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Abstract

The representation of molecular structures is crucial for molecular machine learning
strategies. Although graph representations are highly versatile and show their
broad applicability, they lack information about the quantum-chemical properties
of molecular structures. This work proposes a new way to infuse such information
into molecular graphs, using a supervised learning method. As a result, the model
is able to predict essential higher-order interactions between electron-rich and
electron-deficient localized orbitals. The learned interactions are then used as
a representation for the prediction of downstream tasks, improving over QM9
baselines.

1 Introduction

The prediction of molecular properties is at the core of chemical, biological, and material sciences.
From the discovery of materials for solar panels[1]] to the record-setting development of a new
drug,[2]] molecular machine learning (ML) greatly impacted modern science by enabling fast in-
ference. The performance of ML methods in these fields is strongly connected to the molecular
representation design, being (arguably) the most important factor for its success. Moreover, with the
increasingly larger amount of available chemical data, many methods were developed to learn the
best representation in a data-driven fashion. Especially, graph neural networks (GNNs) have been the
protagonists of these advances by leveraging the molecular topology to correlate structure with the
desired global property.[3]]

Despite the success of machine learning for molecular property predictions, the representations used
in these methods are incomplete. In particular, current graph representations lack quantum-chemical
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priors from the electronic structure of molecules. Such considerations are essential for understanding
the fundamentals of molecular interactions, chemical reactivity, and property predictions. Even
though these electronic features can be learned implicitly by molecular geometry, such a process
requires large and expensive datasets.[4, 5] Moreover, there would be no guarantee that the pre-trained
model would preserve all required information for downstream tasks.

The computational chemistry community has developed solid foundations for describing the quantum-
mechanical nature of molecular structures. For example, it is well-known that molecules are not
only composed of covalent interactions but also stabilizing noncovalent interactions between the
corresponding bond and lone pair orbitals. However, these non-trivial interactions are not currently
considered when designing computational representations of molecules, even though they play a
crucial role in describing a wide range of properties. These stabilizing donor-acceptor interactions
are essential in our understanding of many chemical phenomena and have been disregarded by the
machine learning community.

This work proposes a new approach to representing molecular structures with graphs that capture
orbital interactions. We extend standard molecular structure graphs with additional nodes representing
bonding and non-boning orbitals. Such information is then used to predict intra-molecular interactions
that are not explicitly given by the original topology. This work describes learning features for these
nodes from quantum chemistry calculations and extending original graphs improves over baselines.

2 Related work

Molecular representation learning In recent years, the field has greatly benefited from many
novel representations of molecules in data-driven approaches. Ways to represent molecules include
hand-crafted molecular descriptors/features,[[6-11]] language representations,[[12H15] and graphs.
Graph-based representations achieved state-of-the-art results by employing inherent topological
structures of molecules in neural networks, known as Graph Neural Networks (GNNs).[5, [16-
22]] Moreover, recent advances combine GNNs with tridimensional geometry into roto-translation
equivariant representations, increasing the amount of information to perform correlations.[23H27]]

Graph augmentation Previous works have reported the difficulty of GNNs to propagate infor-
mation across distant nodes. Such phenomena are often referred to as over-squashing, a major
problem when node properties depend on long-range interactions.[28}29] In molecular settings, these
long-range interactions are often caused by noncovalent orbital interactions that are not explicitly
given by the standard molecular topology. Several methods to mitigate this problem have been
proposed, such as graph augmentations,[30] fully-connected graph convolutional layers,[28] and
connectivity-independent long-range reasoning.[31]] To address this problem, we present a graph
augmentation method grounded on electronic interactions.

Electronic information on graphs Across the literature, physical and chemical priors have been
successfully included in data-driven models. Usually, these methods use hand-crafted features from
chemistry domain knowledge, showing major improvements over baselines.[32-34] However, a
recent effort has been made to model quantum interactions automatically within a molecule.[35H37]]
In this work, we propose a molecular electronically-aware molecular featurization method that can be
easily combined with existing representations.

