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Abstract 

The ability to estimate the probability of a drug to receive approval in clinical trials provides natural 

advantages to optimizing pharmaceutical research workflows. Success rates of clinical trials have deep 

implications to costs, duration of development, and under pressure due to stringent regulatory approval 

processes. We propose a machine learning approach that can predict the outcome of the trial with reliable 

accuracies, using biological activities, physicochemical properties of the compounds, target-related 

features, and NLP-based compound representation. Biological activities have never been used as a 

predictive feature. We have extracted the drug-disease pair from clinical trials and mapped target(s) to that 

pair using multiple data sources. Empirical results demonstrate that ensemble learning outperforms 

independently trained, small-data ML models. We report results and inferences derived from a Random 

forest classifier with an average accuracy of 93%, and an F1 score of 0.96 for the 'Pass' class. 'Pass' refers 

to one of the two classes (Pass/ Fail) of all clinical trials and the model performed well in predicting the 

'Pass' category. An analysis of the features demonstrates that bioactivity plays an important role in 

predicting the outcome of a clinical trial. A significant effort has gone into the production of the dataset 

that, for the first time, integrates clinical trial information with protein targets. All code to map these entities 

is available through this study, and all data are from publicly available sources. While our model identifies 

low-lying inferences when biological activities are included, the code to integrate biological activity and 

target information provide researchers with access to deep curated and proprietary clinical trial databases 

the ability to get deeper insights, better statistical significance, and capabilities to better predict trial 

failures. 

KEYWORDS  

bioactivity, clinical trial, data integration, ensemble algorithms, graph database, machine 

learning  

1 INTRODUCTION  

Clinical trials evaluate the efficacy and toxicity of a drug candidate. A molecule is released as a new 

drug after success in all four phases of clinical trials. While treatments come in many forms like multi-drug 

therapies, medical devices, vaccines, biologics, and others, here, we build a predictive model to estimate 

the clinical trial success of single-molecule therapeutics. Trials determine if pre-clinical stage molecules 

can metamorphose into a therapeutic, and form a large part of the budget required to transform a potential 

active molecule to a New Drug Application (NDA). Hence, the ability to predict clinical trial outcomes 

derisk R&D costs, assist in the early prioritization of active molecules, and reduce attrition rates in drug 

approval.    
 
Source Code used in this study can be found at:  

https://github.com/pathri/ClinicalTrials_Prediction 

https://github.com/pathri/ClinicalTrials_Prediction


 

High costs in drug development are due to multiple complex contributors like scientific discovery 

processes, infrastructure, collaborations, clinical development duration, safety studies, efficacy studies, 

market research, and clinical trial costs, to name a few (Maxmen, 2016). Conducting clinical trials amidst 

knowing the efficacy and value of drugs, regulatory scrutiny, population, rising costs remains a core 

challenge for pharma (Martin et al., 2017, Lang & Siribaddana, 2012). Starting with a big positive shift 

away from the dip in approvals between 2015-17 (Dowden & Munro, 2019), the data published by FDA 

(the annual New Drug Approvals Report) suggest that an average of 46 drugs have been approved per year 

across the past 5 years. Nonetheless, the success rate of molecules to transition from Phase II to III is the 

least (Yamaguchi et al., 2021), and hence exemplifies the phase transition that carries the highest risk. 

Further, studies (Dowden & Munro, 2019) indicate that there are higher chances of a molecule being 

launched as a drug when it reaches Phase III.  

 

1.1 Machine Learning to predict Clinical Trial Outcomes  

Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) will modernize and 

transform clinical development because of data availability and the computational power that can efficiently 

handle this data (Shah et al., 2019). Specifically, studies using ML and quantitative modeling have been 

widely applied to clinical trials with varying goals and using diverse types of independent predictive 

variables. However, the annotation of clinical trial datasets is highly time-consuming and require domain 

expertise, due to which nearly all outcome prediction studies use commercially available, annotated clinical 

trial datasets (Lo et al., 2018, Feijoo et al., 2020, Zhavoronkov et al., 2020, Wong et al., 2019, Vergetis et 

al., 2020, Yamaguchi et al., 2021). A labyrinth set of studies evaluate various factors that affect trial 

outcomes and span a wide set of questions (see Feijoo et al., 2020 for a detailed review of ML and non-ML 

research). Yamaguchi et al (Yamaguchi et al., 2021), apart from implementing a logistic regression model 

that uses target, mechanism of action (MOA), modality, and application of drugs as features to predict 

clinical trial success, also provide a review that classifies literature based on the type of features used to 

predict clinical outcomes. We summarize the principal differentiation in Section 1.1.1 and refer the reader 

to the two recent studies (Feijoo et al., 2020, Yamaguchi et al., 2021 that provide exhaustive reviews of 

predictive algorithms. 

1.1.1 Bioactivities and Drug Properties as Clinical Trial Outcome Predictors 

 

In this study, we explore the predictive power of bioactivity, alongside features that represent the drug's 

chemical and pharmacological properties. Each trial has a candidate drug and an indication. Common protein 

targets between the drug and the indication are retrieved using the databases and methods described in 

Section 2. We show that using an aggregate activity value of common targets between drug and disease is a 

powerful indicator of clinical trial success, even with the challenges and ambiguity involved in bioactivity 

classes. 

