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Highlights  

1. DAFdiscovery is an easy-to-use platform designed to aid drug discovery based on natural 

products using a data fusion approach;  

2. DAFdiscovery facilitates the use of Statistical Total Correlation (STOCSY) and Statistical 

HeteroSpectroscopy (SHY) methods to combine data from different datasets; 

3. DAFdiscovery was proven to accelerate the process for determining compounds (or chemical 

features) highly correlated to a bioactivity readout; 

4. Users are strongly encouraged to apply this method throughout their bioassay-guided 

fractionation studies.  

Abstract 

DAFdiscovery is a pipeline designed to help users combine NMR, MS and bioactivity data in a notebook-

based application to accelerate annotation and discovery of bioactive compounds. It applies Statistical 

Total Correlation (STOCSY) and Statistical HeteroSpectroscopy (SHY) calculation in their data using an 

easy-to-follow Jupyter Notebook. Different case studies are presented for benchmarking, and the 

resultant outputs are shown to aid natural products identification and discovery. The goal is to 

encourage users to acquire MS and NMR data from their samples (in replicated samples and fractions 

when available) and to explore their variance to highlight MS features, NMR peaks, and bioactivity that 

might be correlated to accelerate bioactive compound discovery or for annotation-identification studies. 

 

INTRODUCTION 

The traditional approach for bioactive compound discovery in natural products research comprises a 

series of incremental fractionations to obtain isolated and purified compounds for bioactivity assay. The 

well-known “bioassay-guided fractionation fractionation” 1, 2 dominated that field and led to the 

discovery of avermectin,3 camptothecin, taxol, 4 and artemisin.5 Nowadays, the evolving ‘omics’ 

technologies are driving many studies in natural products to apply metabolomics approaches and 

methods with the goal of identifying bioactive compounds in early stages, and to avoid those labor-

intensive fractionation steps that may reach replicated results.2 Thus, the analysis of the raw extract and 

preliminary fractions within a mixture analysis scheme has been used to identify possible active 

compounds. This approach would also aid prioritizing promising samples among a sample set or a bank 

of extracts.6 

The main analytical techniques for chemical data acquisition are Mass Spectrometry (MS) and Nuclear 

Magnetic Resonance (NMR). Typically, the users choose the analytical technique according to the study 

design considering sensitivity, selectivity and sample availability as well as physicochemical properties of 

the sample itself. However, the complementary aspect of each technique must be emphasized specially 

for high-confidence compound identification. In the case of bioactive compounds search, these 

analytical data must be integrated with the results from bioassays. Here, the term bioactivity data will 

be used to define the set of values obtained from bioassays (e.g., % inhibition, IC50, LC50, etc). Different 

approaches were suggested in the literature on how to integrate chemical data with bioassay results to 

reach bioactive compounds in early research stages.6, 7, 8 Within these efforts, multivariate analysis (i.e., 



   
 

   
 

PCA, PLS-DA) of the chemical data of samples classified into active and inactive in a given bioassay is the 

straightforward method to follow.9, 10 

NP Analyst is a recent tool developed as a webserver to integrate MS metabolomics data with a series of 

bioactivity assays such as antimicrobial panels.7 Through NP Analyst users can integrate data from a big 

library of samples to prioritize those pointed out as promising; for instance, the parameter consistency 

of bioactivity of each MS features present. Developed by the same group (Linington Lab, SFU), MADByTE 

is a tool that searches for sharing TOCSY spin systems (in combination with HSQC peaks) from NMR data 

to create networks that can be used to visualize samples according to their characteristics and biological 

profiles.8 Alternatively, some studies apply multivariate methods such as PLS-DA to classify active versus 

inactive samples and extract features of interest from the loadings output. This method has been proved 

beneficial for selection of promising features and compounds of interest. However, by categorizing 

samples as a binary classification (active or inactive) classification using ranges of the biological assay 

readout, one tends to ignore the range of variations in these data. Such natural variation of the 

biological assay readouts, which is related to compound concentrations, must be explored as valuable 

data.  

