The Impact of the Different Geometrical Restrictions on the Nonadiabatic Photoisomerization of Biliverdin Chromophore

Yuan Fang1,2, Haiyi Huang1,2, Kunni Lin1,2, Chao Xu2,3*, Feng Long Gu2,3*, Zhenggang Lan2,3*

1School of Chemistry, South China Normal University, Guangzhou 510006, China.
2MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
3SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China.

Email: 2020022489@m.scnu.edu.cn, zhenggang.lan@m.scnu.edu.cn
Abstract: The photoisomerization mechanism of the chromophore of bacterial biliverdin (BV) phytochromes is explored with the nonadiabatic dynamics simulation by using the on-the-fly trajectory surface-hopping method at the semi-empirical OM2/MRCI level. Particularly, the current study focuses on the influence of the geometrical constrains on the nonadiabatic photoisomerization dynamics of the BV chromophore. Here a rather simplified approach is employed in the nonadiabatic dynamics to capture the features of geometrical constrains, which adds the mechanical restriction on the specific moieties of the BV chromophore. This simplified method provides a rather quick approach to examine the influence of the geometrical restrictions on the photoisomerization. As expected, different constrains bring the distinctive influences on the photoisomerization mechanism of the BV chromophore, giving either strong or minor modification of both involved reaction channels and excited-state lifetimes after the constrains are added in different ring moieties. These observations not only contribute to the primary understanding of the role of the spatial restriction caused by biological environments in photoinduced dynamics of the BV chromophore, but also provide useful ideas for the artificial regulation of the photoisomerization reaction channels of phytochrome proteins.
1. **Introduction**

Phytochromes are photosensitive proteins, which are widely found in plants, bacteria, and algae.\(^1\) Plant phytochrome (P\(\Phi\)B) promotes the seed germination and the chlorophyll synthesis in plants.\(^2\) Phycocyanin (PCB) and biliverdin (BV) phytochromes that are found in algae and bacteria, respectively, can synthesize biological pigments and promote growth.\(^3\)–\(^5\) In addition, BV was also used to design the near-infrared fluorescent proteins in the research of diseases such as cancers.\(^6\)–\(^10\) Owing to their importance, phytochromes have been extensively studied over decades.\(^9\),\(^11\)–\(^18\)

![Figure 1. BV model in Pr (ZsZsZa) configuration](image)

The biological functions of phytochrome are controlled by the switching between two forms (Pr and Pfr).\(^19\) The physiologically inactive Pr form can absorb red light, and converts to the active Pfr form. In the reversed process, the Pfr form can return to the Pr form by absorbing far-red light. The switching between them drives the structural rearrangement in the phytochrome proteins to realize important biological functions.

The central chromophore of phytochrome is a methylene-bridged linear tetrapyrrole compound with several twisted carbon-carbon single and double bonds, resulting in the
existence of many isomers. In order to label these configurations, the bridged carbon-
carbon double and single bonds are defined as Z/E and syn/anti(s/a) isomerism,
respectively. Some studies have determined that the Pr of PΦB is in the ZaZsZa form,20
while the Pr of PCB and BV has the ZsZsZa form (Figure 1).21,22 In contrast, the Pfr
configuration is still not fully clarified, which may be dependent on Pr → Pfr
photoreaction processes.23 Therefore, the study of Pr → Pfr reaction not only deepens
the understanding of the photoisomerization process, but also helps to determine the
Pfr conformation.