Natural localized orbitals At a high level, the natural bond orbital (NBO) analysis provides
electron density information, providing a valid description of a molecule’s wave function. Instead
of representing these densities as delocalized molecular orbitals, this method yields a collection of
localized natural atomic orbitals, hybrid orbitals, and bond orbitals.[38]] Moreover, NBO analysis
expresses interactions between filled orbitals (donors) and empty orbitals (acceptors).

3 Graph representation of molecular electronic properties

Modeling non-bonding orbitals is a non-trivial task since such information is not accessible from
traditional molecular graphs. To solve it, we formulated the problem as a sequential graph construction
model. We accomplished the ultimate goal by training this model using NBO analysis data via



supervised learning. As a result, the full pipeline can predict NBO interactions based on complex
electronic interactions within the molecule.

Firstly, the molecular graph Gy, is constructed from the three-dimensional input structure. After that,
the graph is used as an input for the first model, which is responsible for predicting the number of lone
pairs and their types. Once the model has successfully predicted lone pair information, we store it in
the extended molecular graph G.,;. Also, we propose the addition of nodes that trivially represent
o- and m-bonds between two atoms. We argue that this is a natural way to describe connections in
molecular settings instead of simply representing bonds as edges.

The extended molecular graphs are sequentially used as input for a second model, designed to predict
electronic properties of orbital overlaps in a multitask fashion. Therefore, the model can predict the
interaction between combinations of lone pairs and bonds, called second-order interactions.

We describe the graph of electronic properties as a graph G = (V, £), where V are nodes of the
graph, and & are the edges. In this case, )V can represent atoms, lone pairs, and bond orbitals, where a
mapping function ¢ =V — A describes the types of nodes in the graph. Edges of this graph can
represent atom to atom covalent interactions, node to bond, and second-order interactions between
possible combinations of lone pairs and bond orbitals.
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Figure 1: Overview of our approach. a. Scheme of the pipeline We train models to sequentially
extend the graph with non-bonding orbitals followed by its interactions. b. Construction of
electronics-aware features for downstream tasks The final model is trained to predict node-, bond-,
and interaction-level electronic features, together with donor-acceptor interaction predictions.

3.1 Data collection

Given the optimized structures for each molecule of the QM9 dataset,[39] we conducted single-point
calculations at the def2-TZVPD[40\ l41]] + wB97M-V[42] level of theory. We used Q-Chem 5.4.2[43]
interfaced with NBOS5[44] to perform the calculations resulting in targets for atom, bond, lone pairs,
and orbital interactions, illustrated in Figure[Tp. These are described as follows:

Atom features The performed natural atomic orbital analysis returns localized electron information
for each atom. Atom targets include its charge, the number of core electrons, valence electrons, and
total electrons. Even though NBO analysis provides Rydberg orbitals, we did not keep them as a
model’s target due to the controversy in the physical meaning.



Bond features In the context of localized natural bond orbitals, bonds are simply a combination of
the orbitals from each atom. For that reason, the NBO analysis data provides atom-wise s, p, d, and f
characters, polarization, polarization coefficient, and the respective values for antibonding orbitals.
Occupancy for bonding and antibonding orbitals are the only bond-specific target from the original
data. In total, they are totalizing twenty-six targets.

Lone pair features Orbital hybridization is described by the s, p, d, and f characters. Also, the
NBO analysis provides information about its occupancy, summing up to five targets.

Orbital (2nd order) interactions These represent the interactions between donor and acceptor
orbitals. Donors, represented by lone pairs n, o, and 7 bonds, are electron-rich orbitals, while
acceptors, represented by o*, and 7* anti-bonds are electron deficient. In practical terms, our ground
truth graph represents one donor-acceptor interaction as a connection between the respective nodes.
The NBO analysis quantified these interactions by the perturbation energy, energy difference, and the
Fock matrix element, totalizing three targets.

3.2 Input graph construction

Following the pipeline showcased in Figure[T] the first step is to construct homogeneous molecular
graphs from the input structure. Molecular graphs Gy = (V, &) consist of a set of nodes V
representing atoms, and edges &, representing covalent bonds. The community has widely explored
this representation, achieving excellent results in property prediction tasks when combined with
GNNs. In this work, the molecular graph Gy is comprised by a set of atoms v € V, encoded by the
respective feature vector x,, (i.e., the element), along with bonds (u, v) € £ encoded by a feature
vector x,, , (i.e., the bond order and distance).