Statistical Total Correlation Spectroscopy (STOCSY) is performed by calculating the covariance and the 

correlation between the peaks (data points) across different samples of a dataset to highlight the highly 

correlated with high positive covariance peaks assuming they are from the same molecular structure.11 

Covariance stands for the combined variability between different variables and correlation stands for 

the linearity of that combined variability of those different variables; essentially the parameters 

covariation and correlation try to describe how different variables (in this case, features) behave in 

analogous manners. Thus, STOCSY is initiated by the selection of a peak (a driver peak) to yield 

covariance and correlation values between this driver peak and all other variables across the different 

samples. This takes into consideration the fact that under quantitative parameters, NMR peaks from 

different nuclei from the same molecule will have specific intensities (according to the number of 

magnetic active spins) and all of those peaks will vary with high correlation between different samples 

according to their concentrations. STOCSY calculations have been applied to several cases in 

metabolomics studies to facilitate the biomarker identification stage.11 The application of STOCSY like 

calculations in different datasets, such as NMR and MS, has gained more attention over the last five 

years. Statistical HeteroSpectroscopy (SHY) was first proposed by Crockford, Maher, Ahmadi, Barrett, 

Plumb, Wilson and Nicholson 12 for the combination of data acquired from NMR and MS to deliver more 

informative results. Their goal was to identify biomarkers using data combined from NMR and MS. 

Generally, the relative variation of a peak in NMR will be highly correlated with the variation of a peak in 

MS if they refer to the same compound. The authors effectively correlated UPLC-MS and NMR data from 

drug metabolites and proved an unexpected unreported metabolite derivative of disopyramide and 

many others from ibuprofen. Hao, Liebeke, Sommer, Viant, Bundy and Ebbels 13 have shown that the 

correlation between direct infusion mass spectrometry (DIMS) and NMR was “surprisingly successful in 

linking structurally related signals” indicating the value of this approach even with the possibility of ion 

suppression. 

In this sense, our study introduces a notebook-based application called DAFdiscovery (Data Fusion-

based Discovery) to assist STOCSY/SHY users to combine their NMR data with MS and/or bioactive data 

in an easy-to-follow Jupyter Notebook. DAFdiscovery enables users with no previous programming skills 

to fuse data from different sources (NMR, MS, and/or Bioassay) to apply a STOCSY/SHY function (written 



   
 

   
 

in Python and adapted from Robinette, Brüschweiler, Schroeder and Edison 14), to produce statistically 

relevant NMR spectral plot and a correlation result for the probed MS features.  

 

RESULTS AND DISCUSSION 

DAFdiscovery was developed to improve dissemination of STOCSY and SHY calculations to natural 

product scientists, enabling data fusion and discovery of compounds of interest through correlation 

calculations. A tutorial is presented as Supporting Information (S1). Briefly, STOCSY runs from the data 

submitted and correlation and covariance are calculated according to a selected driver. This driver must 

be selected by the users and it can be an MS feature or an NMR peak of interest or the bioactivity 

readout. SHY is similar to STOCSY but this acronym is used when data is produced by different technical 

sources. The choice of using Jupyter Notebook with Python as the main platform for this method was 

due to their availability. Thus, this method does not require any strong programming capabilities from 

prospective users. Intentionally, it was written valuing readability to be amenable and also stimulating 

to users interested in gaining programming skills. 

The use of .csv (comma-separated values) files enables users to apply their own processing methods and 

software of choice for data processing. To note, .csv files are text-based files where information (values 

or text) is separated by commas. This implementation was developed using .csv files exported from 

MZMine2 and MNova using a Metadata file to organize filenames in their respective order (please refer 

to https://github.com/RicardoMBorges/DAFdiscovery/wiki/Tutorial-for-DAFdiscovery to more details 

on). Different bioactivity assays can be used as entries as the bioactivity data since the input is also a .csv 

file, and so it is assay-agnostic. Note that DAFdiscovery does not accept as input a matrix with rows 

containing only zeros (e.g., MS feature with no peaks across samples) since it is based on correlation 

calculations; it is not possible to solve a division where a denominator is zero (with Python this will result 

in ‘NaN’ meaning ‘not a number’). The input files require samples in columns where each column header 

represents one of the sample names (or filename) and the rows represents the feature numbers (MS, 

NMR, or bioactivity readout). A metadata .csv file is used to organize samples and their respective file 

names for reordering. Figure 1 illustrates the input file requirements. 

As proof of concept, 5 case studies have been used to test DAFdiscovery. No interpretation was made 

for each data used as a case study. As aforementioned, DAFdiscovery was developed to combine MS, 

NMR, and bioactivity data, or any combination of two of them; also, NMR data can be used alone. Thus, 

the pipeline is separated into 5 options: (Option 1) fusion of NMR, MS, and Bioassay data; (Option 2) 

fusion of NMR and MS data; (Option 3) fusion of NMR and Bioassay data; (Option 4) fusion of MS and 

Bioassay data; and (Option 5) for NMR alone. 

https://github.com/RicardoMBorges/DAFdiscovery/wiki/Tutorial-for-DAFdiscovery


   
 

   
 

 

Figure 1. Pipeline designed for DAFdiscovery highlighting the use of .csv files (Metadata, NMR data, MS 
data, and BioAct data) to achieve a STOCSY-modulated NMR spectra and the indexed correlation results 
to color-code GNPS-FBMN networks using Cytoscape.  