Considerable efforts were made to understand the Pr → Pfr photoisomerization
mechanism. The photoisomerization process of BV and PΦB in the protein
environments is believed to be around the C15C16 double bond.24–29 Differently, Ulijasz
et al. proposed that the twist of C4C5 double bond is the key to the isomerization of
PCB.23 At the same time, some studies also pointed out that the rotation of the C10C11
double bond was noticeable in the BV and PΦB isomerization,30–32 at least in the gas
phase. In addition, the hydrogen-bond network patterns greatly affect the
photoisomerization channels of central chromophores, when different deprotonation
status exist in these pyrrole rings.33,34 These works demonstrated that the
photoisomerization of phytochrome chromophores may be adjusted by the distinctive
confinement of chromophores in the vacuum and in the surrounding environment. In a
vacuum, the chromophore is a "free" molecule and the rotation of any carbon-carbon
bond is not affected by external factors. In living organisms, nonetheless, chromophores
can be spatially constrained by their surrounding residuals, placing additional
restrictions on their photoisomerization process. For example, one common idea is that Ring D in BV (Figure 1) and PΦB is not rigorously constrained due to the fact that it is located in a relatively loose protein cavity.25,35 This leads to a high chance to realize the rotation of Ring D. This view was also supported by the work of Burgie et al., who showed that Ring A and Ring B are sandwiched in protein secondary domains and covalently linked to the protein for PΦB.25 In addition, the C\textsubscript{10} methyl bridge between Ring B and Ring C is tightly wrapped by surrounding residues in BV, preventing the photoisomerization at the C\textsubscript{10} position.21

Here, we are interested in several detailed aspects of the photoisomerization mechanism of the BV chromophore. The BV chromophore attracts our attention due to its unique properties.16,20,36 It is not only the chromophore of phytochrome in Deinococcus radiodurans, but also the heme-metabolism intermediate of all aerobic organisms.7,8,37 It can be engineered into monomeric infrared fluorescent proteins (IFPs)38,39 that may be potentially used in disease diagnosis.6,9 In the present work, we specifically focus on the possible influences of the restricted motions in the BV chromophore. Particularly, we wish to provide a rather preliminary view of the steric effects by surrounding environments on the photoisomerization though a quick computational study, instead of giving a very comprehensive description of the role of realistic environments in nonadiabatic dynamics. Therefore, the efficient treatment of the spatial constraints becomes very essential. In principle, the dynamics of molecules constrained by the biological environment can be simulated by the quantum mechanical/molecular mechanics (QM/MM) method, which can include all
degrees of freedom of the protein environment and solution compounds explicitly.40-44 However, it requires rather large computational costs once performing the nonadiabatic dynamics simulations. Instead, we wish to treat the geometrical restriction in the nonadiabatic dynamics using a rather simplified approach with much less computational cost. Previously, many efforts have been made to mimic the biological environmental influence on the nonadiabatic dynamics in the simplified way. For example, Warshel simulated the restriction of protein by constraining the movements of terminal atoms in retinal molecules, rather than considering the motions of all atoms.45 Barbatti et al. imposed the geometrical constraints by increasing the nuclear mass of the terminal hydrogen atom in the nonadiabatic dynamics simulation of the protonated Schiff bases linked to proteins.46 This idea was also successfully used to study the environmental effects in the photochemistry of aminopyrimidines.47-49 The employment of this “heavy-mass” approach shows many advantages: it can greatly reduce the computational costs and is easy to implement in the nonadiabatic dynamics simulations. Inspired by these works, we decide to take a similar idea in the trajectory surface hopping (TSH) simulations. The geometrical restriction of the surrounding environments is taken into account by using the very heavy atomic mass in the restricted moieties of the BV chromophore. We hope to elucidate the role of the possible surrounding environment on the photoinduced nonadiabatic processes, and further deepen the understanding of the photoisomerization mechanism of the BV chromophore in biological proteins.
2. Computational Details

2.1 Electronic Structure Calculation

The electronic structure calculations were performed with the semi-empirical orthogonalized-model (OM2) method.50 The excited-state wave function was described by the multireference configuration interaction (MRCI) method within the configuration interaction scheme based on the Graphical Unitary Group Approach (GUGA-CI).51,52 The molecular orbitals were generated by using the restricted open-shell Hartree-Fock (ROHF) approach. All electronic configurations were generated from five reference configurations [the closed-shell, two single (HOMO-1 to LUMO and HOMO to LUMO) and two double (HOMO-1 to LUMO and HOMO to LUMO) excitations]. The active space (16, 12) was employed which distributes 16 electrons in 12 orbitals: six π orbitals, two n orbitals and four π^* orbitals. The state minima (S_0_{\min} and S_1_{\min}) and minimum-energy S_0/S_1 conical intersection (CI) geometries were optimized.53 To get a direct view of the excited-state reaction pathways, we constructed the potential energy (PE) profiles by linear interpolation of the internal coordinates (LIICs) from the ground-state minimum to the minimum-energy CI structures. All semi-empirical calculations were performed by using the MNDO2020 package.54

