Pharmacology and Therapeutic Potential of Dopamine D₄ Receptor Antagonists for Cocaine Use Disorder

Comfort A. Boateng,†,#,* Ashley N. Nilson,## Rebekah Placide,† Mimi L. Pham,† Franziska M. Jakobs,† Noelia Boldizsar,† Scot McIntosh,† Leia S. Stallings,† Ivana V. Korankyi,† Shreya Kelshikar,† Nisha Shah,† Diandra Panasis,† Abigail Muccilli,† Maria Ladik,† Brianna Maslonka,† Connor McBride,† Moises Ximello Sanchez,† Ebrar Akca,† Mohammad Alkhatib,† Catherine Nguyen,† Emily Kurtyan,† Jacquelyn DePierro,† Raymond Crowthers,† Alessandro Bonifazi,† Amy H. Newman,† Rana Rais,‡ Barbara S. Slusher,‡ R. Benjamin Free,§ David R. Sibley,§ Kent D. Stewart,§ Scott E. Hemby,§ Thomas M. Keck‡,*

†Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina, 27268, United States

‡Department of Chemistry & Biochemistry, Department of Biological & Biomedical Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey, 08028, United States
KEYWORDS. Dopamine D₄ receptor, antagonist, phenylpiperazine, benzo[d]thiazole, cocaine abuse disorder
ABSTRACT

The dopamine D₄ receptor (D₄R), a G protein-coupled receptor, is predominantly expressed in the prefrontal cortex in which it plays an important role in cognition, attention, and decision making. Studies have indicated D₄R-selective ligands as promising therapeutic targets for the treatment of neuropsychiatric conditions such as substance use disorders (SUD). D₄R ligands have been shown to alter cognition and behavior in animal models of drug addiction. A better understanding of D₄R-mediated signaling is essential to treating D₄R-associated disorders, including SUD. Despite its clinical importance, there are currently no FDA approved medications that target the D₄R. The present study focuses on the design of D₄R-selective ligands based on the parental phenylpiperazine scaffold and pharmacokinetic analysis in rat and human liver microsomes, followed by rat in vivo pharmacokinetic and behavioral analysis. We identified several compounds with high binding affinity and D₄R selectivity (Kᵢ ≤ 6.87 nM and >91-fold vs. other D₂-like receptors (D₂R, D₃R)) with diverse partial agonist and antagonist profiles. Based on the affinity profiles and functional analyses, 5f was identified as a potent and full D₄R antagonist and selected for further testing. In vitro 5f was found to be metabolically stable in rat and human liver microsome assays and in vivo displayed excellent brain penetration with AUC_{brain/plasma} > 3 in rats. 5f was then tested in cocaine self-administration studies in rats (5, 15 and 30 mg/kg, i.p.) using a within-session multidosing procedure. 5f was found to dose-dependently decrease the number of i.v. infusions obtained for three-unit doses of cocaine under a fixed ratio (FR) FR3 schedule of reinforcement, suggesting that 5f reduced the rewarding effects of cocaine. Together, these results support the development of D₄R-selective antagonists for SUDs and support 5f as a new probe for studying D₄R-specific behaviors.
INTRODUCTION

D1-like (D1R, D5R) and D2-like (D2R, D3R, D4R) dopamine receptors are G protein-coupled receptors that regulate physiological functions such as movement, emotion, and cognition.1, 2 Compared to D2R and D3R, D4Rs have the lowest level of expression in the brain, and are uniquely distributed primarily in the prefrontal cortex and hippocampus. In the prefrontal cortex, D4R plays important roles in cognition, attention, decision making, and executive function. Studies with D4R-selective ligands demonstrate that the D4R is a promising therapeutic target for the treatment of several neuropsychiatric conditions, including Alzheimer’s disease, attention deficit-hyperactivity disorder (ADHD), and substance use disorders (SUDs).3, 4 D4R ligands alter cognition and behavior in animal models of drug addiction and common variations in the DRD4 gene are associated with novelty-seeking, risky behavior, ADHD, and SUDs.5 A better understanding of D4R-mediated signaling is essential to developing new pharmacotherapeutic treatments.

D4R antagonism may be useful to treat L-DOPA-induced dyskinesias and SUDs, particularly for psychostimulants like cocaine;4, 6-8 despite the clinical importance of cocaine use disorder (CUD), there are no FDA-approved medications for CUD treatment. One of the most well-studied D4R compounds, L-745,870 (3-(4-[4-chlorophenyl]piperazin-1-yl)-methyl-1H-pyrrolo[2,3-b]pyridine; Figure 1) is >100-fold selective for D4R over other dopamine receptors (D1R, D2R, D3R, and D5R) with sub-nanomolar affinity.9, 10 However, the compound acts as a partial agonist, binds to several non-dopaminergic receptors, and failed to reduce psychotic symptoms in a Phase IIa clinical efficacy study.11, 12 To date there are no clinical medications that selectively target the D4R.

This study focuses on the development of novel D4R antagonists with high binding affinity and selectivity for the treatment of CUD. 5a 2-(4-(4-(pyrimidin-2-yl)piperazin-1-yl)ethyl)pyridin-2-yl)methyl-1H-pyrrolo[2,3-b]pyridine...
yl)butyl)benzo[d]thiazole was initially characterized as a D₄R compound with high affinity and selectivity over D₂R and D₃R with useful effects in treating sexual dysfunction.¹³,¹⁴ We used a rational drug design approach based on the parental 5a structure to design novel D₄R-selective ligands.¹³ This study was enhanced by initial computational analysis exploiting the reported D₄R crystal structure with the antipsychotic nemonapride (Figure 1).¹⁵

We synthesized a library of analogues primarily featuring modifications in the pyrimidinylpiperazine region of 5a, variations in the linker chain length and substitutions on the benzo[d]thiazole scaffold. Following extensive in vitro analyses, including binding and functional studies, we determined that these modifications resulted in novel analogues with high binding affinity and improved subtype selectivity. The lead molecule 5f, a D₄R full antagonist, was selected for pharmacokinetic and metabolic stability studies, including rat and human liver microsomes, and in vivo behavioral analysis in rats trained to self-administer cocaine.

CHEMISTRY

Ligands were synthesized as outlined in Scheme 1 using routine N-alkylation reactions previously reported.² In Scheme 1, substituted or unsubstituted 2-aminobenzenethiol compound 3 or 7 was reacted with 4-chlorobutanoyl chloride or 5-chloropentanoyl chloride to give the cyclized intermediates 4 and 8. Commercially unavailable intermediate aryl piperazine moiety was obtained by reacting bis(2-chloroethyl)amine HCl, in diglyme under reflux conditions via a nucleophilic substitution reaction with substituted-aniline as previously reported.¹⁶ Alkylation of the substituted or unsubstituted phenylpiperazine or phenyl piperidine moiety with intermediate compounds 4 or 8, delivered the target compounds 5 and 6. The same procedure was employed to make target
compounds 9 and 10. The requisite substituted or unsubstituted aminothiophenols and some substituted or unsubstituted phenylpiperazine or phenylpiperidine are commercially available.

PHARMACOLOGICAL RESULTS AND DISCUSSION

Structure-Activity Relationships at Dopamine D₂-Like Receptors.

A primary objective of this study was to design ligands with high D₄R binding affinity and subtype selectivity for the treatment of CUD. Compound 5a and all the structures of the designed analogs are shown in Table 1. To obtain D₄R antagonists with high affinity and selectivity, we employed three modification strategies using compound 5a as our parent compound to create pyrimidinyl/piperazinyl analogs, linker chain length analogs, and benzo[d]thiazole analogs.

The 2-pyrimidine moiety of 5a was replaced with a 2-pyridine in 5b, 5-methylpyridin-2-yl in 5c and 5-chloropyridin-2-yl in 5d. To evaluate the contribution of the alkyl chain to binding affinity and subtype selectivity, we synthesized alkyl chain length analogs of compounds 5a and 5b, removing one methylene from the linker chain in compounds 5e and 5f, respectively. The pyridine of compound 5f was substituted with a 4-methylpyridin-2-yl to form 5g. The piperazinyl attached to the three-linker chain on compound 5h was replaced with a piperidine to form 6a. The 3-methyl-2-pyridine of 6a was substituted with a 5-methoxy-2-pyridine to form 6b. Finally, we probed the contribution of the benzo[d]thiazole moiety via substitution on the phenyl ring with electron donating (methyl) and withdrawing (chloro) groups (compound 9a compared to compound 9b, respectively) with propyl linker attached to pyridin-2-yl-piperazin-1-yl moiety. Additional substitutions on the benzo[d]thiazole moiety produced compounds 9c-9d. We also probed combinations of benzo[d]thiazole moiety substitutions with pyridin-2-ylpiperidin-1-yl moieties...
attached to the propyl linker to obtain compounds **10a-10c**. Synthetic procedures for all compounds are shown in **Scheme 1** and final structures for each compound are shown in **Table 1**.

The binding affinities of all compounds were evaluated via radioligand competition binding studies using [³H]N-methylspiperone and membranes prepared from Human Embryonic Kidney (HEK293) cells stably expressing human dopamine D₂-like receptors (D₂R, D₃R, or D₄R). Binding data for the ligands are shown in **Table 1**. In addition, cLogP values and polar surface area (PSA) were calculated to provide measures of lipophilicity (**Table 1**). Functional analyses of the compounds were also completed in Chinese hamster ovary (CHO) cells stably expressing D₂R, D₃R, or D₄R in the LANCE assay for cAMP (**Table 2**) and the DiscoverX β-arrestin recruitment assay (**Table 3**) in agonist and antagonist modes.

Modification of the pyrimidine ring of **5a** to a pyridine or substituted pyridine (**5b-5d**) maintained D₄R binding affinity in competition binding assays with modest decreases in fold selectivity over D₃R. Compounds **5b** and **5c** maintained D₄R binding affinity at 9.85 ± 2.01 nM and 21.2 nM ± 1.37, respectively. The D₂R/D₄R fold selectivity was similar to compound **5a** at ~40-fold but the D₃R/D₄R fold selectivity decreased to 6-fold (**5b**) and 10-fold (**5c**). In cAMP functional assays, **5b** and **5c** were full antagonists (~100% inhibition) at D₄R but lost potency to 123 nM [95.9 – 157] and 600 nM [467 – 771], respectively, compared to **5a** (IC₅₀ = 31.8 nM [24.7 – 40.9]). Further, **5b** induced cAMP production at D₂R in agonist mode (Eₘₐₓ = 59.4 ± 3.0%, IC₅₀ = 124 nM [68.9 – 222]) while the methyl substitution in **5c** remained inactive in agonist mode but was a full D₂R antagonist with low potency (Iₘₐₓ = 107 ± 4.9, IC₅₀ = 2010 [1390 – 2910]). Similar results for the D₄R and D₂R were seen in the β-arrestin assay. **5b** was a full antagonist at the D₄R (Iₘₐₓ = 97.8 ± 3.6%, IC₅₀ = 104 nM [71.7 – 153]) but was a partial agonist at the D₂R (Eₘₐₓ = 32.0 ± 0.88%, EC₅₀ = 29.8 nM [18.6 – 47.6]). Additionally, **5b** was a potent agonist at the D₃R in the
β-arrestin recruitment assay ($E_{\text{max}} = 82.6 \pm 5.3$, $EC_{50} = 17.8$ nM [7.34 – 43.1]. As with the cAMP assay, addition of the methyl substituent in 5c removed any agonist activity in the β-arrestin recruitment assay. 5c was a full antagonist at the D2R ($I_{\text{max}} = 104 \pm 3.9\%$, $IC_{50} = 1560$ nM [1120 – 2170]), D3R ($I_{\text{max}} = 101 \pm 7.7\%$, $IC_{50} = 937$ nM [541 – 1630]), and D4R ($I_{\text{max}} = 108 \pm 4.1\%$, $IC_{50} = 275$ nM [185 – 408]) but did not produce high selectivity amongst the receptors (< 6-fold). Replacing the pyrimidine ring with a pyridine ring introduced D2R and D3R partial agonist activity while adding a methyl substituent to the pyridine ring restored full antagonism at all receptors.

The chloro-substituted pyridine 5d maintained excellent D4R binding affinity ($K_i = 4.85 \pm 0.570$ nM) with decreased D2R affinity ($K_i = 830 \pm 158$ nM) compared to 5a ($K_i = 127 \pm 10.4$ nM), which improved D4R selectivity over D2R to 171-fold. 5d maintained D3R binding affinity and thus had no improvement in D4R selectivity over D3R. However, cAMP and β-arrestin recruitment were greatly diminished across all receptors. Starting with the D4R, 5d lost potency in cAMP assays with the estimated $IC_{50} = 10,800$ nM [7520 – 15,500]. In the β-arrestin assay, 5d was a full antagonist ($I_{\text{max}} = 103 \pm 3.7\%$, $IC_{50} = 414$ nM [274 – 621]). At the D2R, 5d had greatly reduced potency at for both cAMP ($I_{\text{max}}/IC_{50} = $ Not determined) and β-arrestin recruitment ($I_{\text{max}} = 108 \pm 19\%$, $IC_{50} = 23,000$ nM [8960 – 67,700]). D3R β-arrestin recruitment was inactive in agonist mode and not determined in antagonist mode due to incomplete (low potency) curves. Although D4R binding affinity was not affect by the chloro substituent, functional activity was greatly diminished for all D2-like receptors.