 

A pipeline designed for data fusion-based discoveries was developed to disseminate the use of the 

STOCSY function on data acquired from different sources, including bioactivity readouts. It accepts data 

exported as flat .csv files so that users can continue with their preferred data processing tools of choice 

(e.g., MNova and MZMine). This pipeline was written in Jupyter Notebook and Python to guarantee a 

user-friendly approach. Notebooks and files are available at 

https://github.com/RicardoMBorges/DAFdiscovery. A full tutorial with basic information on how to run 

Jupyter Notebook is available at https://github.com/RicardoMBorges/DAFdiscovery/wiki/Tutorial-for-

DAFdiscovery.  

 

Case I. The application of STOCSY calculation within NMR metabolomics is well accepted and there is no 

novelty to this demonstration. This option was added into this method as an obvious application use. 

Thus, as a case study, the NMR data downloaded from Metabolights (MTBLS2052 – “Tissue, urine and 

serum NMR metabolomics dataset from a 5/6 nephrectomy rat model of chronic kidney disease”15) was 

processed and submitted to DAFdiscovery. To demonstrate the application of STOCSY, the peak at H 

3.98 was selected as the driver to reveal the statistically pure spectra of hippuric acid with the highly 

correlated peaks at H 7.56, 7.64, and 7.84 (Figure 2-A). Another clear result is the acquired spectra of 

citrate with highly correlated peaks at H 2.55 and 2.70 (Figure 6-B). 

https://github.com/RicardoMBorges/DAFdiscovery
https://github.com/RicardoMBorges/DAFdiscovery/wiki/Tutorial-for-DAFdiscovery
https://github.com/RicardoMBorges/DAFdiscovery/wiki/Tutorial-for-DAFdiscovery


   
 

   
 

 

Figure 2. Output scheme from DAFdiscovey on 1H NMR data. The NMR STOCSY plot shows NMR 

resonance highly correlated to the driver peak at H 3.98 (A) and H 2.54 (B). (A) The statistically pure 
spectrum of hippuric acid is highlighted in bright red. (B) The statistically pure spectrum of citrate is 
highlighted in bright red. Data downloaded from Metabolights (MTBLS2052 – “Tissue, urine and serum 
NMR metabolomics dataset from a 5/6 nephrectomy rat model of chronic kidney disease”15). 

 

Case II. LC-MS data (MS level 1) and cytotoxicity assay using the Artemia salina model assay 

(unpublished data) of a set of 6 prefractions, analyzed in duplicates, derived from a crude extract of a 

cyanobacteria strain is demonstrated to describe Option 4 (MS + Bioactivity correlations). In such cases 

where NMR data is not available, the NMR STOCSY plot will not be of any use. Instead, a scatterplot with 

retention time vs m/z is used to visualize MS features highly correlated with the bioactivity readouts 

(Figure 3). Here, the bioactivity results across the samples are chosen as the driver peak for the STOCSY 

calculation and the goal is to spot highly correlated MS-features with positive covariance. In other 

words, to promote MS-features that varies similarly with the bioactivity results. The users may focus 

their attention on these larger and bright-red colored marks to explore MS-features positively and highly 

correlated MS-features (data not published). By plotting this view as a scatterplot of retention time vs 

m/z, users might even identify different adducts if it is the case. 



   
 

   
 

 

Figure 3. Output scheme from DAFdiscovey on a set of LC-MS and bioactivity data. The retention time vs 
m/z scatterplot shows MS features highly correlated to the bioactivity readouts (chosen as the driver). 
Unpublished data provided by Professor Camila Manoel Crnkovic (USP, Brazil). 

 

For natural products research, definition of the chemical space and dereplication are key, and MS based 

analysis is the approach most commonly followed. There are several reasons for that: very high 

sensitivity and selectivity to detect higher ranges of compounds; its use as a high-throughput analytical 

instrumentation is easier than NMR for example; and MS-based databases are more comprehensive 

than their NMR counterparts.16 

 

Case III. As another example, GC-MS data and the bioactivity effect against the larval population of 

Aedes aegypti 17 is also demonstrated to describe Option 4 (MS + Bioactivity correlations) (Figure 4-A). 