3.3 Lone pair prediction

Tasks Even though many heuristics can be used to define the number of lone pairs, we argue that a
data-driven model is more well-suited in this case since it can interpolate between different contexts.
With this in mind, we built a neural network capable of predicting the number of lone pairs for each
atom and their types. Such types were used to distinguish lone pairs of the same atom since there are
possible differences in their NBO data. For that reason, we determined the types by an analytical
threshold relating s- and p-characters, expressing the conjugation likelihood of a given lone pair. The
threshold is defined by the equation below:

p-character — s-character > 80

Graph encoder Both tasks were tackled in tandem with a mapping function f : Gyy — Geut,
modeled as a GNN. To mitigate the over-smoothing problem, we used multiple aggregation functions
through the message-passing scheme,[45] along with residual connections.[46| 47] The encoder is
constructed by stacking several propagation layers followed by a ReLU activation function. Node
embeddings are then concatenated with a residual connection from the input graph. The result is
forwarded to a multilayer perceptron (MLP), which in this case, is composed of two linear layers
separated by a ReLU activation layer.

Training As a design choice, we framed both tasks as node-level classifications, in which each
class represents the number of lone pairs, and how many satisfy the threshold, respectively. Therefore,
we used the sum of the cross-entropy loss of each task as the loss function.

Extended molecular graph construction Given the predicted number of lone pairs and their types
per atom, the pipeline continues toward the construction of the extended molecular graph G.,:. As
previously mentioned, the nodes in the extended graph do not represent only atoms but also lone
pairs and bonds. Even though these two nodes do not represent atoms, we opted to design the graph
as homogeneous rather than heterogeneous. Next, predicted lone pair nodes were connected to the
respective atom node, carrying features such as its type (o- or 7-), and distance from the parent atom.
Finally, we created the bond nodes representing different bonds between two atoms. Each pair of
atoms is connected to the number of bond nodes corresponding to the bond order.



3.4 Learning natural bond interactions
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Figure 2: Description of the approach for the prediction of NBO analysis data

The neural network architecture comprises two parts (shown in Figure[3): the node encoder and a
group of multiple separate MLPs. The latter make predictions using the embeddings from the encoder
part, but multiple preprocessing steps may be conducted depending on the task.

The encoder is constructed by stacking multiple graph neural network blocks and concatenating the
outputs of each block. A block comprises a graph attention layer and a ReLLU activation layer. None
of the dropout or batch normalization layers was used.[19]] Concatenated outputs were then passed
into the MLP network with one single layer to construct the node embedding.

This encoder architecture is designed to tackle the over-smoothing issues of graph neural
networks.[48]] The problem arises when multiple graph neural network layers are stacked together,
making the computational graphs nearly identical. Over-smoothing might not be a severe issue for
graph-level tasks but is a significant problem in performing node-level tasks. Multiple solutions
were proposed: residual connections augmentations.[46, 47| In this work, we concatenate outputs of
intermediate layers tackling both the over smoothing and vanishing gradients problems.

All MLPs for separate tasks follow the same architecture: one linear layer, the ReLU activation, the
batch normalization layer, and one final linear layer. The following sections describe input preparation
and loss function for these networks.

L="Lo+Ls+Ly+Ls

Atom, lone pair, and bond nodes The most straightforward problem to solve is the prediction
of targets for individual nodes. Here, for all types of nodes, only one network is used. The loss
function was defined as a sum of separate losses for each node type. For all features except orbital
characters of lone pairs, the mean squared error (MSE) loss was used. Orbital character prediction
was optimized with a cross-entropy loss function. MSE was also the key metric for this type of task.
R? scores were also recorded.