Removing one methylene unit from the linker chain—decreasing the alkyl linker from four carbons to three—markedly improved selectivity for D4R by reducing D2R and D3R binding affinity. Compared to similar butyl linker compounds 5a-5c, the propyl linker chain in compounds 5e-5g maintained D4R binding affinity and greatly reduced D2R and D3R binding affinity. For
example, 5e had a D₄R binding affinity (Kᵢ = 6.52 ± 0.608 nM) similar to that of 5a (Kᵢ = 3.05 ± 0.163 nM) but dramatically decreased affinity for D₂R (5e: Kᵢ = 6370 ± 1020 nM; 5a: Kᵢ = 127 ± 10.4 nM) and D₃R (5e: Kᵢ = 1650 ± 120 nM; 5a: Kᵢ = 93.2 ± 8.27 nM). Exchanging the pyrimidine in 5e for a pyridine in 5f improved D₄R binding affinity (Kᵢ = 2.21 ± 0.0065 nM) and further increased D₄R selectivity over D₂R (1326-fold) and D₃R (520-fold). In cAMP functional assays, 5e (Eₘₐₓ = 14.0 ± 0.8%, EC₅₀ = 4.34 nM [1.1 – 17.1]) and 5f (Eₘₐₓ = 14.2 ± 1.2%, EC₅₀ = 10.6 nM [1.6 – 64.8]) exhibited low partial agonism at the D₄R, results corresponded to the antagonist mode assays in which 5e (Iₘₐₓ = 82.2 ± 2.0%, IC₅₀ = 32.3 nM [24.7 – 42.2]) and 5f (Iₘₐₓ = 78.8 ± 2.3%, IC₅₀ = 69.3 nM [50.9 – 94.5]) were not full antagonists. Higher efficacy but much lower potency for 5e and 5f were observed at the D₂R in both agonist and antagonist modes. The potency of 5e at the D₂R was >100,000 in antagonist mode. In agonist mode, 5e was a high partial agonist (Eₘₐₓ = 80.9 ± 6.9%, EC₅₀ = 1180 nM [577 – 2390]) but D₄R selectivity was high at 272-fold. The D₄R selectivity of 5f was 97-fold over the D₂R in antagonist mode due to decreased D₂R potency (Iₘₐₓ = 81.3 ± 4.5%, IC₅₀ = 6690 nM [4120 – 11,000]).

Adding a 4-methyl substituent onto the pyridine ring (5g) maintained high D₄R affinity (Kᵢ = 2.89 ± 0.95 nM) and subtype selectivity of >450-fold over both D₂R and D₃R, with no agonist activity detected for any receptor in either cAMP or β-arrestin recruitment assays. 5g antagonized D₂R-mediated cAMP signaling (Iₘₐₓ = 92.8 ± 4.9%, IC₅₀ = 628 nM [375 – 1040]), but was much less potent at inhibiting β-arrestin recruitment (Iₘₐₓ = 102 ± 5.9%, IC₅₀ = 6430 nM [4010 – 10,300]) and D₃R (Iₘₐₓ = 101 ± 9.5%, IC₅₀ = 12900 nM [7490 – 22,400]) compared to D₄R.

The 5-methoxy substitution on the pyridine ring (5h) improved D₄R-subtype selectivity in binding affinity and β-arrestin functional assay but not for cAMP activity. 5h maintained D₄R binding affinity (Kᵢ = 1.74 ± 0.95 nM) but had decreased D₂R (Kᵢ = 519 ± 211 nM) and D₃R (Kᵢ =
288 ± 194 nM) binding affinity. Further, 5h had >190-fold selectivity for the D₄R in β-arrestin recruitment assays. 5h was inactive for all receptors tested in agonist mode and was highly potent at the D₄R (Iₘₐₓ = 91.7 ± 3.6%, IC₅₀ = 2.17 nM [1.41 – 3.40]). However, 5h was much less potent in the β-arrestin recruitment assay at the D₂R (Iₘₐₓ = 94.0 ± 3.6%, IC₅₀ = 414 nM [268 – 633]) and D₃R (Iₘₐₓ = 81.5 ± 3.4%, IC₅₀ = 474 nM [298 – 747]). Interestingly, D₄R-subtype selectivity was lost in cAMP functional assays. 5h was still inactive in agonist mode assays but had similar potency at the D₄R (Iₘₐₓ = 90.4 ± 2.6%, IC₅₀ = 30.6 nM [23.1 – 40.6]) when compared to 5a. The potency of 5h at the D₂R was 185 nM [105 – 327] (Iₘₐₓ = 86.4 ± 4.4).

Together, these results indicate the importance of the propyl linker length on D₄R affinity and subtype selectivity. Substitutions on the pyridin-2-yl-piperazin-1-yl moieties can dramatically alter the intrinsic efficacy of each compound.

We then probed the importance of the piperazine ring, replacing it with a piperidine in compounds 6a and 6b. While we lack matching piperazine analogs, comparing 6a and 6b to the 5a-h series shows a loss of D₄R binding affinity (Kᵢ = 24-26 nM) but excellent selectivity over D₂R (>500-fold) due to a marked reduction in D₂R binding affinity. In functional assays, 6a was a full antagonist at D₄R (cAMP: Iₘₐₓ = 97.6 ± 4.5%, IC₅₀ = 67.2 [41.2 – 109]; β-arrestin: Iₘₐₓ = 100 ± 1.9%, IC₅₀ = 52.4 nM [40.3 – 68.3]) and had lower potency at the D₂R (cAMP: Iₘₐₓ = 104 ± 6.3%, IC₅₀ = 4530 nM [2740 – 7500]; β-arrestin: Iₘₐₓ = 100 ± 1.5%, IC₅₀ = 9920 nM [7660 – 12900]) and D₃R (β-arrestin: Iₘₐₓ = 101 ± 2.1%, IC₅₀ = 13300 nM [9450 – 18700]). 6b was a full antagonist in cAMP and β-arrestin recruitment assays for all receptors tested but did not maintain selectivity for D₄R over D₂R (cAMP: 14-fold; β-arrestin: 43-fold) or D₃R (β-arrestin: 25-fold selective).
The benzo[\textit{d}]thiazole moiety represents a new secondary pharmacophore for the arylpiperazine/arylpiperidine class of D\textsubscript{2}-like ligands. We evaluated the suitability of modifying this region of the molecule by adding electron donating and withdrawing groups onto the benzyl ring, producing mixed effects on binding affinity. 6-methylbenzo[\textit{d}]thiazole (9\text{a}) and 6-chlorobenzo[\textit{d}]thiazole (9\text{b}) both reduced D\textsubscript{4}R binding affinity ($K_i = 59.0 \pm 45.4 \text{ nM}$ and $K_i = 27.2 \pm 10.0 \text{ nM}$, respectively) compared to unsubstituted analog 5\text{f} ($K_i = 2.21 \pm 0.0065 \text{ nM}$). While the electron-donating methyl group on 9\text{a} produced excellent selectivity over the D\textsubscript{2}R (844-fold) and D\textsubscript{3}R (3403-fold), an electron-withdrawing chloro substituent (9\text{b}) resulted in increased D\textsubscript{2}R and D\textsubscript{3}R affinity and greatly reduced D\textsubscript{4}R selectivity (89-fold and 8-fold, respectively). 9\text{a} and 9\text{b} had similar D\textsubscript{4}R functional profiles: partial agonists for cAMP ($E_{\text{max}} = 13.1 \pm 2.2 \%$, $E_{\text{max}} = 32.3 \pm 2.5 \%$) but antagonists for β-arrestin ($I_{\text{max}} = 100 \pm 5.7 \%$, $I_{\text{max}} = 93.9 \pm 5.4 \%$). At D\textsubscript{2}R and D\textsubscript{3}R, 9\text{a} and 9\text{b} exhibited similar partial agonism for cAMP ($E_{\text{max}} = 50-53 \%$) but diverged in β-arrestin profiles (9\text{a}: $E_{\text{max}} = 37.1 \pm 4.8 \%$ at D\textsubscript{2}R, $E_{\text{max}} = 60.5 \pm 6.3 \%$ at D\textsubscript{3}R; 9\text{b} no measurable activity at D\textsubscript{2}R and D\textsubscript{3}R), suggesting that electron donating/withdrawing groups at this position can substantially alter receptor signaling characteristics.

Comparing the 6-chlorobenzo[\textit{d}]thiazole analog 9\text{b} to the 5-chlorobenzo[\textit{d}]thiazole analog 9\text{c} and the 4-chlorobenzo[\textit{d}]thiazole analog 9\text{d} reveals other marked effects. These variations did not strongly affect D\textsubscript{4}R binding affinity ($K_i = 11-37 \text{ nM}$) but lowered D\textsubscript{2}R and D\textsubscript{3}R binding affinities, resulting in improved D\textsubscript{4}R selectivity. 9\text{b} is a D\textsubscript{4}R partial agonist at cAMP ($E_{\text{max}} = 32.3 \%$) but 9\text{c} and 9\text{d} have no detectable D\textsubscript{4}R agonist activity and are full antagonists; all are full antagonists for β-arrestin. At D\textsubscript{2}R, 9\text{c} and 9\text{d} exhibited higher partial D\textsubscript{2}R agonism for cAMP ($E_{\text{max}} = 78-85 \%$) than 9\text{b} ($E_{\text{max}} = 50.2 \%$) but had little-to-no activity for β-arrestin. At D\textsubscript{3}R, 9\text{b} and 9\text{d} have no
detectable β-arrestin activity, but the 5-chloro analog 9c gains partial agonism ($E_{\text{max}} = 32.8 \pm 7.2\%$) albeit at very low potency (24,000 nM [9070 – 76,600]). Together, these data indicate that methyl and chloro substituents on the benzo[\text{d}]thiazole can shift the functional profile at D4R with a moderate loss of potency. However, the decreased D4R potency appears to be less sensitive to these substituents than the D2R and D3R where affinity and functional potency are nearly lost.

Replacing the 1-(pyridin-2-yl)piperazine of 9a with 2-(piperidin-4-yl)pyridine (10a) resulted in a slight improvement in binding affinity across all receptors, but D4R selectivity was generally maintained over D2R (150-fold) and D3R (257-fold). This shift resulted in higher partial agonist efficacy at D4R-mediated cAMP ($E_{\text{max}} = 24.2 \pm 2.1\%$, $EC_{50} = 150$ nM [42.3 – 593]) but reduced efficacy in D2R-mediated cAMP ($E_{\text{max}} = 27.0 \pm 3.1\%$, $EC_{50} = 496$ nM [165 – 1500]). In β-arrestin assays, 10a was inactive in agonist mode for all receptors tested but a full antagonist at the D4R ($I_{\text{max}} = 98.6 \pm 2.7\%$, $IC_{50} = 248$ nM [187 – 237]), D2R ($I_{\text{max}} = 92.5 \pm 3.8\%$, $IC_{50} = 2780$ nM [1980 – 3910]), and D3R ($I_{\text{max}} = 97.0 \pm 6.3\%$, $IC_{50} = 6700$ nM [4330 – 10400]).

Replacing the methyl group with a methoxy group at the 4 position (10c) and then moving the methoxy group to the 3 position (10b) improved D4R binding affinity ($K_i = 6.12 \pm 4.06$ nM, $K_i = 21.3 \pm 7.57$ nM, respectively) compared to 10a. However, 10b gained D3R affinity ($K_i = 228 \pm 82.2$ nM) while 10c gained D2R binding affinity ($K_i = 427 \pm 189$ nM). 10b was a cAMP partial agonist at D4R ($E_{\text{max}} = 11.3 \pm 1.2\%$, $EC_{50} = 12.7$ nM [2.6 – 58.1]) and D2R ($E_{\text{max}} = 42.4 \pm 5.1\%$, $EC_{50} = 183$ nM [45.2 – 649]) while it exhibited full antagonism for β-arrestin recruitment at all receptors (D2R, $I_{\text{max}} = 98.3 \pm 3.4\%$, $IC_{50} = 2260$ nM [1660 – 3070]; D3R, $I_{\text{max}} = 107 \pm 5.6\%$, $IC_{50} = 2770$ nM [1820 – 4200]; D4R, $I_{\text{max}} = 103 \pm 3.3\%$, $IC_{50} = 122$ nM [86.5 – 172]). 10c was also a partial agonist at the D4R ($E_{\text{max}} = 30.5 \pm 2.1\%$, $EC_{50} = 38.6$ nM [12.8 – 114]) and D2R ($E_{\text{max}} = 65.3 \pm 5.5\%$, $EC_{50} = 228$ nM [102 – 488]) for cAMP production. In notable contrast to 10b, 10c
exhibited partial D_2R (E_{max} = 29.0 \pm 2.0\%, EC_{50} = 1170 \text{nM} \ [498 – 2890]) and D_3R (E_{max} = 31.4 \pm 2.5\%, EC_{50} = 3790 \text{nM} \ [1400 – 9660]) \beta\)-arrestin recruitment agonism but no agonist activity was detected at the D_4R where it was a full antagonist (l_{max} = 93.7 \pm 3.0\%, IC_{50} = 724 \text{nM} \ [528 – 990]).

Overall, this library included four key classes of modifications with distinct binding and efficacy profiles across the D_2-like receptors. We find the following structure-activity relationships: 1) Reducing the linker chain length from a butyl linker to a propyl linker dramatically improved D_4R binding selectivity over D_2R and D_3R. This is consistent with prior literature^{17, 18} that supports alkyl linker length substantially driving D_2-like subtype selectivity. 2) Substitution of the pyrimidine ring in initial lead 5a with a pyridinyl moiety further improved D_4R binding affinity and selectivity over D_2R and D_3R. 3) Piperazine and piperidine ring moieties produce differential effects on cAMP and \beta\)-arrestin signaling at each receptor. 4) Substitutions at different positions on the benzo[d]thiazole moiety substantially altered binding and functional profiles and warrant more detailed follow-up studies. We also note that para-substituted pyridine rings (5c, 5d, 6b) were full antagonists, consistent with prior published reports.^{2, 19, 20} All of the compounds exhibited cLogP values of less than 5. None of the compounds demonstrated higher binding affinity for D_2R and D_3R.

5f was one of our first compounds that completed in vitro characterization, and was chosen for further analysis based on its pharmacological profile: high D_4R binding affinity with excellent selectivity over D_2R and D_3R (1326-fold and 520-fold, respectively), as measured by \[^3H\]N-methylspiperone competition (Table 1), and excellent D_4R selectivity in both cAMP and \beta\)-arrestin recruitment antagonism (Table 2 and Table 3). 5f is a low-efficacy D_4R partial agonist as measured in cAMP functional assays (Figure 2A and Table 2) and a full antagonist in \beta\)-arrestin
recruitment assays (Figure 2B and Table 3), maintaining 97-fold D₄R selectivity over D₂R in cAMP antagonist assays, 391-fold D₄R selectivity over D₂R in β-arrestin recruitment antagonist assays, and 859-fold D₄R selectivity over D₃R in β-arrestin recruitment antagonist assays, indicating it is highly subtype-selective. We conducted Schild-type analysis of 5f using the β-arrestin recruitment assay to determine whether 5f was a competitive orthosteric antagonist without any allosteric activity. Dopamine concentration-response curves were conducted in the presence of DMSO and increasing concentrations of 5f (Figure 2C). The dopamine curves shifted to the right without decreasing dopamine efficacy, indicating 5f is a competitive antagonist. Schild-type analysis revealed the slope approached unity (slope = 1.09) and its affinity was 11.0 nM (Figure 2C inset). Together these results indicate that 5f is a potent and selective D₄R antagonist suitable for further analyses.