2.2 Nonadiabatic Dynamics

The photoinduced nonadiabatic dynamics were simulated by the on-the-fly TSH simulations at the OM2/MRCI level. Previous works have demonstrated that this approach provides an efficient and reasonable description on the excited-state
nonadiabatic dynamics or polyatomic systems with low computational cost.32,55 A set of initial conditions (geometry and velocity) were generated using Winger sampling method.56 All trajectories start from the first excited state. The time steps for the propagation of the nuclear and electron motions were 0.5 fs and 0.005 fs, respectively. The trajectories propagated up to 2000 fs. The nuclear motion was integrated by the velocity-Verlet method. The solution of the electron motion was carried out by the unitary propagation. The hopping probability was calculated with Tully's fewest switches algorithm.57 All relevant energies, gradients and nonadiabatic couplings were calculated in the manner of on-the-fly along the trajectory propagation. A practical way proposed by Granucci et al. with the $\gamma = 0.1$ Hartree was employed to take the decoherence correction into account.58 When hops take place, the velocity rescaling is performed according to the nonadiabatic coupling vector. For frustrated hops, the velocity component along the nonadiabatic coupling vector was reversed. The interface between the TSH dynamics module in the JADE package59 and the electronic-structure calculations OM2/MRCI in the MNDO package was employed for the nonadiabatic dynamics simulations.

\section*{2.3 Molecular model construction}

All calculations were simulated using a simplified model with the ZsZsZa structure that was identified as the main isomer of the Pr form in BV photochrome.21 Here, several side groups (thioether bonds, propionic acid carboxyl groups on Rings B and C) should have minor contribution on the skeleton motion in the excited state dynamics,
we simply replaced them by the methyl group to reduce computational costs.

We wish to gain a deep understanding of the steric effect on the photoisomerization dynamics of BV molecules. Here, the BV molecules possess four five-membered rings. To get a full understanding of the impacts of different geometrical constraints, we considered as many restriction situations as possible, and totally constructed nine models, as shown in Table 1 and Figure 1. Model 0 represents the original simplified BV chromophore model. In Models I-IV, a single ring is constrained. In Models V-VII, two adjacent rings were constrained, along with their connecting parts. We also built Model VIII, in which two side rings (A and D in Figure 1) were constrained. On this basis, we set the atomic masses in the restricted part of the BV molecule to 99999999 au and the initial velocity to 0 in the nonadiabatic dynamics simulation.

According to the simulation results (see discussions below), nine models were divided into four groups with rather different decay features: Group 1 includes Models 0, I, IV and VIII; Group 2 includes Models II and V; Group 3 includes Models III and VII; and Group 4 includes Model VI.

Table 1. All BV models with different geometrical constraints. The constrained parts are labelled by different colors in Figure 1.

<table>
<thead>
<tr>
<th>Models</th>
<th>Constrained part of the BV molecule</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>Ring A (green part)</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>Ring B (yellow part)</td>
<td>2</td>
</tr>
<tr>
<td>VII</td>
<td>Rings C and D (red part, C_{15} methyl bridge and blue part)</td>
<td>3</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>VIII</td>
<td>Rings A and D (green part, and blue part)</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Results and Discussion

3.1 CI Structures and Channels

The Pr→Pfr photoisomerization mechanism is closely related to the ultrafast nonadiabatic process governed by the conical intersections. To clarify the role of the CIs in the nonadiabatic dynamics, we optimized the several CI geometries (Figure 2). Table S1 and S2 (in supporting information (SI)) show the key internal coordinates at S_{0_min}, S_{1_min} and CIs. These four important CIs display the below geometrical features:

- CI1: C_9C_{10}C_{11}N_C dihedral angle rotates to -85.4° with the elongated C_{10}C_{11} bond and the shortened C_9C_{10} bond;
- CI2: N_BC_9C_{10}C_{11} dihedral angle rotates to -93.4° with the elongated C_9C_{10} bond and the shortened C_{10}C_{11} bond;
- CI3: C_{14}C_{15}C_{16}N_D dihedral angle rotates to 95.0° with the elongated C_{15}C_{16} bond and the shortened C_{14}C_{15} bond;
- CI4: N_AC_4C_5C_6 dihedral angle rotates to 89.6° with the elongated C_4C_5 bond and the
shortened C5C6 bond.

To get a direct view of the excited-state reaction pathways, we constructed the PE profiles from the ground-state minimum to the CI structures. In Figure 3a and 3b, the excited-state pathways from S0_min to both Cl1 and Cl2 are barrierless, and the former one is steeper. Moreover, the energy of Cl1 is lower than that of Cl2. While the other two channels towards Cl3 and Cl4 show some visible barriers (see Figure 3c and 3d), and the Cl4 channel exists a slightly higher energy barrier.

It is necessary to point out that the torsional motions at the C14C15 and C5C6 bonds also lead to the Cls, giving Cl5 and Cl6 (see Figure S1), respectively. However, as shown in Figure S2, the reaction pathways towards them display very high barriers, preventing the possibility of these two photoisomerization channels. Thus, we do not discuss them here.

Figure 2. Four important S0/S1 minimum-energy CI structures and their major dihedral angles (marked by red circles) (a) Cl1; (b) Cl2; (c) Cl3; (d) Cl4.
We performed the nonadiabatic dynamics simulation for all nine models mentioned above. After collecting all hop geometries and analyzing their correlations with optimized CIs, four CIs (CI₁, CI₂, CI₃, and CI₄) were identified to play key roles in the nonadiabatic decay. By analyzing the hopping structures in TSH dynamics, we can divide all nine BV models into four groups according to their involved decay channels, as shown in Table 2.

Figure 3. Potential energy curves along the linear interpolated pathway from S₀_min to the four conical intersections (a) CI₁; (b) CI₂; (c) CI₃; (d) CI₄.
Table 2. The branching ratio of different reaction channels in each constrained BV model, obtained from the TSH dynamics up to 2 ps.

<table>
<thead>
<tr>
<th>Group</th>
<th>Model</th>
<th>CI₁</th>
<th>CI₂</th>
<th>CI₃</th>
<th>CI₄</th>
<th>No Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 (Ring A)</td>
<td>94.1%</td>
<td>5.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>I (Ring A)</td>
<td>94.3%</td>
<td>1.0%</td>
<td>3.6%</td>
<td>0.0%</td>
<td>1.1%</td>
</tr>
<tr>
<td></td>
<td>IV (Ring D)</td>
<td>95.7%</td>
<td>3.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td>VIII (Rings A and D)</td>
<td>87.0%</td>
<td>3.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>9.5%</td>
</tr>
<tr>
<td>2</td>
<td>II (Ring B)</td>
<td>67.0%</td>
<td>1.1%</td>
<td>21.9%</td>
<td>0.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td>V (Rings A and B)</td>
<td>63.1%</td>
<td>1.4%</td>
<td>30.3%</td>
<td>0.0%</td>
<td>5.2%</td>
</tr>
<tr>
<td>3</td>
<td>III (Ring C)</td>
<td>45.5%</td>
<td>14.1%</td>
<td>4.3%</td>
<td>1.0%</td>
<td>35.1%</td>
</tr>
<tr>
<td></td>
<td>VII (Rings C and D)</td>
<td>31.4%</td>
<td>13.3%</td>
<td>0.0%</td>
<td>6.4%</td>
<td>48.9%</td>
</tr>
<tr>
<td>4</td>
<td>VI (Rings B and C)</td>
<td>0.0%</td>
<td>0.0%</td>
<td>42.0%</td>
<td>8.0%</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