Lo, =MSE(a(z),y) + BCE(a(z),y)

Atom-wise bond target prediction Some of the bond features are related to each of the atoms.
To keep permutation invariance, it was impossible to predict them in the previous step. The task
was solved by concatenating embeddings of the atom in question and the corresponding bond and
then passing it into the MLP. Polarization values prediction was optimized with MSE loss. Orbital
characters were optimized with cross-entropy loss. Similar to the previous section, MSE and the R?
score were used to control the training.

Lz = MSE(S(x),y) +BCE(B(z),y)

Link prediction approach Orbital interactions data is not available directly from the molecular
structure, so it should be predicted first. Therefore, the problem was formulated as a link prediction
task, which is essentially a classification problem. “Positive examples” (i.e., cases where there is an



Table 1: Results in downstream tasks

precision recall Flscore % Chits % Hhits % Nhits % Ohits % F hits

Qtd. of LPs 1.00 098  0.99 99.92 100 99.43 99.18 100
Qtd. of LPs within threshold 1.00 098  0.99 99.99 97.05 99.92 99.15 100

interaction) were taken from the original dataset, while “negative examples” were sampled from other
possible combinations of bonds and lone pairs. Moreover, the direction is essential as (in our case) it
describes the donor-acceptor pair but not vice versa. Input data consisted of concatenated embeddings
of corresponding nodes and dynamically calculated pairwise features. We performed the training
with binary cross-entropy loss. Standard classification metrics such as accuracy, precision, recall,
F1-score, and area under the receiver operating characteristic curve (ROC AUC) were calculated.

n

L, =BCE(Y(x),y) = > —ylog(v(wi,25,ps,)) — (1 = y)log(1 — (@i, 25, i)

2%

Interaction edge target prediction Predicted interactions can then be used to input the network
for interaction target prediction. The features were also obtained by concatenating node embeddings
and dynamically calculated pairwise features. Finally, we trained the network with MSE loss.

Ls = MSE(4(z),y)

4 Experiments

4.1 Lone pair prediction

The model described in Section 3.3 was trained based on the lone pair properties predicted with
NBOS.[44] Based on statistical metrics on the test set shown in Table[I] we observe great results
for both tasks. First, we report the macro average precision, recall, and F1 score, followed by the
percentage of hits per element. Moreover, the model is able to construct the ground-truth extended
graph 98.13% of the cases.

4.2 NBO analysis data prediction performance

The described model was tested in the prediction of NBO analysis data calculated for the QM9
dataset. As it can be seen from Table[2] good or excellent results are obtained for most tasks.

Node-level tasks included predicting properties for atoms, lone pairs, and bonds. For atoms, excellent
R? scores were obtained; MAEs and RMSEs were less than 0.03 electrons. Lone pair-related
tasks included s-, p-, d-, f-characters, and occupancies. For s- and p-character prediction tasks
excellent scores were obtained. Results for d- and f-character prediction were worse, but still very
good. Occupancy prediction was also successful. For bonds, occupancies were predicted with good
scores. Differences in hybridization characters and polarizations were also successful except d- and f-
characters, which have minimal applicability here, as only the first two row elements were considered.
It is important to note that the prediction of difference in s- and d- characters works better than the
prediction of separate values (R? of 0.999 vs. 0.997, see below).

Some bond targets are related to consisting atoms; this includes hybridization characters and polar-
isations, and polarization coefficients. These were predicted with a separate network, which used
corresponding node embedding as an input. As a result, excellent performance was achieved for all
targets except d and f characters for the previously discussed reasons.

Prediction of second-order interactions is a classic link prediction problem. Standard regression
metrics do not properly represent the model’s performance, so we used ROC AUC (area under the
receiver operating characteristic curve) and mean ROC AUC. The value of ROC AUC is equal to
0.9934, which is a good result for such complex tasks. Interestingly, the value for the mean ROC
AUC of 0.9926 is a bit smaller, suggesting that there might be some outlier molecules. Finally, the



properties of these interactions were also predicted. As can be seen from the data, the only drop in
performance is observed for the values of Fock-matrix elements.