In silico and in vitro pharmacokinetics studies of 5f

The potential for brain penetrance of 5f was evaluated in silico using central nervous system multiparameter optimization (CNS MPO) tools. 5f, and the brain-penetrant CNS ligand buspirone as a comparator, had calculated CNS MPO scores of 4.5 and 5.8, respectively; scores >4 correlate with high CNS penetrance.21 5f was also tested in Caco-2 membrane permeability assays (Eurofins Panlabs, St. Charles, MO) and the apical-to-basolateral (A-B) permeability of 5f was 27 × 10⁻⁶ cm/s, comparable to the assay brain-penetrant control compounds propranolol (24 × 10⁻⁶ cm/s) and buspirone (25 × 10⁻⁶ cm/s).

We then evaluated the Phase I metabolic stability of 5f using rat and human liver microsomes as previously described.22 Incubation of 5f with rat liver microsomes in the presence of NADPH resulted in time-dependent degradation, with ~33% remaining after 1 hour (Figure 3A). In human
liver microsomes, **5f** showed greater stability, with ~60% remaining after 1 hour incubation (Figure 3B). These results indicate that **5f** has acceptable liver metabolic stability in humans and relatively lower stability in rat liver.

Pharmacokinetic assessment of 5f in rats

Given its adequate stability profile, we next evaluated the *in vivo* pharmacokinetic profile of **5f** in rats. Sprague Dawley (SD) rats were dosed with **5f** (10 mg/kg, i.p.) and plasma and brain levels of were measured 0 – 6 hours post-dose. The results from the pharmacokinetic analysis are shown in Figure 4A-B. **5f** demonstrated good exposure in both plasma and brain, with AUC\(_{0\rightarrow t}\) values of 1.05 nmol*h/mL and 3.67 nmol*h/g respectively. Moreover, **5f** showed an excellent brain penetration index (AUC\(_{\text{brain/plasma}}\) ratio) of 3.5 with an apparent half-life of ~1 hour (t\(_{1/2}\)). The detailed pharmacokinetic parameters of the **5f** are provided in Figure 4B.

Behavioral effects of 5f in rats trained to self-administer food and cocaine.

In order to test our hypothesis that D\(_4\)R antagonism is a viable route for CUD pharmacotherapy, we evaluated whether **5f** altered cocaine self-administration, using food self-administration as natural reward comparator. Separate groups of male Fischer 344 rats were trained to respond on a lever to receive food pellets or i.v. cocaine in multicomponent procedures. Both procedures included 3 components (60 min each for cocaine, 30 min each for food) in each test wherein the reinforcer was reduced across components (food: 4, 2 and 1 food pellets across components 1, 2, and 3, respectively; i.v. cocaine: 166, 83, 41.5 mg/infusion across components 1, 2, and 3, respectively). After successful training, saline vehicle and **5f** (5, 15, and 30 mg/kg, i.p.) were tested.
5f pretreatment produced a significant decrease in the number of infusions for each cocaine dose, an effect that was dependent upon the dose of the compound (5, 15 and 30 mg/kg, i.p.) (Figure 5A). Intake following saline pretreatment was not significantly different from baseline [F(2,16) = 0.2935, P=0.75]. A significant main effect of compound 5f on cocaine self-administration was observed [F (1.239, 34.69) = 57.79, P<0.0001] and a significant interaction of component and 5f on cocaine intake [F (6, 56) = 3.181, P=0.0093]. The number of infusions obtained for each cocaine dose was significantly different after 5f treatment and the magnitude of effect was dependent on the dose of 5f as well as the dose of cocaine self-administered.

Similarly, 5f dose dependently decreased food maintained responding (Figure 5B). Intake following saline pretreatment was not significantly different from baseline [F (2,32) = 1.949, P=0.1589]. A significant main effect of 5f on food-maintained responding was observed [F (1.708, 49.53) = 137.4, P<0.0001] and a significant interaction of Component and 5f on cocaine intake [F (6, 58) = 32.88, P<0.0001].

Overall, these results indicate that 5f is centrally active and reduces cocaine- and food-maintained responding. The effects of 5f are most pronounced at lower unit doses of cocaine but at higher unit doses of food, suggesting some differentiation of these effects that will be more fully evaluated in follow-up studies. Future testing will also determine whether 5f affects relapse-like responding and other behaviors relevant to CUD.

CONCLUSIONS

Evidence from human genetic studies and animal models suggest D4R signaling modulates drug-taking and -seeking behaviors. Newer highly selective D4R antagonists will be useful to better characterize the role of D4R signaling in vivo, particularly in behavioral models of CUD. This
study provided a detailed structure-activity relationship analysis of a novel series of D₄R partial agonists and antagonists. We identified several compounds with high D₄R binding affinity and selectivity over other D₂-like receptors (D₂R, D₃R) with diverse partial agonist and antagonist profiles. The highly selective full D₄R antagonist (5f) was chosen as a lead compound suitable for pharmacokinetic and behavioral testing. 5f displayed acceptable in vitro metabolic stability in rat and human liver microsomes and excellent in vivo half-life and brain penetration parameters. In behavioral testing, 5f dose-dependently decreased cocaine- and food-maintained operant responding, with diverging effects on the reinforcer unit dose. While meriting more detailed follow-up studies, these results suggest that D₄R antagonism reduces the rewarding effects of cocaine and is a plausible route for CUD pharmacotherapy development.

We are optimistic that these analogs will also be useful as novel in vivo research tools and plan to examine additional ADME characteristics of selected library members. It is interesting to speculate that a collection of antagonist ligands with varying potencies may allow for the fine-tuning of D₄R inhibition, potentially leading to a fuller understanding of functional consequences of varying signaling levels for D₄R-targeted therapeutics for SUDs.

EXPERIMENTAL METHODS

Reaction conditions and yields were not optimized. Anhydrous solvents were purchased from Aldrich and were used without further purification. All other chemicals and reagents were purchased from Sigma-Aldrich Co. LLC, Aurora Fine Chemicals LLC, VWR Chemicals, Enamine, Acros Organics, and Alfa Aesar. All amine final products were converted into either the oxalate or hydrochloride salt. Spectroscopic data and yields refer to the free base form of compounds. Flash chromatography was performed using silica gel (EMD Chemicals, Inc.; 230-
400 mesh, 60 Å) by using Teledyne ISCO CombiFlash RF system. 1H and 13C spectra were acquired using a JEOL ECZ-400S NMR spectrometer. 1H chemical shifts are reported as parts per million (δ ppm) relative to tetramethylsilane (0.00 ppm). All the coupling constants are measured in Hz. Chemical shifts for 13C NMR spectra are reported as parts per million (δ ppm) and referenced according to deuterated solvent for 1H spectra (CDCl$_3$, 7.26 or CD$_3$OD, 3.31) and 13C spectra (CDCl$_3$, 77.1 or CD$_3$OD, 49.0). Chemical shifts, multiplicities, and coupling constants (J) have been reported and calculated using MNova 64. Combustion analysis was performed by Atlantic Microlab, Inc. (Norcross, GA) and the results agree within ± 0.4% of calculated values (Table S1). Melting point determination was conducted using a SRS OptiMelt MPA100-Automated melting point apparatus and are uncorrected. Based on NMR and combustion analysis data, all final compounds are ≥95% pure. All compounds within this series are covered under an existing patent, but only 5a and 5e13 have been previously described in the peer-reviewed literature.

General Method A.13 4-chlorobutanoyl chloride or 5-chloropentanoyl chloride (1.24 equiv) was added dropwise to a solution of substituted or unsubstituted 2-aminobenzenethiol (1.00 equiv) in toluene at 0 °C over 15 minutes, an off-white precipitate was formed. The reaction mixture was stirred at room temperature for 48 hrs, under N$_2$ atmosphere. After the reaction was complete, the solvent was removed in vacuo. The crude mixture was diluted with aqueous NaHCO$_3$ (100 mL) and EtOAc (100 mL), the two layers were separated and then extracted with EtOAc (2 × 100 mL) and washed with brine (100 mL). The combined organic layer was dried over Na$_2$SO$_4$, filtered and concentrated. The product was purified by flash column chromatography (5-95% EtOAc:Hexanes) gradient to give the desired substituted or unsubstituted 2-(3-chloropropyl)benzo[d]thiazole or 2-(4-chlorobutyl)benzo[d]thiazole compounds.
2-(4-chlorobutyl)benzo[d]thiazole (4a). The compound 4a was synthesized as describe for general method A by using 5-chloropentanoyl chloride (5.87 g, 49.5 mmol), 2-aminobenzenethiol (4.27 mL, 39.9 mmol) in toluene (150 mL). The product 4a is formed as brown sticky oil (5.98 g, 66% yield). 1H NMR (CD$_3$OD) δ 8.29 – 8.24 (m, 1H), 8.16 (d, $J = 8.5$ Hz, 1H), 7.88 (ddd, $J = 8.5$, 7.4, 1.2 Hz, 1H), 7.80 (ddd, $J = 8.2$, 7.4, 1.1 Hz, 1H), 4.62 (t, $J = 6.1$ Hz, 2H), 2.36 – 2.28 (m, 2H), 2.14 (dd, $J = 8.0$, 3.9 Hz, 2H).

2-(3-chloropropyl)benzo[d]thiazole (4b). The compound 4b was synthesized as describe for general method A by using 4-chlorobutanoyl chloride (5.54 mL, 49.53 mmol), 2-aminobenzenethiol (4.27 mL, 39.9 mmol) in toluene (150 mL). The product 4b formed as greenish oil (6.30 g, 75% yield). 1H NMR (CDCl$_3$) δ 7.96 (dd, $J = 8.0$, 1.5 Hz, 1H), 7.83 (dt, $J = 8.5$, 1.2 Hz, 1H), 7.44 (ddq, $J = 8.2$, 7.1, 1.1 Hz, 1H), 7.34 (ddt, $J = 8.2$, 7.1, 1.0 Hz, 1H), 3.66 (td, $J = 6.2$, 1.0 Hz, 2H), 3.27 (td, $J = 7.3$, 1.2 Hz, 2H), 2.41 – 2.30 (m, 2H).

2-(3-chloropropyl)-6-methylbenzo[d]thiazole (8a). The compound 8a was synthesized as describe for general method A by using 4-chlorobutanoyl chloride (1.00 mL, 8.91 mmol), 2-amino-5-methylbenzenethiol (1.00 g, 7.18 mmol) in toluene (50 mL). The product 8a formed as yellowish oil (1.39 g, 86% yield). 1H NMR (CDCl$_3$) δ 7.89 – 7.79 (m, 2H), 7.62 (s, 1H), 7.25 (dd, $J = 1.9$, 0.9 Hz, 1H), 3.66 (td, $J = 6.1$, 1.6 Hz, 2H), 3.26 (t, $J = 7.0$ Hz, 2H), 2.46 (s, 3H), 2.41 – 2.31 (m, 2H).

2-(3-chloropropyl)-7-methoxybenzo[d]thiazole (8b). The compound 8b was synthesized as describe for general method A by using 4-chlorobutanoyl chloride (0.89 mL, 7.98 mmol), 2-amino-6-methoxybenzenethiol (1.00 g, 6.44 mmol) in toluene (100 mL). The product 8b formed as black solid (1.05 g, 67% yield). 1H NMR (CDCl$_3$) δ 7.59 (dt, $J = 8.1$, 0.8 Hz, 1H), 7.39 (td, $J = 8.0$, 0.7 Hz, 1H), 7.25 (dd, $J = 8.5$, 1.2 Hz, 1H), 3.76 (d, $J = 7.0$ Hz, 1H), 3.68 (td, $J = 8.5$, 1.4 Hz, 2H), 3.26 (t, $J = 1.5$ Hz, 2H), 2.41 – 2.30 (m, 2H).
Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 3.97 (s, 3H), 3.66 (t, J = 6.4 Hz, 2H), 3.28 (t, J = 7.3 Hz, 2H), 2.43 – 2.30 (m, 2H).

2-(3-chloropropyl)-6-methoxybenzo[d]thiazole (8c). The compound 8c was synthesized as describe for general method A by using 4-chlorobutanoyl chloride (0.89 mL, 7.99 mmol), 2-amino-5-methoxybenzenethiol (1.00 g, 6.44 mmol) in toluene (50 mL). The product 8c is formed as dark brown solid (890 mg, 57% yield). \(^1\)H NMR (400 MHz, CD\(_3\)OD) \(\delta 7.94 (d, J = 9.1 Hz, 1H), 7.87 – 7.69 (m, 1H), 7.18 – 6.98 (m, 1H), 4.83 (d, J = 0.8 Hz, 3H), 3.76 – 3.59 (m, 2H), 3.33 – 3.18 (m, 2H), 2.91 (p, J = 7.7 Hz, 2H).

7-chloro-2-(3-chloropropyl)benzo[d]thiazole (8d). The compound 8d was synthesized as describe for general method A by using 4-chlorobutanoyl chloride (0.87 mL, 7.77 mmol), 2-amino-6-chlorobenzenethiol (1.00 g, 6.26 mmol) in toluene (50 mL). The product 8d is formed as brown sticky oil (780 mg, 51% yield). \(^1\)H NMR (CDCl\(_3\)) \(\delta 7.85 (dd, J = 8.0, 1.4 Hz, 1H), 7.45 – 7.32 (m, 2H), 3.68 (td, J = 6.3, 1.2 Hz, 2H), 3.29 (td, J = 7.4, 1.2 Hz, 2H), 2.37 (p, J = 6.8 Hz, 2H).

6-chloro-2-(3-chloropropyl)benzo[d]thiazole (8e). The compound 8e was synthesized as describe for general method A by using 4-chlorobutanoyl chloride (0.87 mL, 7.77 mmol), 2-amino-5-chlorobenzenethiol (1.00 g, 6.26 mmol) in toluene (50 mL). The product 8e is formed as brown solid (1.13 g, 73% yield). \(^1\)H NMR (CDCl\(_3\)) \(\delta 7.89 – 7.80 (m, 2H), 7.43 – 7.40 (m, 1H), 3.67 (t, J = 6.3 Hz, 2H), 3.27 (t, J = 7.4 Hz, 2H), 2.42 – 2.31 (m, 2H).