 A feature set with bioactivity and, primarily, drug-based variables (see Table 1 for the full list) ensures 

that our model is not just a statistical retrospective study, but can be used in the early stages of drug discovery. 

This provides a probability value at the very early stages of drug discovery, and the opportunity to re-focus 

the prioritization of hits. Since the bioactivity is specific to a drug-target pair, unlike any other studies in the 

past, researchers will have opportunities to modify drug design protocols or prioritize existing drug 

candidates based on the candidates' probability to succeed in clinical trials. As far as we know, this is the 

only study that correlates bioactivity to clinical trial success. Further, we have exclusively chosen open-

source data sources to produce our data, and provide access to all the code used to generate our dataset and 

produce the ML models in an unrestricted open-source format. This ensures that other groups with access to 

larger (commercial) annotated clinical trial data can use our algorithms, and possibly, achieve higher 

predictive scores. 

 Each trial has a specific indication and a single drug candidate. As mentioned earlier, we consider 

single drug clinical trials. Trials with greater than one indication or those that present ambiguity in the 

assignment of a specific indication are excluded from this study. Targets that can be mapped to the drug and 

can be linked mechanistically to the disease associated with the trial, present an exclusive set of 'efficacy 



 

targets' (Santos et al., 2017). It is generally accepted that an unambiguous assignment of a specific drug-

target interaction responsible for the therapeutic activity is evasive. Nonetheless, we have used bioactivity 

data for drug-target association only when the target has been implicated through direct evidence with the 

disease in question. Many drugs have promiscuous mechanistic effects, and hence using efficacy targets as 

an indicator will include a statistical aggregating component across the available multi-target bioactivities 

(Alberga et al., 2018, Montaruli et al., 2019, Lenselink et al., 2017, Papadatos et al., 2015, Mendez et al., 

2019, Mervin et al., 2015, Mohan, 2019). Statistical measures to enumerate bioactivities have been used 

previously, towards other goals (Montaruli et al., 2019, Lenselink et al., 2017, Shamsara, 2021). Nonetheless, 

due to stringent exclusion criteria (see Section 2), the intersection of two manually curated resources, 

DrugBank (Wishart et al., 2006) and CTD (Davis et al., 2021) to derive this list, resulted in 80% of the trials 

we have used in this dataset having a maximum of two targets in common with drug and indication as shown 

in Section S7.4 of Supporting Information. This implies the model will perform better in predicting trial 

outcomes of drugs with known mechanisms of action, in other words, validated efficacy targets. 

 

2 METHODS AND MATERIALS 

The foundation of every machine learning predictive model in the area of biomedical informatics is a 

robust integrated dataset. In our experience, the big data problem is significantly pronounced in the field 

of chemistry (and biology). As outlined in other studies (Searls, 2005, Ritchie et al., 2015, Swainston et 

al., 2017, Zeng et al., 2022), as well as our own experience, the challenges range from the mapping of 

individual entities (e.g., names of drugs between ChEMBL and DrugBank), mapping entities to valid 

experimental data (e.g., mapping drugs from one database to activity data of the same drug in another), 

and so on. The data pre-processing, preparation and engineering steps are approximately 80% of the 

invested time in most biomedical informatics studies, and this stems from data integration being a dense 

process requiring strong domain expertise in addition to data wrangling proficiency. Data scientists in the 

area of life sciences are part computer science and part domain experts (Tetko et al., 2016). Consequently, 

each research objective has to have its data integration strategy that is focused on serving the needs of that 

objective, and universal integration of all databases will not work in most ML-based biomedical research. 

In this context, we have previously synthesized the initial framework, CompoundDB4j (Murali et al., 

2020), which contains integrated data of ChEMBL and DrugBank, to have all approved drugs in DrugBank 

accurately mapped to ChEMBL, such that all related annotations (e.g., bioactivities) of these compounds 

can be retrieved. The extended capabilities in the current instance of the framework include clinical trials 

(Tasneem et al., 2012) and experimentally validated disease-target associations (Davis et al., 2008) to 

predict clinical outcomes. The advantages of having this data in the Neo4j database are mentioned later in 

this section.  

2.1 Clinical Trial Outcome as a Dependent Variable  

The models (see Section 3) seek to predict the chances of a drug clearing at least Phase II of an FDA (Food 

and Drug Administration) trial. The bimodal dependent variable is constructed by classifying all trials 

with a 'Completed' Status in Phase III or Phase IV as a 'Pass' (0 value) categorization, and all trials that 

have the Status of 'Terminated', 'Suspended', etc. in Phase II/ III/ IV with a 'Fail' (1 value) categorization,  

as reported against the trial ID (NCT ID) in the AACT (accessed March 2021). This method of  

classification is not very different from earlier work (Gayvert et al., 2016). Since we categorize only 

'Completed' trials from Phase III and up as a 'Pass', while the 'Fail' category includes negative trials from 

Phase II/ III/ IV, the model is expected to predict the possibility of the overall success of a particular single 

drug trial to move beyond Phase II, and not necessarily the ability of a compound to transition across  

specific phases. A separate model is presented that predicts the ability of a compound to clear Phase II. In 

this model, the 'Fail' category includes data from Phase II and above. 

Apart from the trial outcome (Status), the Intervention Name and the Condition / Disease fields are 

retrieved from AACT, which are used to retrieve the associated values available from the other databases 

(see the following section).  