The first group includes Models 0, I, IV and VIII. Among them, Model 0 represents the free BV model. Models I, II and VIII refer to the situations in which the constraints are added in two terminal rings, namely Rings A, D and both, respectively. As shown in Table 2, Figure 4a and Figure S4, the CI₁ controlled pathway is the predominant decay channel in these four models. Following this channel, the trajectories experience the significant changing of the C₅C₁₀C₁₁N₅ angle up to ~85.4°, as shown in Figure 2. However, the other CIs only make very small contributions. For instance, the CI₂ plays a little role here, and the CI₃ channel only appears in the TSH dynamics of Model I. This result can be well understood by the PE curves. As we discussed previously, there is no barrier existing in the first excited-state decay pathways from S₀_min to CI₁ and CI₂, and the former PE surface is steeper. At the same time, the other two channels towards CI₃ and CI₄ display visible energy barriers along the excited-state pathways. As a consequence, in Model 0, the channel via CI₁ becomes dominant while only a
small number of trajectories decay via CI₂ here. Since the motions of Rings A and D
are constrained in Models I, IV and VIII, we expect that the major torsional around the
carbon-carbon double bond between Rings B and C should not be largely hindered.
This explains why their nonadiabatic decay channels are similar to that of Model 0.
Overall, the CI₁ pathway is the dominant channel in the nonadiabatic dynamics of
Models 0, I, IV and VIII in Group 1, in which the photoisomerization mainly takes
place at the C₁₀C₁₁ bond.

The second group includes Model II and Model V, with Ring B and Rings A and B
are constrained, respectively. For these two models, most of trajectories decay via CI₁
while the secondary channel goes to the CI₃ (see Table 2, Figure 4b and Figure S5).
Compared to the models in Group 1, the contributions of both CI₁ and CI₂ become
decreased, while the role of CI₃ starts to be visible. The change of the branching ratio
to different channels can be explained as follows. Once Ring A and Ring B are
immobilized, the torsional motion along the C₉C₁₀ bond becomes limited, resulting in
the reducing of the CI₂ channel. In addition, the analysis of trajectory propagation
clarifies that the motion of Ring B is necessary in the C₁₀C₁₁ isomerization channel, as
shown in Figure S3 in SI for details. Therefore, the constrains on Ring B leads to the
decreasing of the CI₁ channel. Due to the reducing of both CI₁ and CI₂ channels,
trajectories should move by following either CI₃ or CI₄ channel, and both show barriers
on the excited-state reaction pathway. Although the PE barrier in the CI₃ controlled
channel is only 0.06 eV lower than that of the CI₄ dominated channel, the difference in
the proportion of the channel is obvious. This feature may be attributed to the reasons
The nonadiabatic processes of the channels via CI$_3$ and CI$_4$ show distinctions in ring motions. The decay channel via CI$_3$ is mainly characterized by the motion of the Ring D. In the CI$_4$ channel, Ring A must experience the outward motion away from the other three rings first, and then rotate. Therefore, the CI$_3$ channel is easily achieved due to much less geometrical rearrangement. As a short summary, the CI$_1$ channel with the photoisomerization site at the C$_{10}$C$_{11}$ bond is still dominant in the nonadiabatic dynamics of Group 2. However, the branching ratio of this channel is reduced, with the increasing of the CI$_3$ channel that displays the photoisomerization at the C$_{15}$C$_{16}$ bond.

The third group includes Models III and VII, with Ring C constrained and Rings C and D constrained. As shown in Table 2, Figure 4c and Figure S6, the channel via CI$_1$ is still the most important one. Interestingly, we also see the secondary channels via CI$_2$. The dominant role of CI$_1$ and the secondary role of CI$_2$ are addressed in the previous discussions. Compared to Model 0, the proportion of CI$_2$ (CI$_1$) channel has increased (decreased) greatly. The analysis of trajectory evolution indicates that the torsion around the C$_{10}$C$_{11}$ bond is strongly controlled by the Ring C (see Figure S3). As a consequence, the restriction of Ring C leads to the decreasing of the CI$_1$ channel. The reducing of the CI$_1$ channel certainly improves the contributions of other channels. As the results, more trajectories follow the CI$_2$ because it is also barrierless. In addition, a few of trajectories choose the CI$_3$ channel with the smaller potential barrier. Since Model VII confines Rings C and D, the CI$_3$ channel of the C$_{15}$C$_{16}$ rotation between Rings C and D is closed. Therefore, there is no CI$_3$ channel in Model VIII, resulting in an increase in the proportion of CI$_4$ channels. Overall, the CI$_1$ channel with the
photoisomerization at the C_{10}C_{11} bond is still dominant in Group 3, while its ratio is largely reduced. The secondary channel is governed by the CI_2 that shows the isomerization site at C_{9}C_{10} bond.