2-(3-chloropropyl)-5-methylbenzo[d]thiazole (8f). The compound 8f was synthesized as describe for general method A by using 4-chlorobutanoyl chloride (1.74 mL, 15.5 mmol), 2-amino-4-chlorobenzenethiol (2.00 g, 12.5 mmol) in toluene (75 mL). The product 8f is formed as yellowish solid (1.73 g, 56% yield). \(^1\)H NMR (CDCl\(_3\)) \(\delta 7.95 (d, J = 2.0 Hz, 1H), 7.74 (d, J = 8.5 Hz, 1H),
7.34 (dd, $J = 8.5$, 2.0 Hz, 1H), 3.67 (t, $J = 6.3$ Hz, 2H), 3.28 (t, $J = 7.4$ Hz, 2H), 2.36 (tt, $J = 7.5$, 6.3 Hz, 2H).

4-chloro-2-(3-chloropropyl)benzo[d]thiazole (8g). The compound 8g was synthesized as described for general method A by using 4-chlorobutanoyl chloride (1.74 mL, 15.5 mmol), 2-amino-3-chlorobenzenethiol (2.00 g, 12.5 mmol) in toluene (100 mL). The product 8g is formed as black solid (1.85 g, 60% yield). 1H NMR (CDCl$_3$) δ 7.89 – 7.78 (m, 1H), 7.44 – 7.38 (m, 1H), 7.25 (dd, $J = 2.9$, 1.8 Hz, 1H), 3.67 (t, $J = 6.3$ Hz, 2H), 3.33 – 3.21 (m, 2H), 2.43 – 2.29 (m, 2H).

General Method B. Substituted or unsubstituted 2-(3-chloropropyl)benzo[d]thiazole or 2-(4-chlorobutyl)benzo[d]thiazole (1.0 equiv) was added to a solution of K$_2$CO$_3$ (10 equiv), KI (0.1 equiv), substituted or unsubstituted arylpiperidinyl or arylpiperazinyl (1.2 equiv) in an anhydrous acetonitrile solution. The reaction mixture was stirred at reflux (80 °C) for 20 hrs, under N$_2$ atmosphere. The reaction mixture was cooled to room temperature and the solvent was removed in vacuo. The residue was diluted with water (100 mL) and dichloromethane (DCM) (100 mL), and then extracted with DCM (3 x 100 mL) and washed with brine (100 mL). The combined organic layer was dried over Na$_2$SO$_4$, filtered, and then evaporated to afford crude products. All final products were purified by flash column chromatography eluting with 5% CMA, (95% chloroform, 4% methanol, 1% ammonium hydroxide) gradient to give the desired compounds.

2-(4-(4-(pyrimidin-2-yl)piperazin-1-yl)butyl)benzo[d]thiazole (5a). Compound 5a was synthesized as described for general method B by using K$_2$CO$_3$ (4.28 g, 31.0 mmol), KI (52 mg), 2-(4-chlorobutyl)benzo[d]thiazole (4a) (700 mg, 3.10 mmol), 2-(piperazin-1-yl)pyrimidine (0.53 mL, 3.72 mmol) in an anhydrous acetonitrile (18 mL) solution. The crude product was purified by flash column chromatography to obtain pure 5a as a cream solid (320 mg, 29% yield). 1H NMR
(400 MHz CDCl₃): δ 8.26 (d, J = 4.8 Hz, 2H), 7.93 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H),
7.43 – 7.39 (m, 1H), 7.33 – 7.29 (m, 1H), 6.44 – 6.41 (m, 1H), 3.80 – 3.78 (m, 4H), 3.13 (t, J =
7.6 Hz, 2H), 2.46 – 2.38 (m, 6H), 1.92 (p, J = 7.2 Hz, 2H), 1.65 (p, J = 7.6 Hz, 2H). ¹³C NMR (101
MHz, CDCl₃) δ 171.85, 161.61, 157.66, 153.20, 135.09, 125.88, 124.67, 122.50, 121.47, 109.76,
58.19, 53.09, 43.63, 34.12, 27.55, 26.27. The HCl salt was precipitated from 2-propanol. Mp 239-
241 °C. Anal. (C₁₉H₂₃N₅S•2HCl•0.5H₂O) C, H, N.

2-(4-(4-(pyridin-2-yl)piperazin-1-yl)butyl)benzo[d]thiazole (5b). Compound 5b was synthesized
as describe for general method B by using K₂CO₃ (4.28 g, 31.0 mmol), KI (52 mg), 2-(4-
chlorobutyl)benzo[d]thiazole (4a) (700 mg, 3.10 mmol), 1-(pyridin-2-yl)piperazine (0.57 mL,
3.72 mmol) in an anhydrous acetonitrile (18 mL) solution. The crude product was purified by flash
column chromatography to obtain pure 5b as a cream solid (313 mg, 29% yield). ¹H NMR (400
MHz CDCl₃): δ 8.18 – 8.17 (m, 1H), 7.97 – 7.94 (m, 1H), 7.84 – 7.82 (m, 1H), 7.47 – 7.42 (m,
2H), 7.36 – 7.34 (m, 1H), 6.63 – 6.58 (m, 2H), 3.54 – 3.51 (m, 4H), 3.16 (t, J = 7.6 Hz, 2H), 2.54
(t, J = 4.8 Hz, 4H), 2.45 – 2.42 (m, 2H), 1.92 (p, J = 8.0 Hz, 2H), 1.68 (p, J = 7.6 Hz, 2H). ¹³C
NMR (101 MHz, CDCl₃) δ 171.90, 159.54, 153.22, 147.94, 137.41, 135.11, 125.91, 124.69,
122.52, 121.50, 113.24, 107.02, 58.21, 53.08, 45.18, 34.15, 27.60, 26.31. The HCl salt was
precipitated from 2-propanol. Mp 235-237 °C. Anal. (C₂₀H₂₅N₉S•3HCl•1.5H₂O) C, H, N.

2-(4-(4-(5-methylpyridin-2-yl)piperazin-1-yl)butyl)benzo[d]thiazole (5c). Compound 5c was
synthesized as describe for general method B by using K₂CO₃ (1.96 g, 14.2 mmol), KI (24 mg),
2-(4-chlorobutyl)benzo[d]thiazole (4a) (320 mg, 1.42 mmol), 1-(5-methylpyridin-2-yl)piperazine
(302 mg, 1.70 mmol) in an anhydrous acetonitrile (8 mL) solution. The crude product was purified
by flash column chromatography to obtain pure 5c as a light brown solid (153 mg, 31% yield). ¹H
NMR (400 MHz CDCl₃): δ 8.01 (s, 1H), 7.96 (d, J = 7.2 Hz, 1H), 7.85 – 7.983 (m, 1H), 7.45 –
7.43 (m, 1H), 7.36 – 7.29 (m, 2H), 6.57 (d, J = 8.4 Hz, 1H), 3.48 (t, J = 5.2 Hz, 4H), 3.17 (t, J = 7.6 Hz, 2H), 2.55 (t, J = 5.2 Hz, 4H), 2.46 – 2.42 (m, 2H), 2.19 (s, 3H), 1.94 (p, J = 7.6 Hz, 2H), 1.65 (p, J = 8.0 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 171.92, 158.14, 153.22, 147.66, 138.35, 135.12, 125.90, 124.68, 122.52, 122.29, 121.50, 106.97, 58.24, 53.09, 45.69, 34.16, 27.62, 26.33, 17.33. The HCl salt was precipitated from 2-propanol. Mp 200-202 °C. Anal. (C21H26N4S•3HCl•1.25H2O) C, H, N.

2-(4-(4-(5-chloropyridin-2-yl)piperazin-1-yl)butyl)benzo[d]thiazole (5d). Compound 5d was synthesized as describe for general method B by using K2CO3 (3.06 g, 22.2 mmol), KI (37 mg), 2-(4-chlorobutyl)benzo[d]thiazole (4a) (500 mg, 2.22 mmol), 1-(5-chloropyridin-2-yl)piperazine (525 mg, 2.66 mmol) in an anhydrous acetonitrile (13 mL) solution. The crude product was purified by flash column chromatography to obtain pure 5d as a white solid (202 mg, 24% yield). 1H NMR (400 MHz CDCl3): δ 8.09 (q, J = 2.4 Hz, 1H), 7.99 – 7.91 (m, 1H), 7.86 – 7.79 (m, 1H), 7.49 – 7.31 (m, 3H), 6.56 (dt, J = 9.2, 2.3 Hz, 1H), 3.50 (q, J = 4.4 Hz, 4H), 3.19 – 3.11 (m, 2H), 2.56 – 2.49 (m, 4H), 22.39 (m, 2H), 1.92 (q, J = 7.9 Hz, 2H), 1.72 – 1.60 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 171.96, 157.91, 153.33, 146.33, 137.18, 135.21, 126.03, 124.81, 122.62, 121.60, 120.22, 107.83, 58.22, 52.98, 45.37, 34.22, 31.03, 27.64. The Oxalate salt was precipitated from 2-propanol/acetone. Mp 214-215 °C. Anal. (C20H23ClN4S•C2H2O4) C, H, N.

2-(3-(4-(pyrimidin-2-yl)piperazin-1-yl)propyl)benzo[d]thiazole (5e). The compound 5e was synthesized as describe for general method B by using K2CO3 (4.66 g, 33.7 mmol), KI (60 mg), 2-(3-chloropropyl)benzo[d]thiazole (4b) (714 mg, 3.37 mmol), 2-(piperazin-1-yl)pyrimidine (0.57 mL, 4.04 mmol) in an anhydrous acetonitrile (20 mL) solution. The crude product was purified by flash column chromatography to obtain pure 5e as a brown oil (480 mg, 42% yield). 1H NMR (400 MHz CDCl3): δ 8.27 (d, J = 4.8 Hz, 2H), 7.96 (d, J = 8.4 Hz, 1H), 7.82 – 7.80 (m, 1H), 7.44 – 7.39
(m, 1H), 7.34 – 7.29 (m, 1H), 6.45 – 6.42 (t, \(J = 4.8 \text{ Hz}, 1\text{H} \)), 3.81 – 3.79 (m, 4H), 3.17 (t, \(J = 7.6 \text{ Hz}, 2\text{H} \)), 2.49 – 2.46 (m, 6H), 2.11 (p, \(J = 7.2 \text{ Hz}, 2\text{H} \)). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 171.68, 161.60, 157.67, 153.21, 135.13, 125.89, 124.69, 122.50, 121.48, 109.77, 57.44, 53.01, 43.64, 32.08, 26.68. The HCl salt was precipitated from 2-propanol. Mp 182-184 °C. Anal. (C\(_{18}\)H\(_{21}\)N\(_5\)S•2HCl•1.75H\(_2\)O) C, H, N.

2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)benzo[d]thiazole (5f). Compound 5f was synthesized as describe for general method B by using K\(_2\)CO\(_3\) (4.56 g, 33.0 mmol), KI (55 mg), 2-(3-chloropropyl)benzo[d]thiazole (4b) (700 mg, 3.30 mmol), 1-(pyridin-2-yl)piperazine (0.53 mL, 3.72 mmol) in an anhydrous acetonitrile (20 mL) solution. The crude product was purified by flash column chromatography to obtain pure 5f as a brown oil (530 mg, 47% yield). \(^1\)H NMR (400 MHz CDCl\(_3\)): \(\delta \) 8.18 – 8.16 (m, 1H), 7.96 (d, \(J = 7.2 \text{ Hz}, 1\text{H} \)), 7.83 – 7.81 (m, 1H), 7.46 – 7.41 (m, 2H), 7.35 – 7.31 (m, 1H), 6.62 – 6.57 (m, 2H), 3.54 – 3.51 (m, 4H), 3.18 (t, \(J = 7.6 \text{ Hz}, 2\text{H} \)), 2.56 – 2.48 (m, 6H), 2.11 (p, \(J = 7.6 \text{ Hz}, 2\text{H} \)). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 171.70, 159.52, 153.23, 147.94, 135.16, 125.91, 124.70, 122.51, 121.49, 113.24, 107.02, 57.43, 52.97, 45.19, 32.09, 26.73. The HCl salt was precipitated from 2-propanol. Mp 245-247 °C. Anal. (C\(_{19}\)H\(_{22}\)N\(_4\)S•3HCl•2H\(_2\)O) C, H, N.

2-(3-(4-(4-methylpyridin-2-yl)piperazin-1-yl)propyl)benzo[d]thiazole (5g). Compound 5g was synthesized as describe for general method B by using K\(_2\)CO\(_3\) (4.89 g, 35.4 mmol), KI (59 mg), 2-(3-chloropropyl)benzo[d]thiazole (4b) (750 mg, 3.54 mmol), 1-(4-methylpyridin-2-yl)piperazine (754 mg, 4.25 mmol) in an anhydrous acetonitrile (21 mL) solution. The crude product was purified by flash column chromatography to obtain pure 5g as a brown oil (360 mg, 29% yield). \(^1\)H NMR (400 MHz CDCl\(_3\)): \(\delta \) 8.04 (d, \(J = 4.9 \text{ Hz}, 1\text{H} \)), 7.96 (d, \(J = 8.1 \text{ Hz}, 1\text{H} \)), 7.86 – 7.81 (m, 1H), 7.46– 7.82 (m, 1H), 7.34 (td, \(J = 7.6, 1.2 \text{ Hz}, 1\text{H} \)), 6.46 (d, \(J = 5.9 \text{ Hz}, 2\text{H} \)), 3.53
2-(3-(4-(3-methoxypyridin-2-yl)piperazin-1-yl)propyl)benzo[d]thiazole (5h). Compound 5h was synthesized as describe for general method B by using K$_2$CO$_3$ (4.89 g, 35.4 mmol), KI (41 mg), 2-(3-chloropropyl)benzo[d]thiazole (4b) (523 mg, 2.47 mmol), 1-(3-methoxypyridin-2-yl)piperazine (570 mg, 2.97 mmol) in an anhydrous acetonitrile (15 mL) solution. The crude product was purified by flash column chromatography to obtain pure 5h as a brown oil (380 mg, 42% yield). 1H NMR (400 MHz CDCl$_3$): δ 7.98 – 7.92 (m, 1H), 7.88 – 7.80 (m, 2H), 7.46– 7.42 (m, 1H), 7.36– 7.32 (m, 1H), 7.01 (dd, $J = 8.0$, 1.5 Hz, 1H), 6.82 (dd, $J = 7.9$, 4.9 Hz, 1H), 3.83 (s, 3H), 3.45 (s, 4H), 3.18 (t, $J = 7.5$ Hz, 2H), 2.62 (d, $J = 40.6$ Hz, 6H), 2.08 – 2.05 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 146.87, 138.96, 135.28, 126.04, 124.88, 122.64, 121.63, 117.57, 74.55, 55.36, 34.21, 31.83, 29.62, 29.30, 25.41, 25.36, 22.67, 14.16. The HCl salt was precipitated from 2-propanol. Mp 154-156 °C. Anal. (C$_{20}$H$_{24}$N$_4$O•3HCl•1.5H$_2$O) C, H, N.