 



 

2.2 Functional Summary of Data Integration 

 

The following open-source data sets are used: ChEMBL (Gaulton et al., 2017), DrugBank (Wishart et al., 

2006), UniProt (The UniProt Consortium, 2021), CTD (Davis et al., 2021), and AACT (Tasneem et al., 

2012). AACT is used as the principal source of clinical trials. For each of the single-molecule/drug trials, we 

find the DrugBank record, which provides the target(s). While a drug-target search is also done on CTD, the 

disease/condition that is the focus of a trial is matched with CTD, so it can be mapped to genes (targets) 

associated with the disease. The intersection of this disease-target list with the drug's targets list will provide  

 

the final drug-target list of interest. This is then used to query ChEMBL to get the respective drug-target 

activity values. Finally, the drug's chemical properties are calculated using RDKit (Landrum, 2016). 

 The selection of a subset of the clinical trials based on the Phase and Status of a trial is explained in 

Section 2.1. All entities of interest (drugs, bioactivities, etc.) are not common across the databases. In other 

words, there is steady depletion in the number of trials that can be used in the data set since the corresponding 

feature necessary for this study may not be present across multiple databases (For example, a particular drug 

associated with a trial may be found in DrugBank, but not in CTD. In which case, the clinical trial record is 

dropped). As presented in Section S6 of Supporting Information, the final number of data points is an 

aggregate result of applying exclusion conditions and removing non-mappable points during data integration. 

 Figure 1 serves as a functional diagram to explain the integration. However, the actual integration is 

done as an extension to CompoundDB4j (Murali et al., 2020), which already integrates ChEMBL and 

DrugBank in a Neo4j (Neo4j) database. Graph databases enable the creation of complex queries that involve 

many connections, as compared to relational databases. As we are dealing with heterogeneous data sources, 

graph databases make pre-processing, filtering, etc. seamless and extremely adaptable to changing  

requirements of retrieval without needing to change fundamental storage paradigms (Robinson et al., 2015). 

The remaining databases are also integrated using cypher queries via intermediate CSV/TSV format subsets 

of them. The GitHub code can be used to completely regenerate the Neo4j integrated database, and also 

contains the cypher queries used to merge the individual datasets to get the final set of trials and the associated 

entities used to generate the final feature set. For a detailed programmatic workflow of the integration of the 

individual databases, the fields extracted from each, and the final construction of the data set, see Section S1 

of Supporting Information. 

FIGURE 1    Data Integration 



 

 

 

2.3 Neo4j For Data Storage 

 

Neo4j (Neo4j) is a top-ranked graph database based on various metrics (DB-Engines Ranking of Graph 

DBMS, Hoksza & Jelínek, 2015), and has been useful in bioinformatics applications towards the research 

and analysis of complex biological pathways (Balaur et al., 2017, Casaní et al., 2020), human metabolism 

data (Fabregat et al., 2018) and DNA interaction studies (D’Agostino et al., 2021), to name a few. We found 

Neo4j to be useful in ingesting data from diverse databases independently and then integrating them based 

on our current use case. Neo4j uses property-based graph models, and hence, nodes and edges represent one 

or many properties associated with the same. In the context under study, tables from each database are 

represented as node labels, and each node under these node labels store the associated metadata as properties. 

For example, node 'COMPOUND_RECORDS' contains properties - Record_ID, Compound_ID, 

MOLREGNO, Compound_Name etc. Relationships created directly map to ontologies and schema specific 

to the respective databases. Starting from XML and MySQL file formats of the latest versions for DrugBank 

and ChEMBL respectively, the data preparation, population, and fusion are done as in our previous study 

(Murali et al., 2020). 

 Similar protocols were used to ingest the other datasets, where all original download formats were 

converted to CSV, so cypher queries can then be used to import data into our Neo4j database. While CTD 

provides downloadable files in CSV format, in-house python scripts (ClinicalTrials_Prediction) are used to 

convert UniProt's XML and AACT's pipe-delimited formats to CSV formats. Subsequently, cypher queries 

are constructed and executed with periodic commit and APOC procedures (Baton & Van, 2017) to populate 

data in Neo4j. Only manually curated (Swiss-Prot) human proteins are extracted from UniProt. In AACT, 

the Studies, Conditions, and Interventions tables are used in this study, and these are merged using the 

NCT_ID unique identifier that is common across these tables. An illustration of intervention associated with 

a trial from AACT connected with DrugBank, from DrugBank to ChEMBL and CTD, and  

further, CTD to UniProt is shown as a connected graph in Figure 2. 

 

2.4 Feature Derivations 

 

Features that are used to train the models are listed in Table 1. This is a list of features that are used to build 

the ML models, and some of them are taken directly from the respective databases, while some are derived. 

An example of a derived feature is fingerprints. SMILES (Weininger, 1988) is a chemical notation to describe 

the structure of a compound. We extract SMILES from DrugBank and use this to get molecular fingerprints. 

FIGURE 2    Illustration of graph connections from Integrated resource 



 

For the fields used from each data source, we refer the reader to Section S1.2 of Supporting Information. The 

final feature set can be categorized as molecular fingerprint-based, drug properties, compound-target 

association indices. 

Category A (in Table 1) - Molecular encodings are an abstraction of compounds, and ideally, are 

expected to represent all the properties of the compound so this can be used in various cheminformatic 

computations (e.g., high throughput screening) without any loss of chemical and structural information. 

