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Abstract:  

Large numbers of docking jobs are used in a distributional sense to obtain computational molecular non-

covalent and covalent binding information of ligands to protein cavities.  A numerically calculated 

density of binding states is generated and used to identify binding modes, which further can be used to 

calculate thermal observables.  With the density of states the final state non-covalent or covalent 

protein-ligand entropy can be calculated.  Binding strengths, conformations, and individual atomic 

interactions are found per binding mode as well as the population of binding states that a ligand can 

take in interaction with a protein cavity.  The binding and conformational results are analogous to what 

is found from molecular dynamics trajectories per protein conformation but uses a GOLD molecular 

model and docking.  The calculation is orders of magnitude more efficient than MD simulations.  Brief 

studies of 2 small molecules, Nirmatrelvir and BAM-15, demonstrate the protocol and the use. 

Keywords: protein-ligand interactions, docking software, high performance computing, drug design, 

CADD 

Introduction 

Non-covalent binding of a ligand to a protein is often quantified by a single number using docking 

software from a top scoring pose and this is not sufficient.  This is one of many quantities that can be 

used to quantify the protein-ligand interaction.  Docking calculations are generally much more 

informative and can provide detailed information about the different binding modes, stability of these 

modes, atomic level interactions and individual contributions from different types of interactions and 

atoms.  Distributional analysis of docking calculations from random initial ligand conformations, which is 

not typically used,  is presented in this work.  All of this information is important in understanding the 

specifics of molecular binding between small molecules and carbohydrates to proteins and enzymes.  Of 

the multiple docking software tools [2] available, the Cambridge Crystallographic Data Centre GOLD is 

used in this work [1].  Matlab is primarily used for scripting and analysis of results [3]. 

Questions that can be answered in such an approach, using large numbers of repeated docking 

calculations, are:  

What are the conformation binding modes of a small molecule to a protein cavity  

What are the energy estimates and thermality of these binding modes 
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Which atoms are important in the binding and which aren’t  

What is the flexibility of the epitope, quantitatively, in its bound conformation in the cavity 

What is the entropy loss from reduced number of rotatable bonds in binding 

What is the probability of the small molecule in one conformation versus another 

What is a quantitative estimate of the bound-state lifetime 

These questions and others can be answered in different levels of detail using docking distributions and 

analysis.  The approach of multiple docking calculations gives similar information to an MD simulation 

[4] of a protein conformation, using for example MMGBSA or MMPBSA, but is orders of magnitude 

times quicker computationally. 

These questions are important to answer for general understanding of specific protein-ligand or protein-

carbohydrate interactions.  Computationally the information is necessary in molecular design and its 

applications, and in drug design to hit identification and hit-to-lead optimization. 

In drug discovery, typically an initial high-throughput or virtual screening of libraries of known 

compounds is performed.  The initial large scale screen has the goal of finding potential binders or 

inhibitors to a possibly new or similar protein cavity site.  The screening can be done for different data 

such as QSAR, metabolism, structural characteristics, interactions with relevant proteins, etc. [5]  

Fundamental binding strength is an important measure of a desired molecule in binding and docking 

calculations are used for this, but is only one of many measures.  The use of multiple repeated and 

independent non-deterministic docking calculations has the advantage that much more molecular 

information is obtained to address the above questions.  The disadvantage is that the process becomes 

more computationally expensive, i.e. 1000 docking jobs instead of 10 and with potentially extensive 

search parameters in each; the amount of computation is nevertheless still much smaller than MD 

simulations.   

Second, the atomic level surgery of a small molecule from any source, screening or otherwise, is useful 

to develop high interaction -and- specificity to a protein site.  This includes hit to lead molecule 

alterations.  Atomic interaction modeling including solvent and entropy enables the computational 

process.  Large numbers of docking jobs identify binding modes, points of interaction or non-interaction, 

covalent or non-covalent prospects.  This gives information about possible chemical purposeful 

modification of compounds pertaining to ADME or interaction improvements. 

There are different levels of binding analysis, limited in use by computational resources and modeling 

accuracy:  

 Overall estimate of binding such as highest score – large scale screening  

 Larger numbers of docking jobs – binding mode analysis, dynamics, and stability/lifetime  

 Atomic level analysis – atomic interactions of binding modes  

          - interaction types between atom and cavity/amino acids 



Molecular dynamics (MD) is available for more in-depth studies, including conformational changes of 

proteins caused by ligand binding.  Docking analysis using distributions mimics the former, and there 

could be slight differences due to molecular modeling differences. 