As aresult, the described GNN architecture is fully capable of predicting NBO data. Notably, the
model shows much higher performance than standard NBO analysis calculations and does not have
any limit on the number of basis orbitals. Therefore, it opens new opportunities in the analysis of
very large molecules and materials.

input geometry prediction

n— o*
stable long-range
conformation interaction

O

Figure 3: Cherry-picked example. The model is able to capture a long-range interaction between an
electron-rich orbital (lone pair) and an electron-deficient orbital (sigma anti-bond).

4.3 Performance in downstream tasks

The last step of the work is the analysis of model performance in downstream tasks. To measure the
effect of graph augmentation, the following graph structures were compared: standard molecular
graphs, molecular graphs with added lone pair and bond nodes (including edges of interactions
between them), and molecular graphs with added lone pair and bond nodes with corresponding
features, derived from NBO analysis data. Comparing this way, we separated effects from additional
features and increased information flow in the graph.

Results in Table 3 clearly show the superior performance of the described approach in the molecular
property prediction task. However, changes in graph topology alone also improve the model’s
performance.

5 Conclusions and future work

Limitations The described approach highly depends on the training data. In particular, elements are
one-hot encoded, so to add another element, one needs to collect an extended dataset of NBO analysis
data, including the new element. This could be circumvented by using the physical properties of
elements as features, but this requires further research. Also, the scope of this work was limited to
predicting features of s- and p- orbitals, therefore not being able to model d- and f- orbitals accurately.

Broader impact Molecular machine learning is a critical component of pipelines for drug and
material discovery, catalyst optimization, and a valuable tool for studying complex biochemical
processes. Infusion of electronic data into graph representations for molecular ML will increase trust
in these algorithms, contribute to increased interpretability of the models, and open new opportunities
to research the relationship between electronic structure and molecular properties. Moreover, this
work can also be used for the theoretical chemistry community once it allows high-throughput NBO
analysis. The predicted orbitals can be applied to analyze chemical reactivity in a wide range of
systems.

Conclusions A novel approach for graph augmentation with NBO analysis-derived data was de-
veloped. In the first step, molecular graphs are extended with bond nodes and lone pair nodes, the
number of which is computed by a graph neural network. The extended graphs are then used as an



Table 2: NBO analysis data prediction performance

prediction task

RMSE MAE R?

ROC AUC

atom
charge
core
valence
total

lone pair
S
p
d
f

occupancy

bond
occupancy

s diff.

p diff.

d diff.

f diff.
polarization diff.

polarization coefficient diff.

atom-wise bond targets
s

p

d

f

polarization

polarization coefficient

link prediction

interaction targets
perturbation energy
energy difference

fock matrix element

0.009
0.009
0.021
0.028

0.008
0.008
0.000
0.000
0.008

0.008
0.008
0.009
0.002
0.002
0.010
0.008

0.017
0.017
0.002
0.002
0.006
0.006

0.126

0.019

0.029
0.008

0.006
0.008
0.017
0.025

0.005
0.005
0.000
0.000
0.003

0.007
0.006
0.006
0.001
0.002
0.006
0.005

0.005
0.005
0.002
0.002
0.004
0.004

0.022

0.006

0.010
0.005

0.999
1.000
1.000
1.000

0.999
0.999
0.961
0.948
0.991

0.907
0.999
0.999
0.307
-117.975
0.993
0.991

0.997
0.997
-0.494
-129.689
0.997
0.994

0.861 0.9934

0.943
0.985
0.899

Table 3: Results in downstream tasks

lumo

gap

r2

zvpe

cv

Standrd graphs
+ LP and bond
+ NBO features

mu alpha homo
4.00+£0.07 8.04+£0.37 2.05=+0.01
3.77 4.78 1.83

3.27 3.94 1.56

2.30 £0.05
1.95
1.67

293 £0.68 29.49+2.13

2.57
2.22

2221
17.43

42.61 £2.13
25.45
22.07

7.22+£0.21
4.55
3.18




input for another model, which solved a multitask NBO analysis data prediction problem (node-level
and link prediction tasks). Finally, the extended graphs are enriched with features that can be used to
represent various downstream tasks. As an example, we show increased performance over baselines
in predicting the properties of molecules from the QM9 dataset.
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