2-(3-(4-(3-methylpyridin-2-yl)piperidin-1-yl)propyl)benzo[d]thiazole (6a). Compound 6a was synthesized as describe for general method B by using K$_2$CO$_3$ (3.66 g, 26.5 mmol), KI (44 mg), 2-(3-chloropropyl)benzo[d]thiazole (4b) (561 mg, 2.65 mmol), 3-methyl-2-(piperidin-4-yl)pyridine (560 mg, 3.18 mmol) in an anhydrous acetonitrile (16 mL) solution. The crude product was purified by flash column chromatography to obtain pure 6a as a brown oil (680 mg, 73% yield). 1H NMR (400 MHz CDCl$_3$): δ 8.38 (dd, $J = 4.8$, 1.7 Hz, 1H), 7.95 (dt, $J = 8.1$, 0.9 Hz, 1H), 7.85 – 7.79 (m, 1H), 7.42 (dd, $J = 8.2$, 7.2, 1.3 Hz, 1H), 7.38 – 7.29 (m, 2H), 6.98 (dd, $J = 7.6$, 4.7 Hz, 1H), 3.17 (t, $J = 7.6$ Hz, 2H), 3.06 (dd, $J = 10.6$, 3.1 Hz, 2H), 2.82 (tt, $J = 10.9$, 3.6 Hz, 2H), 2.61 – 2.48 (m, 6H), 2.25 (s, 3H), 2.13 (p, $J = 7.5$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 171.73, 159.89, 153.33, 148.51, 147.67, 135.27, 126.02, 124.82, 122.63, 121.60, 115.03, 107.65, 57.53, 53.06, 45.46, 32.18, 26.69, 21.53. The HCl salt was precipitated from 2-propanol. Mp 213-215 °C. Anal. (C$_{20}$H$_{24}$N$_4$S•3HCl•1.75H$_2$O) C, H, N.
(1H), 2.48 (t, \(J = 7.2 \) Hz, 2H), 2.30 (s, 3H), 2.12 – 2.03 (m, 4H), 1.75 – 1.67 (m, 2H), 1.31 – 1.22 (m, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 172.26, 162.81, 153.35, 146.91, 137.75, 135.35, 130.28, 125.92, 124.70, 122.56, 121.60, 121.06, 57.55, 54.25, 40.52, 32.10, 30.91, 27.07, 18.73. The Oxalate salt was precipitated from 2-propanol. Mp 167-168 °C. Anal. (C$_{21}$H$_{25}$N$_3$S•C$_2$H$_2$O$_4$•0.25H$_2$O•0.75C$_3$H$_7$OH) C, H, N.

2-(3-(4-(5-methoxypyridin-2-yl)piperidin-1-yl)propyl)benzo[d]thiazole (6b). Compound 6b was synthesized as describe for general method B by using K$_2$CO$_3$ (7.19 g, 52.0 mmol), KI (86 mg), 2-(3-chloropropyl)benzo[d]thiazole (4b) (1.10 g, 5.20 mmol), 5-methoxy-2-(piperidin-4-yl)pyridine (1.00 g, 6.24 mmol) in an anhydrous acetonitrile (30 mL) solution. The crude product was purified by flash column chromatography to obtain pure 6b as stick brown oil (880 mg, 46% yield). 1H NMR (400 MHz CDCl$_3$): δ 8.20 (d, \(J = 2.9 \) Hz, 1H), 7.97 – 7.92 (m, 1H), 7.85 – 7.80 (m, 1H), 7.43 (ddd, \(J = 8.3, 7.2, 1.3 \) Hz, 1H), 7.33 (ddd, \(J = 8.2, 7.2, 1.2 \) Hz, 1H), 7.13 (dd, \(J = 8.7, 2.9 \) Hz, 1H), 7.07 (d, \(J = 8.6 \) Hz, 1H), 3.81 (s, 3H), 3.16 (t, \(J = 7.5 \) Hz, 2H), 3.06 (dt, \(J = 11.8, 3.2 \) Hz, 2H), 2.66 (tt, \(J = 11.7, 3.9 \) Hz, 1H), 2.51 (dd, \(J = 8.4, 6.3 \) Hz, 2H), 2.11 (td, \(J = 9.5, 3.2 \) Hz, 4H), 1.99 – 1.87 (m, 2H), 1.79 (qd, \(J = 12.3, 3.7 \) Hz, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 171.97, 157.21, 154.08, 153.34, 136.41, 135.32, 125.97, 124.76, 122.61, 121.59, 121.43, 120.71, 57.74, 55.70, 54.08, 43.62, 32.29, 28.72, 26.94. The Oxalate salt was precipitated from 2-propanol. Mp 181-182 °C. Anal. (C$_{21}$H$_{25}$N$_3$OS•C$_2$H$_2$O$_4$) C, H, N.

6-methyl-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)benzo[d]thiazole (9a). Compound 9a was synthesized as describe for general method B by using K$_2$CO$_3$ (4.28 g, 31.1 mmol), KI (52 mg), 2-(3-chloropropyl)-6-methylbenzo[d]thiazole (8a) (700 mg, 3.10 mmol), 1-(pyridin-2-yl)piperazine (607 mg, 3.72 mmol) in an anhydrous acetonitrile (18 mL) solution. The crude product was purified by flash column chromatography to obtain pure 9a as a light brown solid.
(460 mg, 42% yield). 1H NMR (400 MHz CDCl$_3$): δ 8.17 (dd, $J = 4.9$, 2.0, 0.9 Hz, 1H), 7.82 (d, $J = 8.3$ Hz, 1H), 7.61 (s, 1H), 7.45 (dd, $J = 8.9$, 7.1, 1.9 Hz, 1H), 7.23 (d, $J = 1.7$ Hz, 1H), 6.67 – 6.56 (m, 2H), 3.53 (t, $J = 5.1$ Hz, 4H), 3.14 (t, $J = 7.6$ Hz, 2H), 2.56 (t, $J = 5.1$ Hz, 4H), 2.50 (dd, $J = 8.4$, 6.3 Hz, 2H), 2.45 (s, 3H), 2.10 (p, $J = 7.5$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 170.67, 159.62, 151.40, 148.04, 137.56, 135.40, 134.86, 127.55, 122.08, 113.38, 107.16, 57.56, 53.06, 45.26, 32.13, 31.06, 26.79, 21.56. The HCl salt was precipitated from 2-propanol. Mp 230–231 °C. Anal. (C$_{20}$H$_{24}$N$_4$S•3HCl•2H$_2$O) C, H, N.

6-chloro-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)benzo[d]thiazole (9b). Compound 9b was synthesized as describe for general method B by using K$_2$CO$_3$ (5.05 g, 36.6 mmol), KI (61 mg), 6-chloro-2-(3-chloropropyl)benzo[d]thiazole (8e) (900 mg, 3.66 mmol), 1-(pyridin-2-yl)piperazine (716 mg, 4.39 mmol) in an anhydrous acetonitrile (22 mL) solution. The crude product was purified by flash column chromatography to obtain pure 9b as a brown solid (510 mg, 38% yield). 1H NMR (400 MHz CDCl$_3$): δ 8.17 (dd, $J = 4.9$, 2.1 Hz, 1H), 7.88 – 7.78 (m, 2H), 7.49 – 7.38 (m, 2H), 6.65 – 6.58 (m, 2H), 3.53 (t, $J = 5.1$ Hz, 4H), 3.17 (t, $J = 7.5$ Hz, 2H), 2.62 – 2.47 (m, 6H), 2.15 – 2.05 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 172.36, 159.62, 151.40, 148.04, 137.56, 135.40, 134.86, 127.55, 122.08, 113.38, 107.16, 57.43, 53.05, 45.27, 32.15, 26.62. The HCl salt was precipitated from 2-propanol. Mp 233-235 °C. Anal. (C$_{19}$H$_{21}$ClN$_4$S•3HCl•0.5H$_2$O) C, H, N.

5-chloro-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)benzo[d]thiazole (9c). Compound 9c was synthesized as describe for general method B by using K$_2$CO$_3$ (5.61 g, 40.6 mmol), KI (67 mg), 5-chloro-2-(3-chloropropyl)benzo[d]thiazole (8f) (1.00 g, 4.06 mmol), 1-(pyridin-2-yl)piperazine (796 mg, 4.88 mmol) in an anhydrous acetonitrile (24 mL) solution. The crude product was purified by flash column chromatography to obtain pure 9c as a light brown solid (650 mg, 43%
yield. 1H NMR (400 MHz CDCl$_3$): δ 8.21 – 8.13 (m, 1H), 7.93 (d, $J = 2.1$ Hz, 1H), 7.73 (d, $J = 8.5$ Hz, 1H), 7.49 – 7.41 (m, 1H), 7.31 (dd, $J = 8.6$, 2.1 Hz, 1H), 6.66 – 6.57 (m, 2H), 3.53 (t, $J = 5.0$ Hz, 4H), 3.17 (t, $J = 7.5$ Hz, 2H), 2.62 – 2.45 (m, 6H), 2.11 (p, $J = 7.4$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 173.84, 159.61, 154.23, 148.05, 137.55, 133.53, 132.05, 125.31, 122.54, 122.28, 113.41, 107.16, 57.43, 53.05, 45.27, 32.24, 26.65. The HCl salt was precipitated from 2-propanol. Mp 233-241 °C. Anal. (C$_{19}$H$_{21}$ClN$_4$S•3HCl•1.75H$_2$O) C, H, N.

4-chloro-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)benzo[d]thiazole (9d). Compound 9d was synthesized as describe for general method B by using K$_2$CO$_3$ (5.61 g, 40.6 mmol), KI (67 mg), 4-chloro-2-(3-chloropropyl)benzo[d]thiazole (8g) (1.00 g, 4.06 mmol), 1-(pyridin-2-yl)piperazine (796 mg, 4.88 mmol) in an anhydrous acetonitrile (24 mL) solution. The crude product was purified by flash column chromatography to obtain pure 9d as a cream solid (830 mg, 55% yield). 1H NMR (400 MHz CDCl$_3$): δ 8.17 (ddd, $J = 4.9$, 2.1, 1.0 Hz, 1H), 7.88 – 7.78 (m, 2H), 7.49 – 7.37 (m, 2H), 6.62 (ddt, $J = 8.4$, 7.2, 2.9 Hz, 2H), 3.54 (t, $J = 5.0$ Hz, 4H), 3.17 (t, $J = 7.5$ Hz, 2H), 2.55 (dt, $J = 24.6$, 6.2 Hz, 6H), 2.12 (p, $J = 7.3$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 172.15, 159.48, 151.89, 148.05, 137.61, 136.47, 130.76, 126.82, 123.36, 121.24, 113.52, 107.19, 57.38, 52.95, 45.10, 32.08, 26.36. The HCl salt was precipitated from 2-propanol. Mp 233-234 °C. Anal. (C$_{19}$H$_{21}$ClN$_4$S•3HCl•0.25H$_2$O) C, H, N.

6-methyl-2-(3-(4-(pyridin-2-yl)piperidin-1-yl)propyl)benzo[d]thiazole (10a). Compound 10a was synthesized as describe for general method B by using K$_2$CO$_3$ (4.10 g, 29.7 mmol), KI (49 mg), 2-(3-chloropropyl)-6-methylbenzo[d]thiazole (8a) (670 mg, 2.97 mmol), 2-(piperidin-4-yl)pyridine (574 mg, 3.56 mmol) in an anhydrous acetonitrile (18 mL) solution. The crude product was purified by flash column chromatography to obtain pure 10a as a sticky brown oil (630 mg, 60% yield). 1H NMR (400 MHz CDCl$_3$): δ 8.50 (ddd, $J = 5.0$, 1.9, 0.9 Hz, 1H), 7.82 (d, $J = 8.3$
Hz, 1H), 7.62 – 7.57 (m, 2H), 7.23 (d, J = 1.7 Hz, 1H), 7.14 (dd, J = 7.9, 1.2 Hz, 1H), 7.09 (ddd, J = 7.4, 4.8, 1.1 Hz, 1H), 3.13 (t, J = 7.6 Hz, 2H), 3.06 (dt, J = 11.7, 3.0 Hz, 2H), 2.69 (tt, J = 12.1, 3.9 Hz, 1H), 2.48 (dd, J = 8.5, 6.3 Hz, 2H), 2.45 (s, 3H), 2.14 – 2.03 (m, J = 7.1, 4.6 Hz, 4H), 1.99 – 1.89 (m, 2H), 1.80 (qd, J = 12.3, 3.7 Hz, 2H). ^13_C NMR (101 MHz, CDCl₃) δ 170.94, 165.14, 151.41, 149.18, 149.14, 136.61, 135.45, 134.78, 127.50, 122.06, 121.41, 121.38, 120.70, 57.79, 54.09, 44.70, 32.26, 32.08, 27.06, 21.56. The oxalate salt was precipitated from 2-propanol. Mp 151-152 °C. Anal. (C_{21}H_{25}N_{3}S•2C_{2}H_{2}O₄) C, H, N.