These machine-readable compound formats are used extensively in machine learning and AI-driven drug 

discovery (David et al., 2020). We have explored four molecular encodings and empirically evaluated which 

of them worked well for this dataset. 

MACCS (Molecular ACCess System) Keys (Durant et al., 2002) are structural keys and fall under a 

class of ambiguous molecular notations seeking to fingerprint compounds based on the presence or absence 

of a specific preset functional group or structural component. The RDKit (Landrum, 2016) implementation 

of this is used in this study. The other type of molecular descriptor notation is the hashed fingerprint, where 

each compound is represented by features generated by the specific molecule and depends on its 

physicochemical and structural characteristics. Unlike structural keys, the features and the positions are not 

preset. Morgan fingerprints are an implementation of this class of fingerprints, also called circular 

fingerprints (Rogers & Hahn, 2010), built using the Morgan algorithm. This set of molecular features is also 

generated using RDKit in this study. 

 

 

TABLE 1    Features extracted for Machine Learning 

  

 

Natural Language Processing (NLP) techniques are widely used to produce continuous vector 

representations of words, which measure syntactic and semantic word similarities (Mikolov et al., 2013). 

This approach, called Word2Vec, seeks to group similar words in proximal vector spaces and learns low 

dimensional features from raw data. The continuous skip-gram model of Word2Vec with negative sampling 

Description Feature code Source 

Category A 

Molecular ACCess System based fingerprints MACCS RDKit  

Morgan fingerprints with radius 1 Mol2vec Jaeger et al., 2018 

SMILES based fingerprints smi2vec Zhang et al., 2020 

Category B 

Molecular weight MLWT RDKit 

Hydrogen bond acceptor count nHBA RDKit 

Hydrogen bond donor count nHBD RDKit 

Topological polar surface area TPSA RDKit 

Count of rings nRNG RDKit 

Count of atoms nA RDKit 

Count of rotatable bonds nRB RDKit 

Gasteiger charge GC RDKit 

Count of valence electrons nVE RDKit 

Count of hetero atoms nHetA RDKit 

Count of heavy atoms nHevA RDKit 

Count of approved trials for an intervention nAT Calculated - AACT 

Category C 

Count of common targets associated with a drug and 

disease 

nCT Calculated - DrugBank, CTD 

Count of targets associated with a drug nDT Calculated - DrugBank, CTD 

Standard value for bioactivity of a target Stdval ChEMBL 

Binding affinity dissociation constant Ki ChEMBL 



 

is used as it captures semantic information (Wan & Zeng, 2016). The skip-gram Word2Vec model generates 

vector 𝑉(𝑤) ∈ 𝑅𝑚, where w represents the word and m represents the length of the word vector. In our case, 

the compound representation (Morgan or SMILES) is treated as a sentence and the associated substructures 

are treated as words. The model uses prediction of the context of a given word as it’s an unsupervised task. 

Motivated by advanced representation learning models in the literature, we use SMILES2Vec (Goh et al., 

2017) and Mol2vec (Jaeger et al., 2018) to explore the chemical space and characterize compound 

representations. 

The same concept was extended to chemical fingerprints through an algorithm called Mol2vec 

(Jaeger et al., 2018), which uses the Morgan algorithm derived chemical substructures as words and the 

compounds as sentences. A pre-trained skip-gram model built with the corpus from 19.9 million compounds 

of ZINC original and ChEMBL is used. A radius 1, a window size of 10, and embedding vectors of length 

300 are used in our study, and this reflects the optimizations adopted in the original study (Jaeger et al., 

2018). The SMILES2Vec approach (Goh et al., 2017) obtains the embeddings for the compounds based on 

SMILES representation. We conformed to the best fitting hyperparameters of skip-gram (Wan & Zeng, 2016, 

Zhang et al., 2020) wherein the size of the embedding vectors is fixed at 100, while the size of the context 

window and the number of negative samples are fixed at 12 and 15 respectively. In the current work, we 

adopted the publicly available implementations, Mol2vec (Jaeger et al., 2018) and SMILES2Vec (Wan & 

Zeng, 2016, Zhang et al., 2020). 

Recent works (Li & Fourches, 2020, Wang et al., 2019) have shown the effectiveness of large-scale 

pre-training followed by task-specific fine-tuning to obtain a task-specific language model. Pre-training on 

a larger dataset followed by fine-tuning on sparse data is observed to provide better generalization and 

performance in the area of QSAR modeling (Li & Fourches, 2020). Extrapolating this to our study, the 

original pre-trained model of Mol2vec with millions of compounds is fine-tuned on a smaller DrugBank-

specific dataset of around 11k Morgan fingerprints. We refer to these features as the Mol2vec fine-tuned 

model (or Mol2vec ft). 

Category B (in Table 1) - The feature representations from compound fingerprints are then combined 

with physiochemical descriptors. Features with source as RDKit in Table 1 are calculated based on SMILES 

for every trial in the constructed dataset.  

 The number of trials approved for a given intervention is calculated based on the overall data collected 

(Phase3, Phase4 Completed). We evaluate the importance of this feature in the later steps. 

Category C (in Table 1) - The feature representations from compound fingerprints along with 

physicochemical descriptors are combined with target properties and are subjected for use in machine 

learning model development. In the development of drug treatments, the drug targets which interact with the 

disease-associated are considered (Sun et al., 2015). However, the exact mechanism is not completely clear 

between drug-target and treatment (Sun et al., 2015). This is still an important point, so identifying the 

common targets between drug and disease is important for clinical trials and hence we consider the 

intersection of targets between drug and disease and arrive at the count common targets, linked to each trial. 