Modeling in interaction and docking 

The physical process of a ligand-protein interaction cannot be defined by a single number, even if it is a 

good quantifier of interaction.  A protein-ligand complex has an overall zero-temperature total 

interaction energy, but there is also dynamics in usual conditions.  The meaningful interpretation of a 

conformation binding energy has to include the likelihood of binding: physical binding from freely 

unbound and the process it takes to get there, and the comparison to other conformational binding 

modes all of which can be characterized by numbers of available binding states at thermal conditions.  

The physical geometrical-chemical interaction of the protein binding cavity is a constraint on available 

bound ligand states and thermal motion in the likelihood of being populated of a specific ligand.  Both 

molecular dynamics simulations and docking calculations if performed in a distributional manner can 

access this.   

The potential interaction energy well that a specified small molecule occupies geometrically when 

bound has structure: depth, width, and high dimensionality coming from the many body different 

atomic interactions of atoms between molecules and the conformational shape (in all: electrostatic, van 

der Waals,  longer range hydrogen bonding, molecular electronic quantum structure, molecule torsional 

rotations and so on).  These interactions are modeled by quantum MO orbital theory, solvent 

interactions, comparison to known experiments, and are implemented in the docking software.  There 

are generally different and complicated high-dimensional well shapes at different local energy minima 

and, as a result, different bound states are reflected in different ligand conformations and perturbations 

(wiggles) of these.  The stability of these bound states is dictated by characteristics of the local potential 

well, translating to evaluation of the disassociation constant 𝑘𝐷 between ligand on- and off-states.  This 

information is required for accurate estimation of the on-/off- population of a small molecule ligand to a 

protein and its inhibitory effect.   

In a multi-state system after sufficient time, the population of the ligands can be found by a canonical 

thermodynamically Boltzmann weighted distribution.  These primary modes can be small in number, but 

with a spread in energy of almost degeneracy; thermal motion of a stable ligand conformation can result 

in near degenerate energies depending on the ligand and protein.  The energy spread about these 

primary conformational modes can be visualized by physical wiggle room, e.g. spatial perturbations of a 

bound small molecule coordinates in an almost degenerate but continuous set of states trapped in a 

protein-ligand atomic potential well.  This spread depends on the ligand and protein.  A wide protein-

ligand spread of similar energy indicates non-specificity and thermal occupancy, while a narrow one 

points to greater specificity with less wiggle room. 

The Cambridge Crystallographic Data Centre GOLD docking package is used here.  GOLD is a non-

deterministic genetic algorithm and running it multiple times samples the possible binding states, local 

and global minima of the binding interaction model fitness function, which is the modeled protein-ligand 

total interaction energy.  Large sets of docking jobs of the molecules are done to sample the distribution 

of states quantified by total and individual atomic docking scores, i.e. binding interaction energy.  Each 

inter-atomic interaction is modeled by different contributions, including the mentioned van der Waals, 



torsional rotations, longer range hydrogen bonding, electrostatic, electronic quantum structure, and 

importantly polar and non-polar solvent. 

The total interaction is broken down at the atomic level, then in types of atomic interactions, and then  

distributionally and in binding mode over larger sets of docking runs.  There are many reasons why this 

information is relevant.  A chemical interpretation of the individual atomic binding characterizes overall 

protein-ligand binding.  Identification of badly fitting atoms can be used to improve molecular design.  

Identifying atom and regions of good interaction can explain binding in terms of positional attachment 

and longevity of the ligand semi-bound state (in an on-/off- dynamic setting).  An average PLP score per 

atom of many protein-ligand complexes leads to the following heuristic,  

 

Total atom modeled score  

1 or <1.6 Native ligands 

2 or < 2.1 Common in pharmaceuticals 

2.5 Specific to cavity 

3 or < 3.5 Very high 

>3.6 Exceptionally high, hydrogen bonds, 
buried, metals, … 

 

This is from a highest score divided by number of heavy atoms without reference to atomic distribution 

peak width.  Peak width is specific to the ligand binding mode and dynamic in orientation of the ligand.  