The .csv file with the correlations output from STOCSY indexed according to each MS-feature was 

imported as a node attribute to the available molecular network to produce a simplified view of the 

chemical space analyzed (Figure 4-B). To validate this approach, LC50 (µg/ml) of the annotated 

compounds was compared to the MS-features highlighted from the present pipeline. As expected, the 

MS-features at 26.63 min (annotated as an isomer of himachalene), 24.59 min (annotated as an isomer 

of himachalene), 25.69 min (annotated as longifolene), and 7.91 min (annotated as an isomer of 

eucalyptol) min were found to be positively correlated to the LC50 values obtained from the analyzed 

samples. In addition, the MS-features at 15.45 min (annotated as citronellol), 17.25 (annotated as citral) 

and 27.18 min (unknown) were found to be negatively correlated to the LC50 values; these indeed have 

shown lower LC50 results. Here, again the bioactivity results across the samples are chosen as the driver 

peak for the STOCSY calculation, but the bioactivity is reported as LC50 and it will have lower values 

when the active compound is more concentrated. Thus, the goal here is to spot highly correlated MS-

features with negative covariance. 



   
 

   
 

 

Figure 4. Output scheme from DAFdiscovey on a set of GC-MS and bioactivity data. The retention time 
vs scan number scatterplot shows MS features highly correlated to the bioactivity readouts (A). 
Molecular network from 17 where the nodes were color coded according to the resulting correlation 
output from STOCSY using the larvicidal effect against A. aegypti (B). Published data 17, provided by Dr. 
Alan Pilon (USP, Brazil). 

 

Case IV. As part of the efforts to discover antimicrobial compounds from Actinobacteria strains, a 

sample set created through four growth media of the Streptomyces sp. PNM-9 was analyzed using NMR-

based metabolic profiling and antibacterial activity assay against Burkholderia glumae 9. The authors 

used a principal component analysis (PCA) and an orthogonal projection to latent structures 

discriminant analysis (OPLS-DA) method to identify metabolic differences and distinguish samples 

between active and inactive. Using this approach and the bioactivity (reported as the minimal inhibitory 

concentration, MIC) was selected as driver, specific 1H-NMR peaks were highly correlated and negatively 

covaried. The same dataset was submitted to DAFdiscovery using the raw values for the antibacterial 

assay (without the classification into active or inactive) to reach equivalent results mainly for peaks at H 

7.47 and H 5.62 corresponding to the active phenylethyl amides as pointed out in the original paper. 

Highly correlated peaks (with negative covariance since MIC will indicate lowest concentration of and 

active compound that prevents bacterial growth) are identified as peaks of interest (Figure 5). 

 

Figure 5. Output NMR STOCSY plot shows NMR resonance highly correlated to the antibacterial assay. 
Published data 9 provided by Professors Freddy A. Ramos and Monica T. Pupo, and collaborators.  



   
 

   
 

 

Case V. A sample set that included 10 samples of essential oils from Melaleuca alternifolia and 

Melaleuca  rhaphiophylla for a study of species differentiation was submitted to GC-MS and 13C NMR for 

data acquisition.18 This data was used in a previous paper that demonstrated a similar fused data 

approach but the pipeline was processed using Matlab. The MS data was processed using MZMine2 for 

mass detection, ion chromatogram building, chromatographic deconvolution, spectral deconvolution, 

and peak alignment. The NMR data was processed using MNova for chemical shift reference, phase 

correction, normalization, and alignment. Both data sets were exported as .csv to be used as input for 

DAFdiscovery. Figure 6 shows the NMR peaks (Figure 6-A) and the MS-features (Figure 6-B) highly 

correlated with the peak at C 71.77 (chosen as driver for STOCSY). Thus, the results became constrained 

to just a few NMR peaks and MS features to be analyzed for compound identification. Moreover, the 

correlation results for the MS features can be indexed into the molecular network (Figure 6-C) 

calculated from the same MS processed data for visualization.  

 

Figure 6. Output scheme from DAFdiscovey on a set of GC-MS and 13C NMR data. The NMR STOCSY plot 

(A) shows NMR resonance highly correlated to the driver peak at C 71.77. The retention time vs m/z 

scatterplot (B) highlights (size and color) MS features highly correlated to the same driver peak at C 
71.77. And the molecular network (C) calculated with the processed GC-MS data where the nodes were 

color-coded according to their correlation values to the driver peak at C 71.77. Published data 18 
provided by Professor Ricardo Moreira Borges (UFRJ, Brazil).  

