there is some fluctuation in the numbers, but overall, the numbers remain close to 

the theoretical number. 

The number of hydrogen bonds between the protein and the guide RNA is shown in Table 2 and Figure 6 

shows frequency polygons of hydrogen bond distribution. The amount of hydrogen bonds in the AMOEBA 

10*10ns simulations is similar to those observed in the non-polarizable force fields. In the longer AMOEBA 

simulations, where the system has more time to relax and open, the amount of hydrogen bonds between the 

guide RNA and the protein goes down by ~10 bonds. This indicates that the non-polarizable force fields 

over-stabilize the hydrogen bonding at the protein-RNA interface which has been reported before.3,16,33 

Discussion 

All the studied force fields can be used with RNA-protein complexes. All force fields produced reasonable 

simulations without major artefacts that could be traced back to the parameterization of the force fields. The 

RNA-protein complexes are chemically and biologically special systems, for which there are no specifically 
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tailored parameters in any currently available force field. Thus, at least for now the simulations need to be 

run as a combination of two different force fields or an all-atom force field which is a compromise of a many 

different compounds. 

Checking the simulation trajectories visually is a necessary step for the force field selection. Based on the 

numerical values of RMSD, RMSF, radius of gyration and hydrogen bond count, the all-atom force field 

OPLS4 displays similar performance to the Amber force fields. However, the visual checking of the 

trajectories revealed, that the usage of the OPLS4 force field lead to the most compact RNA-protein complex 

due to a hydrogen bond forming between the 5´ OH group and a phosphoryl oxygen on the target RNA 

(Figure 4B). It is possible that the formation of this hydrogen bond could be prevented with more careful 

water/ion placement. Generally, the 5´ terminus of small RNA molecules that bind to Ago2 is phosphorylated, 

as in the crystal structure that we used in this study.19 This phosphate group was removed in our simulations 

due to missing parameters in the Amber OL3 force field. We agree that for more precise RNA-Ago2 

interaction calculations, the 5´ phosphate parameters need to be developed also for these force fields.  

The protein force field affects RNA-protein complex dynamics. Even though both Amber simulation sets used 

the same RNA force field, the complexes behaved slightly differently. It is known that the Amber ff14SB force 

field underestimates helicity which in connection to 3-point water models leads to overly compact protein 

structures.23 This behavior is enhanced when RNA is bound to the protein, as the electrostatic interactions 

with the RNA backbone make the complex even more compact. Changing the protein force field to ff19SB 

and the water model to the 4-point OPC alleviate the problem, as the results show more flexible protein 

backbone movement and more open conformation based on the radius of gyration. Using a more modern 

protein force field and a more advanced water model leads, at least in the case of this RNA-protein complex, 

to a more realistic behavior of the complex.  

The non-polarizable force fields lead to too tight packing of RNA-protein complexes. The all-atom force field 

OPLS4 displayed similar maximum radius of gyration as the older ff14SB Amber protein force field. Both 

simulation sets used the older 3-point water model SPC/E. In Amber ff19SB simulations we used OPC, a 

more advanced 4-point water model that has been reported to improve the results of biomolecular 

simulations.34 It seems that using this water model in combination with the newer Amber ff19SB force field 

will lead to results that are closest to those obtained with the polarizable force field. Even in this case, the 

electrostatic interactions of RNA with the protein and the other RNA strand are overestimated which leads to 

less freedom of movement to all biomolecules. The too strong charge-charge interactions are a known issue 

in non-polarizable force fields33,35–37, for which there are no easy solutions.  

Generally, only adjusting Lennard-Jones parameters, vdW parameters or changing the water model are 

proposed to help with the issue of too strong electrostatic interactions.4,23,37–39 Electronic continuum 

correction approach can be used to adjust the charges of ions to enhance the ion representation in non-

polarizable force fields.37 This methodology could be partially also employed on proteins, where the charged 

side chains are relatively distant from the backbone. However, in the case of RNA, the ribose-phosphate 

backbone is heavily charged and any simple modifications to the point charges would compromise the 

description of the backbone dihedrals which are directly related to the point charges.  

Another commonly used non-polarizable force field CHARMM36 was not included in this study, as results of 

RNA-protein complex simulations with it in comparison with the Amber force fields are presented in another 

very recent study.33 In that study, CHARMM36 simulations showed lower hydrogen bond count than the 

Amber simulations and less interaction between the RNA and the protein. The studied system had the RNA 

bound on the protein surface which allowed freer movement for it than the Ago2 binding site which is in-

between of the protein domains. Based on the CHARMM36 results and our results with OPLS4, it seems 

that the Amber force fields result in higher hydrogen bond count and less fluctuating complex. This could be 

caused by the Amber force fields mixing and matching the partial charges and other parameters when 

calculating the interaction of molecules from different force fields, i.e. ff19SB for protein and OL3 for RNA.   