7-methoxy-2-(3-(4-((pyridin-2-yl)piperidin-1-yl)propyl)benzo[d]thiazole (10b). Compound 10b was synthesized as describe for general method B by using K₂CO₃ (2.57 g, 18.6 mmol), KI (31 mg), 2-(3-chloropropyl)-7-methoxybenzo[d]thiazole (8b) (450 mg, 1.86 mmol), 2-(piperidin-4-yl)pyridine (330 mg, 2.05 mmol) in an anhydrous acetonitrile (11 mL) solution. The crude product was purified by flash column chromatography to obtain pure 10b as a brown oil (443 mg, 65% yield). ^1H NMR (400 MHz CDCl₃): δ 8.51 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.64 – 7.56 (m, 2H), 7.38 (t, J = 8.1 Hz, 1H), 7.15 (dt, J = 8.0, 1.1 Hz, 1H), 7.09 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 6.82 – 6.76 (m, 1H), 3.96 (s, 3H), 3.16 (t, J = 7.6 Hz, 2H), 3.06 (dt, J = 11.9, 3.1 Hz, 2H), 2.69 (tt, J = 12.0, 3.9 Hz, 1H), 2.49 (dd, J = 8.4, 6.3 Hz, 2H), 2.10 (qd, J = 8.7, 6.5 Hz, 4H), 1.98 – 1.90 (m, 2H), 1.81 (qd, J = 12.3, 3.8 Hz, 2H). ^13_C NMR (101 MHz, CDCl₃) δ 172.55, 165.18, 155.03, 154.30, 149.18, 136.57, 126.85, 123.85, 121.37, 120.69, 115.31, 104.85, 57.74, 55.96, 54.09, 44.71, 32.29, 32.09, 27.13. The oxalate salt was precipitated from 2-propanol. Mp 174-175 °C. Anal. (C_{21}H_{25}N_{3}S•C_{2}H_{2}O_{4}) C, H, N.

6-methoxy-2-(3-(4-((pyridin-2-yl)piperidin-1-yl)propyl)benzo[d]thiazole (10c). Compound 10c was synthesized as describe for general method B by using K₂CO₃ (2.34 g, 16.9 mmol), KI (28 mg), 2-(3-chloropropyl)-6-methoxybenzo[d]thiazole (8c) (409 mg, 1.69 mmol), 2-(piperidin-4-
yl)pyridine (300 mg, 1.86 mmol) in an anhydrous acetonitrile (10 mL) solution. The crude product was purified by flash column chromatography to obtain pure 10c as a dark brown oil (300 mg, 48% yield).

1H NMR (400 MHz CDCl$_3$): δ 8.51 (ddd, $J = 4.9$, 1.9, 1.0 Hz, 1H), 7.82 (d, $J = 8.9$ Hz, 1H), 7.60 (td, $J = 7.7$, 1.8 Hz, 1H), 7.29 (d, $J = 2.6$ Hz, 1H), 7.15 (d, $J = 7.9$ Hz, 1H), 7.09 (ddd, $J = 7.5$, 4.8, 1.2 Hz, 1H), 7.03 (dd, $J = 8.9$, 2.5 Hz, 1H), 3.85 (s, 3H), 3.15 – 3.02 (m, 4H), 2.69 (tt, $J = 12.1$, 3.9 Hz, 1H), 2.49 (t, $J = 7.3$ Hz, 2H), 2.09 (td, $J = 11.2$, 5.0 Hz, 4H), 1.94 (d, $J = 13.5$ Hz, 2H), 1.88 – 1.69 (m, 2H). The HCl salt was precipitated from 2-propanol. Mp 170-171 °C. Anal. (C$_{21}$H$_{25}$N$_3$OS•C$_2$H$_2$O$_4$) C, H, N.

Radioligand binding assays.

Binding at dopamine D$_2$-like receptors was determined similarly to previously described methods.2,16 Membranes were prepared from HEK293 cells stably expressing human D$_{2L}$R, D$_3$R, or D$_4$R grown in a 50:50 mix of DMEM and Ham’s F12 culture media, supplemented with 20 mM HEPES, 2 mM L-glutamine, 0.1 mM non-essential amino acids, 1X antibiotic/antimycotic, 10% heat-inactivated fetal bovine serum, and 200 µg/mL hygromycin (Life Technologies, Grand Island, NY) and kept in an incubator at 37 °C and 5% CO$_2$. Upon reaching 80-90% confluence, cells were harvested using pre-mixed Earle’s Balanced Salt Solution (EBSS) with 5 mM EDTA (Life Technologies) and centrifuged at 3,000 rpm for 10 min at 21 °C. The supernatant was removed, and the pellet was resuspended in 10 mL hypotonic lysis buffer (5 mM MgCl$_2$· 6 H$_2$O, 5 mM Tris, pH 7.4 at 4 °C) and centrifuged at 14,500 rpm (~25,000 g) for 30 min at 4 °C. The pellet was then resuspended in fresh EBSS binding buffer made from 8.7 g/L Earle’s Balanced Salts without phenol red (US Biological, Salem, MA), 2.2 g/L sodium bicarbonate, pH to 7.4. A Bradford protein assay (Bio-Rad, Hercules, CA) was used to determine the protein concentration and membranes were diluted to 500 µg/mL and stored in a -80 °C freezer for later use.
Radioligand competition binding experiments were conducted using thawed membranes on test day, each test compound was diluted into 10 half-log serial dilutions using 30% DMSO vehicle, starting from 1 mM or 100 µM concentration. Previously frozen membranes were diluted in fresh EBSS binding buffer to 200 µg/mL (for hD2L or hD3R) or 400 µg/mL (for hD4R) for binding. Radioligand competition experiments were conducted in 96-well plates containing 300 µl fresh EBSS binding buffer, 50 µl of diluted test compound, 100 µl of membranes (20 µg/well total protein for hD2L and hD3R, and 50 µl of [3H]N-methylspiperone radioligand diluted in binding buffer (0.4 nM final concentration; Perkin Elmer). Nonspecific binding was determined using 10 µM (+)-butaclamol (Sigma-Aldrich, St. Louis, MO) and total binding was determined with 30% DMSO vehicle. All compound dilutions were tested in triplicate and the reaction incubated for 1 hour at RT. The reaction was terminated by filtration through Perkin Elmer UniFilter-96 GF/C plates, presoaked for 1 hour in 0.5% polyethylenimine, using a Brandel 96-Well Plates Harvester Manifold (Brandel Instruments, Gaithersburg, MD). The filters were washed (3 × 1 mL/well) of ice-cold binding buffer. Perkin Elmer MicroScint 20 Scintillation Cocktail (65 µL) was added to each well and filters were counted using a Perkin Elmer MicroBeta Microplate Counter. IC50 values for each compound were determined from dose-response curves and Ki values were calculated using the Cheng-Prusoff equation. When a complete inhibition couldn’t be achieved at the highest tested concentrations, Ki values have been extrapolated by constraining the bottom of the dose-response curves (= 0% residual specific binding) in the non-linear regression analysis. These analyses were performed using GraphPad Prism versions 6.00-8.00 (GraphPad Software, San Diego, CA). All results were rounded to three significant figures. Ki values were determined from at least 3 independent experiments and are reported as means ± SEM.

Functional Assays.
cAMP Inhibition Assay

D₄R and D₂R-mediated inhibition of forskolin-stimulated cAMP production was assayed using the PerkinElmer LANCE UltracAMP assay kit (PerkinElmer, Inc., Waltham, MA). CHO-K1 cells stably expressing the human D₂R long isoform or D₄R were maintained in Ham's F12 supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin, 800 μg/ml G418 and 300 μg/ml hygromycin at 37°C, 5% CO₂, and 90% humidity. Cells were seeded in 5 μl Hank’s Balanced Salt Solution (with CaCl and MgCl₂) with 5mM HEPES buffer and 0.2 μM sodium metabisulfite at a density of 5000 cells/well in 384-well white plates. Compounds and forskolin were made in the same buffer. Immediately after plating, cells were treated with 2.5 μl of compound (at various concentrations) and 2.5 μl of forskolin and incubated at room temperature for 30 minutes. The final concentration of forskolin was 10 μM. When running the assay in antagonist mode, the EC₈₀ of dopamine (10 nM) was added with the Forskolin solution. Eu-cAMP tracer and ULight-anti-cAMP solutions were added as directed by the manufacturer and cells were incubated for 2 hours in the dark at room temperature, after which a TR-FRET signal was measured using a BMG Labtech PHERAvitar FS (BMG Labtech, NC). Values were normalized to a percentage of the control TR-FRET signal seen with a maximum concentration of dopamine for agonist mode assays and the EC₈₀ of dopamine for antagonist mode assays. Data was collected in triplicate from at least three independent experiments. Data analysis and normalization was performed in GraphPad Prism 9 (GraphPad Software, CA). First, raw data was fit using a log(agonist/antagonist) vs. response – Variable slope (four parameters) curve fit. The data were normalized to the percent maximum dopamine response (agonist mode) or the EC₈₀ of dopamine (antagonist mode). The Hill coefficients of the concentration-response curves did not significantly differ from unity with the data fitting to a single site model. Graphs are meaned concentration
response curves from at least three independent experiments. Data in Table 2 was extracted from the meaned curves where $E_{\text{max}}/I_{\text{max}}$ are expressed as mean ± SEM and the potencies are expressed as mean [95% confidence interval]. Fold selectivity for the D4R over the D2R were also calculated and presented in Table 2.

β-Arrestin Recruitment Assay

Assays were conducted with minor modifications as previously published by our laboratory\(^2,19-23\) using the DiscoverX PathHunter technology (Eurofins DiscoverX, Fremont, CA). Briefly, CHO-K1 cells stably expressing the human D2R long isoform, D3R, or D4R (Eurofins DiscoverX) were maintained in Ham's F12 media supplemented with 10% fetal bovine serum, 100 U/mL penicillin, 100 μg/ml streptomycin, 800 μg/ml G418 and 300 μg/ml hygromycin at 37 °C, 5% CO\(_2\), and 90% humidity. The cells were seeded in 7.5 μl media at a density of 2,625 cells/well in 384-well black, clear-bottom plates. The following day, the compounds were diluted in PBS with 0.2 μM sodium metabisulfite. The cells were treated with 16 concentrations of a compound in triplicate and incubated at 37 °C for 90 minutes. Tropix Gal-Screen Substrate (Applied Biosystems, MA) was diluted in Gal-Screen buffer A (Applied Biosystems) 1:25 and added to cells according to the manufacturer's recommendations followed by a 30–45-minute incubation at room temperature in the dark. Luminescence was measured on a Hamamatsu FDSS μCell reader. Data was collected in triplicate and transferred to GraphPad Prism 9 where it was fit with a log(agonist/antagonist) vs. response – Variable slope (four parameters) curve fit. The data were normalized to the percent maximum dopamine response (agonist mode) or the EC\(_{80}\) of dopamine (antagonist mode). The Hill coefficients of the concentration-response curves did not significantly differ from unity with the data fitting to a single site model. Graphs are meaned concentration response curves from at
least three independent experiments. Data in Table 3 was extracted from the meaned curves where $E_{\text{max}}/I_{\text{max}}$ are expressed as mean ± SEM and the potencies are expressed as mean [95% confidence interval]. Fold selectivity for the D₄R over the D₂R and D₃R were also calculated and presented in Table 3.

Schild-type analysis – β-Arrestin Recruitment Assay

Schild-type analysis using the β-arrestin recruitment assay is conducted similarly except for compound preparation. Compounds were diluted in PBS with 0.2 μM sodium metabisulfite at eight concentrations ranging from 10 μM to 10 nM (final in assay concentrations) and a DMSO control. The compounds were added to the cells followed immediately by a dopamine concentration response curve and returned to the incubator at 37 °C for 90 minutes. The Tropic Gal-Screen substrate and buffer were prepared and added as previously described. All other aspects of the Schild-type analysis were identical to the β-arrestin recruitment assay procedure. Data was collected in triplicate and transferred to GraphPad Prism 9 (GraphPad Software, CA) where it was fit with a log(agonist) vs. response – Variable slope (four parameters) curve fit. The data was normalized to the maximum dopamine/DMSO response. Graphs are meaned concentration response curves from at least three independent experiments. Schild-type plots were generated by plotting the log scale compound concentration (x-axis) versus the log((A'/A)-1) where A’ is the EC₅₀ of the dopamine curve obtained for each concentration of antagonist and A is the EC₅₀ of dopamine in the DMSO control. Simple linear regression was performed in GraphPad Prism 9 were the slope and x-intercept indicate competitiveness and the affinity of compound, respectively.

Rat and human microsomal stability assays
Phase I metabolic stability assays were conducted using rat and human liver microsomes as previously described22, 23 with minor modifications. In brief, the reactions were carried out with 100 mM potassium phosphate buffer, pH 7.4, in the presence of NADPH regenerating system (1.3 mM NADPH, 3.3 mM glucose 6-phosphate, 3.3 mM MgCl\textsubscript{2}, 0.4 U/mL glucose-6-phosphate dehydrogenase, 50 µM sodium citrate). Negative controls without cofactors were assessed to determine the non-CYP mediated metabolism. Positive controls for phase I metabolism (Buprenorphine) were also evaluated. Compound disappearance was monitored over time using a liquid chromatography and tandem mass spectrometry (LC/MS) method. All reactions were performed in triplicate.

Chromatographic analysis was performed on a Dionex ultra high-performance LC system coupled with Q Exactive Focus orbitrap mass spectrometer (Thermo Fisher Scientific Inc., Waltham MA). Separation was achieved using Agilent Eclipse Plus column (100 × 2.1mm i.d; maintained at 35 °C) packed with a 1.8 µm C18 stationary phase. The mobile phase used was composed of 0.1% Formic Acid in Acetonitrile and 0.1% Formic Acid in water with gradient elution, starting with 2.5% organic phase (from 0 to 2 min) linearly increasing to 99% (from 2 to 5.5 min), and re-equilibrating to 2.5% by 6.5 min. The total run time for each analyte was 6.5 min. Pumps were operated at a flow rate of 0.3 mL/min. The mass spectrometer controlled by Xcalibur software 4.0.27.13 (Thermo Scientific) was operated with a HESI ion source in positive ionization mode. Compounds were identified in the full-scan mode (from m/z 50 to 750) by comparing t = 0 samples with t = 30 min and t = 60 min samples.