We examine the drug targets from DrugBank and CTD one after the other, check whether it is available in 

disease targets from CTD and take only the targets which belong to both drug and disease. The distinct count 

of drug targets from DrugBank and CTD is calculated and serves as an additional feature. 

 For the common targets between Drug and Disease, bioactivity features are extracted from ChEMBL. 

The heuristics composed from literature for the binding assays linked to the target and the associated 

bioactivity values are explained in Section S6.2 of Supporting Information. We retrieve the values for Ki and 

Stdval for every common target linked in the constructed dataset, wherever applicable and available. 

 

2.5 Data Exploration, Analysis, and Preprocessing  

 

We performed an exploratory analysis of the features to gain insight into their distribution, the extent of 

correlation between the variables, and to understand their contribution to the classification performance. The 

insights from the experiments conducted are listed below. 

• Section S7.1 of Supporting Information shows the Pearson's correlation coefficient of various 



 

features. Pearson's correlation coefficient is a measure of linear correlation between two variables. 

The plot reveals that some features, such as molecular weight and the number of valence electrons or 

the number of atoms that have an obvious linear association, demonstrate a strong positive 

correlation. 

• From the hue of the pair plots in Section S7.2 of Supporting Information, it is evident that the 

distributions of variables for trials with the label 'Pass' are not visually distinct from the distributions 

of the variables with the label 'Fail'. 

• Section S7.3 shows a heat map of probability of passing, given a drug-disease pair. This probability 

is computed as the fraction of the data labeled 'Pass' for the 20 most frequent drug-disease pairs. Some 

entries are consistent with observations in the literature, such as a high probability of 'Pass' for 

Sorafenib for carcinoma (Keating & Santoro, 2009, Llovet et al., 2008, Lee et al., 2021) or 

Risperidone for anxiety disorders (Brawman et al., 2005, Simon et al., 2006). 

 

 The data is scaled with a min-max scalar to the range [0, 1]; this ensures each feature is in the same 

range. Next, to ensure the data is representative and that we work with samples with annotations that are 

amenable to interpretation, we plotted the number of clinical trials against the count of common targets (nCT) 

and inferred that nCT is less than 7 for most of the trials. This is shown in Section S7.4 of Supporting  

Information. Hence, for a meaningful design of the predictive models, we consider only the data for which 

nCT is less than or equal to 6 and contain nonblank ATC codes for the compound associated with a trial.  

 

 

3 Machine learning models  

 

This section explains the machine learning models built using the data extracted from the integrated data 

source, explained in Section 2.2. All the models are implemented in Python 3.6 with Sci-kit learn and its 

dependent packages (Pedregosa et al., 2011). The steps in the pipeline are shown in Figure 3. We begin with 

an exploratory analysis of the data and filtering of a meaningful subset as explained in Section 2.5. Next, we 

experiment with various representations of the features, particularly, various compound fingerprints detailed 

in Section 2.4. Next, we combine the best-performing fingerprints with compound-physiochemical features. 

We build models with and without the inclusion of bioactivity features to evaluate their utility. After 

experimenting with the combination of features, we compare the performance of multiple models towards 

predicting the outcome of clinical trials. Performance evaluation is done based on the most meaningful train-

test split in the context of class imbalance and to tune the parameters on the training set for each of the models 

considered. The rest of this section details the rationale and nuances of the model construction process. 

FIGURE 3    Machine learning pipeline 



 

 

3.1 Rationale for model selection 
 

Given the features (or a subset of features) in Table 1, the primary objective is to predict the success (or 

failure) of a clinical trial. Since the data has approximately 1290 instances and 18 features, including 

bioactivity, we treat this problem as one of 'small data' machine learning. 'Small data' generally refers to 

limited data collated for a purpose and is acknowledged to be more effective for drawing statistical inferences 

than the relatively noisy and more complex big data (Faraway & Augustin, 2018). Consequently, machine 

learning models used for prediction tasks on small data are more amenable to interpretation. 

 Among these models, the decision tree---a sequence of decisions on the features that leads to a 

prediction---is considered one of the most interpretable machine learning models (Breiman, 2001a, Guidotti 

et al., 2018). There are multiple algorithms for decision trees; we seek to leverage the power of multiple 

decision trees through ensembling. 

 

3.2 Ensemble machine learning algorithms: Random forest 

An ensembling of multiple decision trees on random subsets of the training data followed by a majority 

vote constitutes the Random forest (RF) (Breiman, 2001b). This prediction algorithm is not only popular 

and widely used but also serves as a benchmark for clinical trial research and has outperformed standard 

classifiers, such as Logistic Regression (Couronné et al., 2018). Recent studies on predicting the approval 

of clinical trials have demonstrated the efficacy of the RF algorithm (Gayvert et al., 2016, Lo et al., 2018, 

Feijoo et al., 2020, Vergetis et al., 2020, Ubels et al., 2020, Saurabh et al.,2020). Inspired by these 

precedents, we have used the RF classifier to predict an input clinical trial's success (or failure).  

The Gini index is used as the splitting criterion to construct the decision trees (Raileanu & Stoffel, 2004). 