 



   
 

   
 

 

To validate this pipeline, different case studies were shown to exemplify diverse combinations among 

NMR, MS, and bioactivity data. The resulting outputs are present for each combination and they 

demonstrate how convenient this approach can be for compound identification and drug discovery 

within natural products research. The authors do strongly encourage users to apply this method on their 

traditional bioguided fractionation approach for bioactive natural products discovery and to acquire as 

much data as possible from every single fraction to create variance. Users can explore biological 

variance from different extracts or chromatographic variances created by fractionation using 

DAFdiscovery to accelerate bioactive compound discovery or for annotation-identification studies. 

 

EXPERIMENTAL SECTION 

General DAFdiscovery pipeline. The choice of Jupyter Notebook (and Python) for the pipeline 

development was made since it is an open-source product, free, and has good visualization schemes. 

Hopefully, this will also encourage students in their early careers to start developing programming skills. 

A tutorial for installation of Anaconda Jupyter Notebook and to download DAFdiscovery is available in 

the Supporting Information. 

The main part of this pipeline is the STOCSY function that calculates the covariance and correlation 

between a certain feature across the samples with all other features present. The output of STOCSY is a 

1D NMR spectrum with signal intensities modulated by the covariance and color-coded according to the 

correlation. In addition, a .csv file with the correlation results for each MS feature is produced when MS 

data is submitted. This MS derived .csv file is intended to be used as a node attribute table in Cytoscape 

to color-code a molecular network created following the GNPS-FBMN workflow 19. If the user submits 

NMR, MS, and bioactivity data from the same sample set, the proposed pipeline will highlight NMR 

peaks and MS nodes highly correlated with the bioactivity results. Finally, .csv files exported from well-

known processing software are used as input because the authors recognize the efficiency of the 

existing data processing methods for both MS and NMR and to make it vendor-agnostic. 

 

The Pipeline. The users start with a .csv Metadata file with the columns ‘Ordered_Samples’, 

‘Ordered_NMR_filename’ (when NMR data is used),  ‘Ordered_MS_filename’ (when MS data is used), 

and ‘Ordered_BioAct_filename’ (when bioassay data is used) (Figure S1-S4). This file must contain the 

exact filename used in the previous data processing step. The processing step for each technique is 

independent of DAFdiscovery which will use only the exported .csv file from each specific dataset. The 

pipeline will adopt the order given in the Metadata file to reorder the data files from each specific 

technique according to the filename given by the expected .csv files. Then, the STOCSY function is 

applied and the resulting statistical NMR spectra, and the MS feature list with the correlations are 

stored for interpretation. 

DAFdiscovery accepts data from NMR, MS, and bioassays to perform data fusion of every given 

possibility. Thus, users can choose to run STOCSY on: (1) NMR, MS, and Bioassay; (2) NMR and MS; (3) 

NMR and Bioassay; (4) MS and Bioassay; and (5) NMR only. DAFdiscovery can be downloaded here: 

https://github.com/RicardoMBorges/DAFdiscovery. A tutorial for installation is available here: 

https://github.com/RicardoMBorges/DAFdiscovery


   
 

   
 

https://github.com/RicardoMBorges/DAFdiscovery/wiki/Tutorial-for-DAFdiscovery. In order to keep files 

organized, each project should be kept in their own “Project_” directory. Within the pipeline, the first 

input is the definition of the project directory name and all the produced files and images will be saved 

inside it. 

 

Data. Five different datasets were used as case studies to demonstrate the use of DAFdiscovery. Case I 

represents a dataset solely with NMR data from a metabolomics study. It was downloaded from 

Metabolights (MTBLS2052 – “Tissue, urine and serum NMR metabolomics dataset from a 5/6 

nephrectomy rat model of chronic kidney disease”15). Case II is an unpublished data of a screening study 

for cyanobacterial secondary metabolites (analyzed by LC-MS) potentially active in the Artemia salina 

model assay. This dataset was provided and coordinated with Professor Camila Manoel Crnkovic (USP, 

Brazil). Case III represents a dataset comprising GC-MS and a bioassay against the larval population of 

Aedes aegypti 17. This dataset was provided and coordinated with Dr. Alan Pilon (USP, Brazil). Case IV 

demonstrated the use of NMR and antibacterial activity assay against Burkholderia glumae of an 

Actinobacteria strain grown in different media conditions.9 This dataset was provided by Professors 

Freddy A. Ramos and Monica T. Pupo. Case V represents the combination of MS and NMR data for 

confidence annotation of compounds. This data was acquired from essential oils from Melaleuca 

alternifolia and Melaleuca  rhaphiophylla for a study of species differentiation and it was provided by 

Professor Ricardo Moreira Borges (UFRJ, Brazil). 
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