The polarizable AMOEBA force field overcomes too tight packing but is computationally expensive. The 

AMOEBA force field was the only studied force field here where the RNA-protein complex started opening 

outwards instead of compacting. This was obvious already in the initial very short 10 ns simulations, and the 

trend continued also in the longer AMOEBA simulations (2*100ns). However, using the polarizable force field 

comes with a significant computational cost. While the ff19SB + OL3 simulations achieved a simulation 
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speed of ~160 ns/day, the AMOEBA simulations only reached a simulation speed of ~4 ns/day. Both 

simulations were run in a similar environment, on a single NVIDIA Volta V100 GPU. Due to this significant 

increase in computational cost, in some cases it might be more beneficial to use non-polarizable force fields 

with an enhanced sampling method to get reasonably accurate results. 

Conclusions 

Even though extensive effort has been put to parameterize the force fields for RNA and proteins, the RNA-

protein complex simulations remain problematic because they need to provide reasonable interactions at the 

interface of these two chemically different molecules. This study further confirms that the force field and other 

simulation parameters selection is always dependent on the studied system. Based on our results all the 

non-polarizable force fields can be used to simulate RNA-protein complexes. In this case, the combination of 

ff19SB and OL3 had fewer issues with additional artificial hydrogen bonds and less compact packing. 

However, all the non-polarizable force fields tended to make the complexes very compact which might 

prevent the formation of some biologically relevant conformations. To avoid this, and when the computational 

cost is not an issue, the polarizable force field AMOEBA should be preferred. We perceive that the 

polarizable force fields are the future of biomolecular simulations also beyond the RNA-protein complexes 

after sufficient development of software and hardware makes them a computationally reasonable alternative. 

Data availability 

The simulation trajectories in .xtc format and their corresponding .pdb files have been uploaded into the 

Zenodo database under the following DOI: 10.5281/zenodo.6605469. The trajectories are wrapped into a 

single periodic boundary box, centered around the protein Cα atoms and the water molecules have been 

stripped out to conserve disk space. 
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Figures and captions 

 

Figure 1. The model of Ago2 bound to guide (orange) and target (yellow) RNA, and three magnesium ions 

(magenta). The model was constructed from PDB ID 4W5O by predicting the position of missing protein 

residues and manually inserting the missing nucleotides. 

 

Figure 2. RMSD frequency polygons calculated for the backbones of the protein, the guide and the target 

RNA. 
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Figure 3. The relative fluctuations of the protein Cα and the guide RNA C3’ atoms in the different force fields. 

 

Figure 4. Frequency of the maximum radius of gyration of Cα atoms in the snapshots. 



11 

 

 

Figure 5. A) Snapshots of simulations from the ff14SB (blue), ff19SB (cyan), OPLS4 (yellow) and AMOEBA 

(magenta) force fields. The AMOEBA force field, despite its shorter simulation times, keeps the two RNA 

strands further away from each other than the nonpolarizable force fields. B) The hydrogen bond between 

the guide RNA U1 and the target RNA A2 which explains the tighter packing in most of the OPLS4 

simulations.  

 

Figure 6. The first principal component from the PCA analysis: A) ff14SB + OL3, B) ff19SB + OL3, C) OPLS4 

and D) AMOEBA 10*10ns. The arrows depict the direction and intensity of the movement. For clarity, only 

larger movements (>2.5 Å) are shown. 
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Figure 7. Frequency polygons of hydrogen bonds between the guide RNA and the target RNA and between 

the protein and the guide RNA.  
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Tables and captions 

Table 1. Average RMSD values in different simulations with corresponding standard deviations (SD).  

RMSD 
ff14SB + OL3 ff19SB + OL3 OLPS4 

AMOEBA 

10*10ns 

AMOEBA 

2*100ns 

Protein 

backbone 
2.4 ± 0.4 Å 3.0 ± 0.7 Å 2.5 ± 0.4 Å 2.1 ± 0.3 Å 3.2 ± 0.6 Å 

Guide RNA 

backbone 
2.2 ± 0.4 Å 2.5 ± 0.5 Å 3.6 ± 0.8 Å 2.1 ± 0.9 Å 4.8 ± 1.0 Å 

Target RNA 

backbone 
2.0 ± 0.6 Å 2.9 ± 1.0 Å 4.0 ± 1.3 Å 1.8 ± 0.4 Å 2.3 ± 0.4 Å 

 

 

 

 

Table 2. The average number of hydrogen bonds between the target RNA and the guide RNA and its 

standard deviation (SD) during the simulations. Strong bond = Donor-acceptor distance <3.2Å and angle 

>135°. Weak bond = Donor-acceptor distance <3.5Å and angle >120°. 

Intra-RNA ff14SB + OL3 ff19SB + OL3 OLPS4 
AMOEBA 

10*10ns 

AMOEBA 

2*100ns 

Strong 16.0 ± 1.6 16.8 ± 1.4 15.6 ± 2.2 16.3 ± 1.8 17.1 ± 1.6 

Guide RNA-Protein ff14SB + OL3 ff19SB + OL3 OLPS4 
AMOEBA 

10*10ns 

AMOEBA 

2*100ns 

Strong 41.7 ± 4.2 38.5 ± 4.1 37.4 ± 3.8 39.2 ± 7.2 29.2 ± 5.5 

Weak 56.4 ± 5.6 52.2 ± 5.2 48.3 ± 4.7 53.3 ± 9.3 38.8 ± 7.5 

 

 

 

 

 