The sequence of features leading to the prediction indicates the importance of each feature, with each 

successive feature being less important in the sequence. Computed using the Gini index in our paper, the 

sequence of features facilitates interpreting the model and eliciting the most important features that 

contribute to making a prediction. 

3.3 Ensemble machine learning algorithms: AdaBoost 

 

AdaBoost is another successful algorithm from the category of 'Bagging-Boosting' classifiers, and are often 

seen as a 'random' forest of forests (Freund & Schapire, 1997, Wyner et al., 2017, Schapire, 2013). While the 

RF optimizes the Gini index for each tree, AdaBoost considers a stage-wise optimization for the full 

ensemble (Wyner et al., 2017). It has the ability not only to model nonlinear behavior, much like RF but also 

be effective for sparse datasets (Friedman et al., 2004).  

 The base estimator, a decision tree by default, which is used to build the ensemble and the number of 

estimators at which the boosting stops are the parameters of the AdaBoost algorithm that are empirically 

chosen. 

 

3.4 Dealing with a class imbalance in the data and tuning of model parameters 

There is a marked imbalance in the prediction classes: 86.8% of the data have the label 'Pass' and the 

remaining 13.2% of the data have the label 'Fail'. We use a class-balanced weighting scheme in the process 

of training the RF classifier, that supports a class-balanced weight for the loss function. The design of the 

AdaBoost algorithm that results in higher weights for misclassified samples does not warrant an explicit 

weight. Further, to tune the parameters of all models, we use a grid search of parameter values on the 

training data, for the combination that yields the highest prediction accuracy.   

 

3.5 Towards prediction of successful trials with Clusters based on fingerprint similarity 

 

The fact that fingerprints encode the structural aspects and similar molecules can exhibit the same biological 



 

activity (Cereto et al., 2015, Muegge & Mukherjee, 2016) sets the groundwork and the reason to design the 

cluster-based cross-validation scheme. We use the K-means algorithm (Likas et al., 2003) to identify 

homogeneous subgroups or clusters within the data based on the similarity between their fingerprints. Based 

on this, we use random sampling to create validation sets for k-fold cross-validation. 

We ensure that each of the k test sets contains data from each cluster, drawn randomly and we ensure 

the samples in the kth test set do not overlap with the samples in the kth training set. While the clustering 

provides a mechanism to arrive at representative train and test sets for validation, the skew in the distribution 

between 'Pass' and 'Fail' samples remains. To address the class imbalance, in addition to cluster-based random 

sampling with the data for Phase3 trials, we also study the effect the addition of Phase2, 'Fail' records has on 

the prediction accuracy. 

 

3.6 Ensemble Towards prediction of failed trials using the Leave-p-out method 

 

Identification and prediction of failures early in the development cycle of clinical trials are of great value in 

drug development (Feijoo et al., 2020). To facilitate the classification of 'Fail' samples, in this method, we  

 

use p observations in the test set and all the remaining ones in the training set. In particular, we set the value 

of p as 2, wherein a pair of data points is set aside for validation, there is one sample from each class. Though 

the Leave-p-out scheme is computationally expensive due to repeated training, it is reliable and powerful for 

smaller datasets (Sammut & Webb, 2010, Hastie et al., 2009) and AUC estimations in a binary classifier 

(Airola et al., 2011). This approach aims to have a fair estimate in predicting the failed trials ignoring the 

computational cost. To inspect the behavior of the model on interventions that have more than one trial, we 

analyze the performance of recall when the intervention and all its trials are in the Test set against the scenario 

when only one intervention is in the Test set. We believe this analysis can provide deeper insights on the 

likely outcome of clinical trials for drugs in re-purposing studies.  

 

4 Results 

 

4.1 Integrated Framework 

 

An integrated Neo4j graph database is created (Section 2.2). It contains 44,320,573 nodes and 131,916,935 

relationships, which encompasses the data from multiple resources listed earlier. Our git repo 

(ClinicalTrials_Prediction) contains instructions on the installation, setup of the integrated data. To ensure  

reproducibility, the data is made public (Murali, 2022a). The total count of nodes from individual databases 

is discussed in Section S1 (Supporting Information), the count of relations and relationship types spanning 

between the databases is presented in S2. Relationships across the databases, created out of complex data 

mapping and fusion operations, are shown with source and destination in S4. S5 contains Venn diagrams to 

depict the count of individual and common entities across the databases for Compound, Target, and Disease. 

This can offer useful insights on shared entities in the integrated data. The graph database provides 

visualization and data mapping, along with a flexible and extensible platform with an increased speed of 

execution. The scope of integration for our group, as well as other researchers, shall be extended to have a 

wide range of chemical databases (e.g., PubChem, KEGG, SIDER), and also non-chemical databases (e.g., 

USPTO). Browsing or establishing multiple federated queries across the databases is often cumbersome and 

computationally intensive. Hence, as a single source of information, this well-connected data can be used to 

discover linkage across heterogeneous resources and can serve as biological knowledge graphs for multiple 

use cases in bioinformatics (Murali et al., 2018, Sam et al., 2019, Swathi et al., 2020, Shankar et al., 2021). 

In addition, this can further facilitate machine learning studies on graphs (e.g., link prediction or community 

detection). 