Pharmacokinetics study in rats
Pharmacokinetic studies in Sprague Dawley (SD) rats were conducted according to protocols approved by the Animal Care and Use Committee at Johns Hopkins University. SD rats obtained from Harlan were maintained on a 12 h light–dark cycle with ad libitum access to food and water. Test compound was administered via i.p. injection at a dose of 10 mg/kg (100% saline vehicle, 10 ml/kg volume). The rats were sacrificed at specified time points (0.25, 0.5 h, 1, 2, 4, and 6 h) post drug administration. For the collection of plasma and brain tissue, animals were euthanized with CO₂, and blood samples were collected in heparinized microtubes by cardiac puncture. Brains were dissected and immediately flash-frozen (−80 °C). Blood samples were spun at 2000 g for 15 min, and plasma was removed and stored at −80 °C until analysis (as described below).

Bioanalysis. Quantitation of 5f was performed using liquid chromatography with tandem mass spectrometry (LC/MS-MS) methods. Briefly, calibration standards were prepared using respective tissue (naïve plasma and brain) with additions of the test compound. For quantifying the test compound in the pharmacokinetic samples, plasma samples (20 μL) were processed using a single liquid extraction method by addition of 100 μL of acetonitrile containing internal standard (losartan: 0.5 μM), followed by vortex-mixing for 30 s and then centrifugation at 10,000 × g for 10 min at 4 °C. Brain tissues were diluted 1:5 w/v with acetonitrile containing losartan (0.5 μm) and homogenized, followed by vortex-mixing and centrifugation at 10,000 × g for 10 min at 4 °C. A 50 μL aliquot of the supernatant was diluted with 50 μL of water and transferred to 250 μL polypropylene autosampler vials sealed with teflon caps. 2 μL of the sample was injected into the LC/MS/MS system for analysis. Chromatographic analysis was performed using an Accela ultra high-performance system consisting of an analytical pump and an autosampler coupled with a TSQ Vantage mass spectrometer. Separation of analyte was achieved at ambient temperature using Agilent Eclipse Plus column (100 × 2.1 mm i.d.) packed with a 1.8 μm C18 stationary phase. The
mobile phase consisted of 0.1% formic acid in acetonitrile and 0.1% formic acid in water with gradient elution, starting with 10% organic phase (from 0 to 1 min) linearly increasing to 95% (from 1 to 2 min), and re-equilibrating to 10% by 3 min. The total run time for each analyte was 3.5 min. Pumps were operated at a flow rate of 0.3 mL/min. The [M+H]+ ion transition of test compound (CAB-01-019) (m/z 339.1638 → 121.0759, 176.0528) and losartan (IS) (m/z 423.1695 → 192.0808, 207.0914) were used. Plasma concentrations (nmol/ml) as well as brain tissue concentrations (nmol/g) were determined and plots of mean plasma concentration versus time were constructed. Non-compartmental analysis modules in Phoenix WinNonlin version 7.0 (Certara USA, Inc., Princeton, NJ) were used to quantify exposures (AUC0–t) and half-life (t1/2).

Operant conditioning experiments

Animals: Male Fischer 344 rats (100-130 days; Charles River, Wilmington, MA) were housed in a temperature-controlled vivarium on a 12-hour reversed light/dark cycle (lights on at 6:00 PM). Rats were group-housed two per cage with water available *ad libitum* while food access was restricted to maintain consistent body weight during the experiment. Experimental sessions were conducted during the dark phase of the light/dark cycle. All procedures were performed in accordance with the High Point University Institutional Animal Care and Use Committee and the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 80-23) revised in 1996.

Food maintained responding. For experiments, rats were transferred to operant conditioning chambers (ENV-008CT; Med-Associates, St. Albans, VT) enclosed in sound-attenuating cubicles (ENV-018; Med Associates). The front panel of the operant chambers contained two response levers (4 cm above the floor and 3 cm from each side wall), a cue light (3 cm above each of the
two levers) and a food chute centered on the front wall (2 cm above the floor) that was connected to a food pellet dispenser (ENV-023; Med Associates) located behind the front wall and a tone generator to mask extraneous noise. Food maintained responding was assessed using a multi-component procedure consisting of three 30-min components separated by 4-min blackout periods between components. Responding was engendered and maintained by delivery of food pellets (45 mg; Noyes, Lancaster, NH; 4, 2 and 1 pellets for Components 1, 2 and 3, respectively) under an FR3 schedule of reinforcement. Completion of the response requirement on the active lever extinguished lights, retracted both levers, delivered food, and was followed by 20 sec time-out (TO) period. After the TO, the lights were illuminated, levers extended, and the FR schedule was in effect. The presentation of 5f doses (5, 15, 20 and 30 mg/kg, i.p.) and saline were randomly assigned and administered 15 minutes before the start of the session. The criterion for stable responding was two consecutive sessions in which the total number of reinforcers did not vary by more than 10% from baseline levels.

Cocaine self-administration

The operant apparatus has been described above. For self-administration studies, a counterbalance arm was connected at the rear corner of the operant chamber onto which a single channel swivel was mounted. The rat’s leash was attached to the swivel and the catheter tubing connected to the bottom port of the swivel. A motor-driven 20 ml syringe pump (PHM-100; Med Associates) was attached outside of the sound-attenuating chamber and polyethylene tubing connected the needle on the syringe to the entry port of the swivel. A PC was used for session programming and data collection (Med Associates Inc., East Fairfield, VT). For lever training, subjects were transferred to the operant chambers for daily experimental sessions and responding was engendered and maintained by delivery of food pellets (45 mg pellets; Noyes, Lancaster, NH) under an FR1
schedule of reinforcement that was gradually increased to FR3. The lever light was illuminated when the schedule was in effect. Completion of the response requirement on the active lever extinguished lights, retracted both levers, delivered food, and was followed by a 20-second timeout (TO) period during which all lights were off. After the TO, the lights were illuminated, and the FR schedule was in effect. Sessions lasted 30 minutes or until 50 food pellets were delivered. The criterion for stable responding was five consecutive sessions in which the total number of reinforcers did not vary by more than 20% from control levels. Responses on the inactive lever were recorded but had no scheduled consequences.

Intravenous jugular surgery. After operant responding was acquired and maintained by food, subjects were surgically implanted with a venous catheter inserted into the right jugular vein following administration of ketamine (90 mg/kg; IP) and xylazine (5 mg/kg; IP) for anesthesia as described previously. Catheters were anchored to muscle near the point of entry into the vein. The distal end of the catheter was guided subcutaneously to exit above the scapulae through a Teflon shoulder harness. The harness provided a point of attachment for a spring leash connected to a single-channel fluid swivel at the opposing end. The catheter was threaded through the leash and attached to the swivel. The other end of the swivel was connected to a syringe (for saline and drug delivery) mounted on a syringe pump. Rats were administered penicillin G procaine (75,000 units in 0.25 mL, i.m.) and allowed a minimum of 5 days to recover before self-administration studies were initiated. Following surgery, rats received hourly infusions of heparinized 0.9% bacteriostatic saline (1.7 U/ml; 200 µl/hour) using a computer-controlled motor-driven syringe pump in the home cage vivarium. The health of the rats was monitored daily by the experimenters and weekly by an institutional veterinarian per the guidelines issued by the High Point University.
Institutional Animal Care and Use Committee and the National Institutes of Health. Infusions of propofol (6 mg/kg; i.v.) were administered to assess catheter patency, as needed.

Responding was maintained under an FR3: 20-sec TO of three 1-hr components. Subjects were allowed to self-administer cocaine i.v. (166, 83, 41.5 mg/infusion). Each dose was available during a different component, and doses were presented in descending order. The infusion volume for the first component was 400 µl infused over 12 sec, and the volumes for the successive components were 200 µl for component two (infused over 6 sec) and 100 µl for component three (infused over 3 sec). Before each component, a 10-min blackout was followed by a priming infusion of the dose to be administered in the succeeding component. After an additional 10-min blackout period, the lever was activated, and the cue light above the lever was illuminated. The start of each session was indicated by the illumination of the house light, stimulus light above the active lever and the extension of both levers. Upon completion of the response requirement, a drug infusion was delivered, the lever light extinguished, a tone was generated, and the house light was illuminated. During the 20-s TO after the infusion, responses on the lever were recorded but had no scheduled consequence. A minimum of three days of stable responding (less than 10% variation in the number of infusions) at FR3 in all components was required before administration of compounds was initiated.

Effects of 5f on cocaine self-administration: Rats were transferred to the operant chambers for the self-administration sessions. Before each session, the swivel and catheter were flushed with 500 µl of heparinized saline before connecting the catheter to the syringe via a 20 ga Leur hub and 28 ga male connector. Completion of the response requirement on the active lever extinguished
lights, retracted both levers, delivered food, and was followed by 20 sec TO. After the TO, lights were illuminated, levers extended, and the FR schedule was in effect.26-30

After a minimum of five days of stable responding (defined as consecutive sessions in which the total number of infusions did not vary by more than 20% from the mean of previous sessions), saline vehicle and 5f (5, 15, 20, and 30 mg/kg, i.p.) were tested. Dose order was randomly assigned for each subject. 5f and saline were administered 15 min before the first component.

ASSOCIATED CONTENT

Supporting Information. Elemental analysis for all final compounds results. SMILES data (CSV). The supporting information is available free of charge on the ACS website.

AUTHOR INFORMATION

Corresponding Authors

*Phone: (336) 841-9718. Fax: (336) 888-6354. E-mail: cboateng@highpoint.edu

*Phone: (856) 256-5422. E-mail: keckt@rowan.edu

ORCID®

Comfort A. Boateng: 0000-0003-1907-431X

Thomas M. Keck: 0000-0003-1845-9373

R. Benjamin Free: 0000-0002-2428-0487

Amy H. Newman: 0000-0001-9065-4072

Alessandro Bonifazi: 0000-0002-7306-0114

Scott E. Hemby: 0000-0002-6987-1133
Author Contributions

#C.A.B and A.N.N. are equally contributing authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENT

Support for this research was provided by High Point University, Fred Wilson School of Pharmacy, NIH NIDA R21DA050896 and American Association of Colleges of Pharmacy New Investigator Award grants. Additional support was provided by the National Institute of Neurological Disorders and Stroke-Intramural Research Program (ZIA-NS002263), National Institute on Drug Abuse-Intramural Research Program (Z1A DA000609), and Rowan University. National Science Foundation Major Research Instrumentation Program (CHE-1919685) for the NMR spectrometer. We acknowledge the technical assistance of Dr. Chun Wu at Rowan University.

ABBREVIATIONS USED

CDCl₃, deuterated chloroform; CD₃OD, deuterated methanol; CMA, chloroform/methanol/ammonium hydroxide; 5% CMA, (95% chloroform, 4% methanol, 1% ammonium hydroxide); EtOAc, Ethyl acetate; PP, phenylpiperazine; DA, dopamine; D₂R, dopamine D₂ receptor; D₃R, dopamine D₃ receptor; NMR, nuclear magnetic resonance; OBS,
orthosteric binding site; RT, room temperature; SAR, structure activity relationship; SBP, secondary binding pocket.

REFERENCES

Figure 1. The structure of previous D₄R ligands.
Scheme 1. Synthesis of substituted or unsubstituted benzothiazole analogues

Reagents and Conditions: (a) Toluene, RT; (b) CH$_3$CN, KI, K$_2$CO$_3$, Reflux, appropriate arylpiperazine or arylpiperidine.

50
Table 1. Human dopamine D2-like receptor competition binding in HEK293 cells for Benzothiazole analogues with varying 3 or 4-carbon linker chains.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>cLogP</th>
<th>PSA</th>
<th>D₂R (nM) ± SEM</th>
<th>D₃R (nM) ± SEM</th>
<th>D₄R (nM) ± SEM</th>
<th>Selectivity D₂R/D₄R</th>
<th>Selectivity D₃R/D₄R</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a¹³</td>
<td></td>
<td>3.39</td>
<td>43.6</td>
<td>127 ± 10.4</td>
<td>93.2 ± 8.27</td>
<td>3.05 ± 0.163</td>
<td>42</td>
<td>31</td>
</tr>
<tr>
<td>5b</td>
<td></td>
<td>4.15</td>
<td>31.2</td>
<td>408 ± 20.6</td>
<td>58.5 ± 1.16</td>
<td>9.85 ± 2.01</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>5c</td>
<td></td>
<td>4.53</td>
<td>31.2</td>
<td>1050 ± 165</td>
<td>205 ± 2.70</td>
<td>21.2 ± 1.37</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>5d</td>
<td></td>
<td>4.83</td>
<td>31.2</td>
<td>830 ± 158</td>
<td>104 ± 3.78</td>
<td>4.85 ± 0.570</td>
<td>171</td>
<td>21</td>
</tr>
<tr>
<td>5e¹³</td>
<td></td>
<td>2.86</td>
<td>43.46</td>
<td>6370 ± 1020</td>
<td>1650 ± 120</td>
<td>6.52 ± 0.608</td>
<td>977</td>
<td>253</td>
</tr>
<tr>
<td>5f</td>
<td></td>
<td>3.63</td>
<td>31.2</td>
<td>2930 ± 169</td>
<td>1150 ± 194</td>
<td>2.21 ± 0.0065</td>
<td>1326</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>pK<sub>a</sub></td>
<td>Cell permeability</td>
<td>Stability</td>
<td>Charge density</td>
<td>MW</td>
<td>Log P</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>----</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>5g</td>
<td></td>
<td>4.01</td>
<td>31.2</td>
<td>1580 ± 465</td>
<td>1320 ± 690</td>
<td>2.89 ± 0.95</td>
<td>547</td>
<td>456</td>
</tr>
<tr>
<td>5h</td>
<td></td>
<td>3.93</td>
<td>40.43</td>
<td>519 ± 211</td>
<td>288 ± 194</td>
<td>1.74 ± 0.58</td>
<td>298</td>
<td>165</td>
</tr>
<tr>
<td>6a</td>
<td></td>
<td>3.99</td>
<td>27.9</td>
<td>13,300 ± 9000</td>
<td>773 ± 213</td>
<td>26.0 ± 13.4</td>
<td>510</td>
<td>30</td>
</tr>
<tr>
<td>6b</td>
<td></td>
<td>3.96</td>
<td>37.2</td>
<td>17,400 ± 8490</td>
<td>4860 ± 3870</td>
<td>24.8 ± 2.55</td>
<td>699</td>
<td>196</td>
</tr>
<tr>
<td>9a</td>
<td></td>
<td>4.12</td>
<td>31.2</td>
<td>49,800 ± 42,700</td>
<td>201,000 ± 164,000</td>
<td>59.0 ± 45.4</td>
<td>844</td>
<td>3403</td>
</tr>
<tr>
<td>9b</td>
<td></td>
<td>4.37</td>
<td>31.2</td>
<td>2420 ± 161</td>
<td>222 ± 141</td>
<td>27.2 ± 10.0</td>
<td>89</td>
<td>8</td>
</tr>
<tr>
<td>9c</td>
<td></td>
<td>4.37</td>
<td>31.2</td>
<td>14,000 ± 10,600</td>
<td>1550 ± 668</td>
<td>11.5 ± 5.88</td>
<td>1214</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>K_i (μM)</td>
<td>B_p (fmol/mg)</td>
<td>A_{max} (fmol/mg)</td>
<td>B_{max} (fmol/mg)</td>
<td>K_{int} (μM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9d</td>
<td></td>
<td>4.37</td>
<td>31.2</td>
<td>6500 ± 5220</td>
<td>512 ± 351</td>
<td>36.7 ± 7.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10a</td>
<td></td>
<td>4.21</td>
<td>27.9</td>
<td>6894 ± 4680</td>
<td>11,800 ± 9500</td>
<td>45.8 ± 28.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10b</td>
<td></td>
<td>4</td>
<td>37.2</td>
<td>669 ± 354</td>
<td>228 ± 82.2</td>
<td>21.3 ± 7.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10c</td>
<td></td>
<td>4</td>
<td>37.2</td>
<td>427 ± 189</td>
<td>7200 ± 5040</td>
<td>6.12 ± 4.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a K_i values determined by competitive inhibition of $[^3]$HN-methylspiperone binding in membranes harvested from HEK 293 cells stably expressing hD$_2$R, hD$_3$R, or hD$_4$R. All K_i values are presented as means ± SEM.
Table 2. D₃R- and D₄R-mediated effects on cAMP production. Compounds were tested alone (agonist mode) and with an EC₈₀ concentration of dopamine (antagonist mode) for their ability to alter cAMP production mediated by D₃R and D₄R signaling.