The fourth group includes only Model VI, in which both two central Rings, B and C are constrained. In this model, the vast majority of the trajectories decay through CI_3 and small number of trajectories decay via CI_4, see Table 2, Figure 4d and Figure S7. Since both Rings B and C are restricted, the dihedral angle between them almost cannot rotate, leading to the vanishing of the CI_1 and CI_2 channels. Due to the less geometrical rearrangement discussed above, the CI_3 channel is dominant one in Group 4. In this case, the photoisomerization mainly takes place at the C_{15}C_{16} site. Nevertheless, this model shows the similar geometrical constraints at the BV chromophore in protein environments.
3.3 Population

The above discussions clearly point out that different decay channels are responsible for the nonadiabatic dynamics of nine constrained BV models. The trajectories follow...
distinct reaction channels with different PE profiles, we expect that the evolution of
electronic populations of these models should also be different. In principle, the models
belonging to the same group should display similar population dynamics, since their
underlying channels are rather similar.

Figure 5 shows the evolution of a few key dihedral angles with time being, from
starting conditions to hopping events. Figure 6 shows their population dynamics.
Clearly, the photoisomerization rate is strongly controlled by the dominant CI channel
that is significantly modified by different geometric constraints.

Group 1 includes **Models 0, I, IV and VIII**. In Group 1, the CI_1 is the most dominant
decay channel. As shown in Figure S3, the motion of Ring C is important in the CI_1
cchannel, while the motion of the Ring B is also involved necessary. The Rings B and C
are completely unconstrained in structure, and have no effect on the torsion of the CI_1
cchannel. Therefore, the nonadiabatic dynamics in this group display the fastest
population decay (see Figure 6a). For this group, most trajectories access the CI_1 around
400 fs (Figure 5 a–d). Only for **Model VIII**, we noticed that 9.5% of trajectories stay
on the first excited state at the end of simulation. As a consequence, more than 50% of
trajectories jump back to the S_0 state within 500 fs, and most of the trajectories return
to the ground state within 2000 fs.

Compared with Group 1, the branching ratio towards to the CI_3 channel increased
significantly in all models of Group 2, while the CI_1 channel is still the most important
one. As depicted in Figure S3, the motion of Ring B plays the visible role in the CI_1
cchannel, and thus the employment of the constrain in Ring B slows down this channel.
This is confirmed by Figure 5 e and f, which show that the many nonadiabatic transitions at CI\textsubscript{1} take place around 400 fs, while some hops happen at the later time \sim400–800 fs. In addition, about 10.0% and 5.2% of the trajectories do not hop back to the ground state for both Model II and V, respectively. As the result, a slightly longer decay in the population dynamics appears for all models in Group 2. Figure 6b reflects that more than 50% of the trajectories decay to the S\textsubscript{0} state within 700 fs, and most of the trajectories back to the S\textsubscript{0} state at the end of simulation.

In Group 3 (Models III and VII), the CI\textsubscript{1} channels is still the most dominant one, although its contribution is further decreased in all models. The Ring C is constrained and greatly affects the molecular rotation through the CI\textsubscript{1} channel, see Figure S3. Therefore, the dynamics is quite different with respect to those of the first two groups. The photoisomerization via the CI\textsubscript{1} channel becomes much slower (Figure 5) and many hops take place around 1600 fs (see Figure 5 g and h). And in Models III and VII, 35.1% and 48.9% of the trajectories do not hop up to 2 ps. Overall, the population decay becomes much slower.