 

4.2 Machine learning models 

 

We evaluated the performance of machine learning models discussed in Section 3. For a maximum depth of 



 

the individual estimators in the RF model set to 20 and the number of estimators set to 200 for RF and 250 

for AdaBoost, respectively, we report Accuracy (ACC), True Positive Rate (TPR) also referred to as 

Sensitivity, the True Negative Rate (TNR) also known as Specificity, the Area Under the Curve (AUC) and 

the F1 score or the balanced F-measure (for Pass, Fail), the harmonic mean of precision and recall. A subset 

of curated data with all the features used for the development of models is made available in public share 

(Murali, 2022b).  

   

4.2.1 Evaluation of Compound fingerprints 

 

First, we evaluated the performance of models trained on fingerprints detailed in Section 2.4. We noticed 

that the RF model trained on Mol2vec fingerprints and SMILES2Vec fingerprints yield 0.92 (ACC). MACCS 

fingerprints yield 0.82 (ACC), and Morgan fingerprints are slightly better than MACCS 0.83 (ACC).  It has 

to be noted that the fine-tuned model of Mol2vec also yielded 0.92 (ACC). This can be attributed to the fine-

tuning being limited to a small number of representative compounds from the DrugBank. The best 

performing fingerprint i.e., Mol2vec, is used further in all the subsequent experiments. 

 

 

4.2.2 Deriving the feature importance scores 

 

Next, we study the importance of various features measured by the mean reduction in the Gini Index of the 

RF classifier. We present the results of feature importance scores associated with all physiochemical 

properties of compounds in Figure 4. The relative  importance of various features when the Stdval, the 

 

 

 

 

FIGURE 4   Mean decrease in Gini impurity for physio 
chemical features of Compound 

FIGURE 5   Mean decrease in Gini impurity for Compound 
and Bioactivity features 



 

bioactivity feature, is included is shown in Figure 5. In this figure, we report the average score of the Mol2vec 

fingerprints as one feature. Stdval (median, min), GC, Mol2vec, MLWT are observed to have greater 

importance, while nHevA seems to have a far less impact on predicting the outcome of a clinical trial.   

 

 

 

 

The top three therapeutic groups identified in the dataset are Group N--Nervous System, Group C--

Cardiovascular system and Group A--Alimentary tract and metabolism. We present the feature importance  

for these categories in Figures 6, 7, and 8 respectively. Through all these figures, we find that independent 

of therapeutic area, bioactivity features, Stdval (min, and median values), are  

ranked at the top. The maximum value of Stdval seems to have a strong bearing in the prediction of the 

outcome of clinical trials for the therapeutic classes of the nervous system and the alimentary tract and 

metabolism. 

 

FIGURE 6   Mean decrease in Gini impurity for ATC 
Group N - Nervous System 

 

FIGURE 7   Mean decrease in Gini impurity for ATC Group 

C - Cardiovascular system 

FIGURE 8   Mean decrease in Gini impurity for ATC Group 
A - Alimentary tract and metabolism 



 

 

 

4.2.3 | Cluster-based cross validation results 

 

Since the primary task of the ML models is to predict the outcome of a clinical trial, we present the 

results of the cluster-based scheme discussed in Section 3.5. The clusters identified by the k-means algorithm 

are depicted in Section S8.1 of Supporting Information. There are six clusters in all and about four of these 

six have roughly the same number of data points. The results of 5-fold cross-validation are summarized in 

Table 2. We find that the highest accuracy is obtained using the RF classifier; the various performance 

measures computed on the predictions by the RF are 0.93 (ACC), 0.99 (TPR), 0.58 (TNR), 0.96 (F1-Pass) 

and 0.68 (F1-Fail) and the AdaBoost model results in 0.87 (ACC), 0.96 (TPR), 0.24 (TNR) and 0.93 (F1-

Pass) and 0.32 (F1-Fail). The Receiver Operating curve (ROC) for the entire dataset (marked ‘Whole Dataset' 

in the legend) is shown in brown in Figure 9 and the area under the receiver operating curve, AUC is 0.67.  

A plot of the histogram of the ATC groups within each cluster (Section S8.2 of Supporting Information)  

reveals that ATC group C or ATC group N or ATC group A is the most dominant ATC group in these 

clusters.  A plot of the ROC curves for the top three therapeutic categories - Nervous system 

(labeled ‘ATC group N’), the Cardiovascular system (labeled ‘ATC group C’) and the Alimentary tract and 

metabolism (labeled ‘ATC group A’) are shown in Figure 9. In particular, the cluster-based approach results 

in accurate predictions for the trials labeled 'Pass' (F1-score of 0.96 for 'Pass') using the RF classifier. 

 

TABLE 2    Performance evaluation of Cluster-based and Leave-p-out based methods 

 

  

Consistent with our understanding of the importance of the bioactivity feature, Stdval, models trained without 

Stdval show a slight drop (2%) in the accuracy. Further, we find no significant difference between using the 

median value of bioactivity vis-a-vis, the corresponding min-median-max values. The results obtained with 

Ki (instead of Stdval) as the bioactivity feature are reported in Section S8.6.1 of Supporting Information. The 

performances of other machine learning models trained with all the features are presented in Section S8.3 of 

Supporting Information. Results with the inclusion of the instances labeled 'Fail' from Phase2 trials are 

reported in Section S.8.7.1 of the Supporting Information. 