<table>
<thead>
<tr>
<th>Compound</th>
<th>D₃R</th>
<th>D₄R</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cAMP Eₘ₉₅</td>
<td>cAMP EC₅₀ (nM)</td>
<td>cAMP Ant. %</td>
<td>cAMP IC₅₀ (nM)</td>
</tr>
<tr>
<td>5a</td>
<td>Inactive</td>
<td>97.6 ± 5.1</td>
<td>353</td>
<td>inactive</td>
</tr>
<tr>
<td>5b</td>
<td>59.4 ± 3.0</td>
<td>124</td>
<td>[68.9 - 222]</td>
<td>inactive</td>
</tr>
<tr>
<td>5c</td>
<td>Inactive</td>
<td>107 ± 4.9</td>
<td>1390 - 2910</td>
<td>inactive</td>
</tr>
<tr>
<td>5d</td>
<td>Inactive</td>
<td>ND</td>
<td>ND</td>
<td>inactive</td>
</tr>
<tr>
<td>5e</td>
<td>80.9 ± 6.9</td>
<td>1180</td>
<td>[577 - 2390]</td>
<td>ND</td>
</tr>
<tr>
<td>5f</td>
<td>37.5 ± 3.2</td>
<td>1180</td>
<td>[483 - 1770]</td>
<td>104 ± 6.3</td>
</tr>
<tr>
<td>5g</td>
<td>Inactive</td>
<td>92.8 ± 4.9</td>
<td>185</td>
<td>inactive</td>
</tr>
<tr>
<td>5h</td>
<td>Inactive</td>
<td>86.4 ± 4.4</td>
<td>4530</td>
<td>inactive</td>
</tr>
<tr>
<td>6a</td>
<td>Inactive</td>
<td>104 ± 6.3</td>
<td>2340</td>
<td>inactive</td>
</tr>
<tr>
<td>6b</td>
<td>Inactive</td>
<td>98.3 ± 5.8</td>
<td>3660</td>
<td>inactive</td>
</tr>
<tr>
<td>9a</td>
<td>53.6 ± 4.3</td>
<td>1620</td>
<td>[283 - 1210]</td>
<td>79.4 ± 6.9</td>
</tr>
<tr>
<td>9b</td>
<td>50.2 ± 8.0</td>
<td>1800</td>
<td>[544 - 4320]</td>
<td>ND</td>
</tr>
<tr>
<td>9c</td>
<td>78.3 ± 6.0</td>
<td>2050</td>
<td>[1004 - 3227]</td>
<td>ND</td>
</tr>
<tr>
<td>9d</td>
<td>84.5 ± 9.7</td>
<td>496</td>
<td>[871 - 4760]</td>
<td>62.4 ± 7.8</td>
</tr>
<tr>
<td>10a</td>
<td>27.0 ± 3.1</td>
<td>183</td>
<td>[165 - 1500]</td>
<td>89.9 ± 5.7</td>
</tr>
<tr>
<td>10b</td>
<td>42.4 ± 5.1</td>
<td>228</td>
<td>[45.2 - 649]</td>
<td>92.9 ± 4.7</td>
</tr>
<tr>
<td>10c</td>
<td>65.3 ± 5.5</td>
<td>228</td>
<td>[102 - 488]</td>
<td>76.3 ± 5.8</td>
</tr>
</tbody>
</table>

Bold values indicate compounds with significant effects on cAMP production.
a Efficacy/antagonist % (Ant. %) values obtained from nonlinear regression of meaned data obtained from at least three independent experiments with triplicate measures. Values are presented as means ± SEM.

b Potency values obtained from nonlinear regression of meaned data obtained from at least three independent experiments with triplicate measures. Values are presented as mean [95% confidence interval].

ND, Not Determined due to an incomplete curve. Inactive, no measurable activity.
Table 3. D₂R-, D₃R-, and D₄R-mediated β-arrestin recruitment. Compounds were tested alone (agonist mode) and with an EC₈₀ concentration of dopamine (antagonist mode) for their ability to alter β-arrestin recruitment to D₂R, D₃R, and D₄R.

<table>
<thead>
<tr>
<th>Compound</th>
<th>D₂R β-arr E₅₀ % a</th>
<th>D₂R β-arr EC₉₀ (nM) b</th>
<th>D₂R β-arr IC₃₅ (nM) b</th>
<th>D₃R β-arr E₅₀ % a</th>
<th>D₃R β-arr EC₉₀ (nM) b</th>
<th>D₃R β-arr IC₃₅ (nM) b</th>
<th>D₄R β-arr E₅₀ % a</th>
<th>D₄R β-arr EC₉₀ (nM) b</th>
<th>D₄R β-arr IC₃₅ (nM) b</th>
<th>Selectivity D₂R/D₃R</th>
<th>Selectivity D₂R/D₄R</th>
<th>Selectivity D₃R/D₄R</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>inactive</td>
<td>29.8</td>
<td>99.0 ± 3.4</td>
<td>inactive</td>
<td>8.49</td>
<td>21.1 ± 1.9</td>
<td>inactive</td>
<td>17.8</td>
<td>69.0 ± 7.4</td>
<td>inactive</td>
<td>17.8</td>
<td>91.9 ± 2.8</td>
</tr>
<tr>
<td>5b</td>
<td>32.0 ± 0.88</td>
<td>[18.6 - 47.6]</td>
<td>60.2 ± 4.3</td>
<td>inactive</td>
<td>1560</td>
<td>82.6 ± 5.3</td>
<td>inactive</td>
<td>23000</td>
<td>101 ± 7.7</td>
<td>inactive</td>
<td>9.37</td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td>inactive</td>
<td>104 ± 3.9</td>
<td>inactive</td>
<td>inactive</td>
<td>1120 - 2170</td>
<td>inactive</td>
<td>inactive</td>
<td>541 - 1630</td>
<td>inactive</td>
<td>108 ± 4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>inactive</td>
<td>108 ± 19</td>
<td>[8960 - 67700]</td>
<td>inactive</td>
<td>ND</td>
<td>inactive</td>
<td>inactive</td>
<td>ND</td>
<td>inactive</td>
<td>103 ± 3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>29.9 ± 0.86</td>
<td>[769 - 1470]</td>
<td>58.5 ± 6.5</td>
<td>inactive</td>
<td>10000</td>
<td>58.4 ± 1.8</td>
<td>inactive</td>
<td>22000</td>
<td>108 ± 4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f</td>
<td>12.5 ± 0.54</td>
<td>[710 - 1740]</td>
<td>94.6 ± 6.9</td>
<td>inactive</td>
<td>6430</td>
<td>47.7 ± 2.6</td>
<td>inactive</td>
<td>3440 - 8990</td>
<td>105 ± 3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g</td>
<td>inactive</td>
<td>102 ± 5.9</td>
<td>[4010 - 10300]</td>
<td>inactive</td>
<td>414</td>
<td>inactive</td>
<td>inactive</td>
<td>[7490 - 22400]</td>
<td>82.6 ± 4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5h</td>
<td>inactive</td>
<td>94.0 ± 3.6</td>
<td>[268 - 633]</td>
<td>inactive</td>
<td>9920</td>
<td>81.5 ± 3.4</td>
<td>inactive</td>
<td>[9450 - 18700]</td>
<td>108.6 ± 3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5i</td>
<td>inactive</td>
<td>100 ± 1.5</td>
<td>[7660 - 12900]</td>
<td>inactive</td>
<td>14300</td>
<td>101 ± 2.1</td>
<td>inactive</td>
<td>8460</td>
<td>inactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5j</td>
<td>inactive</td>
<td>107 ± 5.2</td>
<td>[10500 - 19600]</td>
<td>inactive</td>
<td>13100</td>
<td>112 ± 7.1</td>
<td>inactive</td>
<td>5590 - 12900</td>
<td>100 ± 3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>37.1 ± 4.8</td>
<td>[6600 - 56300]</td>
<td>89.6 ± 7.5</td>
<td>inactive</td>
<td>138900</td>
<td>64.9 ± 11</td>
<td>inactive</td>
<td>6270 - 41600</td>
<td>100 ± 3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td>ND</td>
<td>ND</td>
<td>75.2 ± 12</td>
<td>inactive</td>
<td>3260</td>
<td>inactive</td>
<td>inactive</td>
<td>93.9 ± 5.4</td>
<td>inactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>inactive</td>
<td>24200</td>
<td>inactive</td>
<td>inactive</td>
<td>93.9 ± 5.4</td>
<td>inactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9d</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>inactive</td>
<td>3260</td>
<td>inactive</td>
<td>inactive</td>
<td>93.9 ± 5.4</td>
<td>inactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10a</td>
<td>inactive</td>
<td>92.5 ± 3.8</td>
<td>[1980 - 3910]</td>
<td>inactive</td>
<td>27800</td>
<td>97.0 ± 6.3</td>
<td>inactive</td>
<td>23700</td>
<td>103 ± 3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10b</td>
<td>inactive</td>
<td>98.3 ± 3.4</td>
<td>[1660 - 3070]</td>
<td>inactive</td>
<td>4460</td>
<td>107 ± 5.6</td>
<td>inactive</td>
<td>8780</td>
<td>inactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10c</td>
<td>29.0 ± 2.0</td>
<td>[498 - 2890]</td>
<td>64.9 ± 3.7</td>
<td>inactive</td>
<td>2910 - 6810</td>
<td>31.4 ± 2.5</td>
<td>inactive</td>
<td>4630 - 17100</td>
<td>inactive</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Efficacy/antagonist % (Ant. %) values obtained from nonlinear regression of meaned data obtained from at least three independent experiments with triplicate measures. Values are presented as means ± SEM.
Potency values obtained from nonlinear regression of meaned data obtained from at least three independent experiments with triplicate measures. Values are presented as mean [95% confidence interval].

ND, Not Determined due to an incomplete curve. Inactive, no measurable activity.
Figure 2. Lead compound 5f (CAB-01-019) demonstrated excellent D₄R selectivity in functional assays and is a competitive antagonist at D₄R. (A) 5f potently antagonizes D₄R-mediated cAMP inhibition and is 97-fold more potent at the D₄R than the D₂R (Table 2). Further, 5f has very little D₄R agonist activity but is a low potency partial agonist at the D₂R. (B) 5f is a potent full D₄R antagonist for β-arrestin recruitment with no D₄R agonist activity detected. At the D₂R and D₃R, 5f has low potency in antagonist mode and is 391-fold and 859-fold selective for the D₄R, respectively (Table 3). The D₃R exhibits partial agonist activity with 5f while the D₂R
has very low partial agonist activity. (C). With increasing concentrations of \textbf{5f}, dopamine concentration-response curves are shifted to the right with no decrease in E_{max} indicating that \textbf{5f} is competitive. Further, the Schild plot (inset) of these data had a slope of 1.09 and the $K_b = 11.0$ nM. All data are presented as means ± SEM from at least three independent experiments run in triplicate.
Figure 3. Phase I metabolic stability of 5f in rat (A) and human (B) liver microsomes. 5f shows time-dependent degradation in rat liver microsomes, while it is modestly stable in human liver microsomes. Data expressed as mean ± SEM, n = 3.
Figure 4. (A) Time-dependent *in vivo* pharmacokinetic analysis of 5f (CAB-01-019) in Sprague Dawley (SD) rats following intraperitoneal (i.p.) administration of 10 mg/kg 5f. Data expressed as mean ± SEM, n = 3 for each time point. (B) Calculated pharmacokinetics parameters of 5f in rats.
Figure 5: Effect of D₄R antagonist 5f (CAB 01-019) on cocaine self-administration and food-maintained responding. (A). Number of infusions for each cocaine dose session at baseline (BSL), and following saline (SAL), 5, 15 and 30 mg/kg (IP) of 5f. 5f dose-dependently decreased intake at each cocaine dose in male Fisher F344 rats (n=8 per group). (B). Number of food reinforcers for each component at baseline (BSL), and following saline (SAL), 5, 15 and 30 mg/kg (IP) of 5f. 5f dose-dependently decreased food-maintained responding in male Fisher F344 rats (n=7-9 per group). Data expressed as mean ± SEM.