Completely different from the above three groups, CI\textsubscript{1} and CI\textsubscript{2} channels do not exist in the model of Group 4. Here, all trajectories decay visit CI\textsubscript{3} or CI\textsubscript{4}. The transitions take place mainly through the CI\textsubscript{3} channel, in which the C\textsubscript{15}C\textsubscript{16} double bond rotates more slowly (see Figure 5i). In this case, most hops take place around 1200-1600 fs, and 50% of the trajectories do not jump back to the ground state up to 2 ps. As a consequence, Group 4 shows the slowest decay dynamics in Figure 6d.
Figure 5. Time evolution of key dihedral angles ($C_9C_{10}C_{11}N_C$ for most models and $C_{14}C_{15}C_{16}N_D$ for Model VI). The red dotted line represents the dihedral angle at the dominant CI structure. The cross labels show the hopping events.
In this work, the photoisomerization processes of BV chromophore are investigated by employing the surface hopping nonadiabatic dynamics simulation at the OM2/MRCI level. Different geometrical constraints are considered, and the corresponding models give distinct decay channels.

The unconstrained BV chromophore (Model 0) and the constrained terminal rings (Ring A in Model I, Ring D in IV, and Rings AD in VIII, respectively) have similar

Figure 6. Time-dependent fractional occupations of the S_0 and S_1 electronic states of the nine models in the nonadiabatic dynamics staring from the S_1 state. (a) Group 1; (b) Group 2; (c) Group 3; (d) Group 4.
dynamics. The trajectories decay rapidly from S_1 state, with 50% of the trajectories decaying within 500fs. Most trajectories choose to follow the CI$_1$ channel, characterized by isomerization around C$_{10}$C$_{11}$ bond.

Models II and **V** constrain the motion of Ring B and the Rings A and B, leading to the slight increasing of the excited-state lifetime with respect to **Models I, IV** and **VIII**. Except the major channel via CI$_1$, the secondary channel is governed by the CI$_3$ channel, in which the photoisomerization takes place at the C$_{15}$C$_{16}$ bond.

Models III and **VII**, which are characterized by the restricted motion of Ring C and Rings C and D, show the significantly longer excited-state decay times. Although the CI$_1$ channel is still the primary channel, the ratio of the CI$_2$ channel with the photoisomerization at the C$_9$C$_{10}$ bond increases significantly.

Model VI with the two middle rings fixed show completely different dynamics features, with 50% of the nondecay trajectories at the end of the simulation time 2000 fs. Such slow decay is attributed to the fact that **Model VI** decays mainly through the CI$_3$ channel in which the C$_{15}$C$_{16}$ bond torsion is involved.

By simply mechanically restricting the motion of a specific moiety, we try to study the spatial effects of surrounding environment on the photoisomerization dynamics of the BV chromophore with very small computational cost. Our work clearly describes the impact of various possible steric effects on the nonadiabatic dynamics processes. It provides a guideline for the regulation of the photoisomerization reaction channel, which can further propose some novel ideas for the design of phytochrome proteins. In this sense, the current work provides the preliminary but useful understandings of this
important topic efficiently by using a rather simplified method, while it cannot fully
and accurately capture the influences of the real biological environment. In order to
understand the photoisomerization process of BV chromophore in the protein more
realistically, the advanced QM/MM method is the better choice in future research.

Acknowledgments

This work is supported by NSFC projects (No. 21903030, 21933011 and 21873112).

Supplementary Material

Key bond lengths and dihedral angles of S_0_{min}, S_1_{min} and CI1-4, the structure of
S_0_{min}, S_1_{min} and CI5-6, excited-state pathways in the CI5 and CI6 channels, the time
evolution of the normal vector of the rings, the distributions of key dihedral angels at
the initial, hopping and CI geometries, cartesian coordinates are available.

References

 858.
4 Z. Jiang, L. R. Swem, B. G. Rushing, S. Devanathan, G. Tollin and C. E. Bauer,

16 21
17 22