 

4.2.4 Leave-p-out based cross-validation results 

 

The results of the leave-p-out cross-validation scheme discussed in Section 3.6, with a focus on predicting 

trials labeled 'Fail', we achieve 0.74 (ACC), 0.80 (TPR), 0.68 (TNR), 0.74 (F1-Pass), and 0.64 (F1-Fail) with  

Method Classifier Accuracy TPR TNR F1-Pass F1-Fail 

 

Cluster-based 

RF 0.93 0.99 0.58 0.96 0.68 

AdaBoost 0.87 0.96 0.24 0.93 0.32 

 

Leave-p-out 

based 

RF 0.74 0.80 0.68 0.74 0.64 

AdaBoost 0.66 0.68 0.64 0.60 0.57 



 

the RF classifier. The model trained on AdaBoost resulted in 0.66 (ACC), 0.68 (TPR), 0.64 (TNR), 0.60 (F1-

Pass) and 0.57 (F1-Fail) as reported in Table 2. The RF classifier outperforms AdaBoost for this experiment 

as well. The results with and without the bioactivity feature remain consistent with the cluster-based 

experiments, with a minor drop in the overall prediction accuracy on excluding Stdval: 0.72 (ACC) for RF 

and 0.65 (ACC) for the AdaBoost classifier. While the use of min-median-max values of Stdval achieves a 

good prediction accuracy, we note a similar performance when the median value is used as a feature, also 

consistent with our earlier observation.  

Another interesting evaluation of the ML models is their performance on an intervention name not seen 

during the training phase through the exclusion of all its trials in training against the performance of the 

models when the models have seen some instances of the intervention in training. A few cases we consider 

from the data for these experiments are discussed below. 

• Intervention, ‘Methylphenidate’, for Neurological disorders, has been used widely and seen in 

multiple trials such as ‘NCT01244269’, ‘NCT02638168’, ‘NCT01825577’, ‘NCT00852059’. We 

notice that when all these records are in the test set, the performance was around 0.39 (mean ACC) 

and 0.75 (mean F1-Fail) whereas, if we have one trial in the test set and rest in the training set with 

other interventions, we obtain 1.0 for ACC and F1-Fail. 

• Intervention, ‘Metoprolol’, for cardiovascular diseases, is seen in trials such as ‘NCT00806390’, 

‘NCT00182039’, ‘NCT03371823’. We notice that the test set with all the trials associated with this  

intervention resulted in 0.65 (mean ACC) and 0.23 (mean F1-Fail) whereas when one trial of this 

intervention is in the test set, we obtain 1.0 for both ACC and F1-Fail. 

These observations lend credence to the hypothesis that the Leave-p-out scheme shows improved 

performance in predicting the failure rate when the training set is exposed to instances of the intervention 

applied to similar or other conditions (diseases) or targets.  

When we analyze the performance for 'Fail' for top therapeutic categories, the Alimentary tract and 

metabolism show a better performance with a mean Recall of 0.85 than Cardiovascular (0.80) and Nervous 

System (0.60). The mean recall score for other therapeutic categories is presented in Section S8.4 of the 

Supporting Information. With this cross-validation scheme, the performance of other classifiers is shown in 

Section S8.5 of the Supporting Information. In Section S8.6.2 of Supporting Information, we report the 

results when Ki is used as a bioactivity feature. Results of the models trained on data set with the inclusion 

of Phase2 trials labeled 'Fail', are available in Section S.8.7.2 of the Supporting Information. 

 

 

 

FIGURE 9   Receiver Operating Curve for cluster-based 

cross-validation 



 

5 DISCUSSION  

 

We have shown that including the bioactivity of the drug against the putative targets common to the disease 

considered in the clinical trial in question provides enhanced predictive power to our Random forest 

classifier. Early-stage prediction of the outcome of clinical trials will help drug discovery researchers to 

better estimate the probability of success based on tangible activity measurements. Bioactivity, as represented 

by Stdval, has a significant effect on the model's ability to predict trial outcomes. Further, it is shown to 

provide a significant advantage in predicting trials of top therapeutic categories (ATC Groups - N, C, A), as 

described in the results. This emphasizes the importance of considering the mechanism of action data when 

estimating trial success through our or any similar models, researchers may wish to use. It is important to 

note that we have not used (due to lack of access) larger clinical trial datasets, but expect that it will lead to 

significantly better predictive power, especially for the clinical trial's 'Fail' category. 

 Our data, derived from the public clinical trial source, over-represents the 'Pass' category for obvious 

reasons. But, since we provide the code to integrate drug-disease pair to its component target bioactivity, we 

expect other stakeholders like pharmaceutical companies and research agencies that have access to curated 

clinical trial datasets and a large body of in-house 'Fail' category trials to perform much better. Our work 

introduces this possibility for the first time and enables any researchers to repeat the study. It should be noted 

that the creation of the dataset is a significant effort, and we have enabled researchers to streamline that part  

of the workflow. In other words, ‘small data’ models presented in this study provide significant predictions 

to provide value towards predicting the possibility of a 'Pass'. Nonetheless, larger datasets will only enhance 

the predictive power of both classes of trials.  

The models, alongside the elaborate code to integrate drug-disease pairs of clinical trials to putative 

common targets through validated data sources, in this proposed framework, can aid various drug research 

groups in accessing early indicators of success. This optimizes the release of Investigational New Drugs 

(IND) or New Drug Application (NDA) by narrowing down the number of candidate drugs in scaffolds being 

considered and limiting the cost, time, and other technical challenges. 
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