From studies of many protein-ligand complexes, a heuristic correspondence of 6.5 score is 

approximately equivalent to 1.0 kcalkcal, tested over a score range of ~50 to ~90.  1.0 kcal is usually 

considered x10 in binding affinity. 

Total GOLD docking score of a ligand pose is characterized in the gold_soln.mol2 output files by,  

Score     S(PLP)   S(hbond)     S(cho)   S(metal)  DE(clash)   DE(tors)     intcor 

with higher score correlated with protein-ligand binding energy.  The total score is further broken into 

the contributing interaction types in GOLD output files.  The total score is a summation of the individual 

ligand atom contributions and their interaction types.  GOLD usage keeps the early_termination flag to 

zero, and 8 islands, 200000 maxops, and a population size of 75 to 100 was used. 

The total scores are further broken down into atomic scores and their types of contributions if the 

per_atom_scores flag is toggled in the GOLD input file.  These individual scores in GOLD come from 

several physical binding origins which add to the individual atomic score,  

AtomID   ChemScore_PLP.Hbond   ChemScore_PLP.CHO   ChemScore_PLP.Metal   

PLP.S(hbond)  PLP.S(metal)   PLP.S(buried)   PLP.S(nonpolar)   PLP.S(repulsive)   PLP.total 

The output of a large number of docking runs generates many gold_soln files, one for each docking run, 

in addition to other relevant files.  20000 docking runs is complete but less files can be used to shorten 

the computational time, which is in any case much smaller by orders of magnitude than performing an 

MD simulation for the same information given the molecular modeling. 



Methods 

Nirmatrelvir, i.e. PF-07321332, is a small molecule that binds to a particular region of the SARS-Cov-2 

main protease, blocking proteolytic cleavage of some of the SARS-Cov-2 polyproteins [6,7], hence viral 

replication at an early stage of infection.  It and Ritonavir are the components of Paxlovid, the Pfizer 

orally ingested therapeutic for treating SARS-Cov-2 post-infection.  The x-ray structure of Nirmatrelvir 

covalently bound to the SARS-Cov-2 3CL protease, aka Mpro, is available at the Protein Data Bank, PDB 

ID 7SI9 [8].  The molecule is a descendant of an earlier created molecule, PF-00835231 [9], created 

during the SARS-Cov-1 outbreak in 2003.  In this section the interaction of Nirmatrelvir to SARS-Cov-2 

3CL protease is used to demonstrate the docking protocol, in pre-covalent and covalent binding.  Non-

covalent ligand interaction and orientation of the bound ligand is necessary for the covalent reaction to 

occur.   

Nirmatrelvir is shown in Figure 1,  

Figure 1: (a) Nirmatrelvir.  (b) 3-d picture from Chimera. 

(a)       (b) 

         

The histogram of the total docking scores of Nirmatrelvir/Mpro from 20000 docking runs is shown in 

Figure 2(a).  There are roughly 2 separated dominant modes of ligand-protein interaction, a broad one 

at 46 and a narrower one at 68 GOLD PLP score.  A finer bin resolution points to additional sub-structure 

about these scores, Figure 2(b) for example.  These modes are characterized by a curve fit in Figure 2(c) 

which includes all of the peaks; a multi a*exp(-|x-b|/c) fits somewhat better generally than multi-

Gaussian and gives lower rmse’s, and a comparison is given in the next molecule BAM-15 analysis. 

A potential inhibitor of an enzyme, including that of the Mpro SARS-Cov-2 protease, has to have the 

physical capability of entering into its docked pose.  The small molecule should be able to sample its 

available conforms without obstruction to enter and bind.  Docking software does not model this 

process before binding, but only the binding based on molecular models and modeling and physical 

data.  Two widely separated peaks, without any scores in a histogram between them, are disjoint and 

can be interpreted – large variation geometrically of the molecule, although allowed and keeping its 

stereoisomer, are in different conformational states which are not smoothly connected.  Two widely 

separated peaks with populated states in energy between, i.e. smooth (probabilistic) density of states, 

can be connected by small changes in the molecule and conformations.  This is important in determining 

if a computationally determined molecule is reasonable.  As an extreme example, an isolated cavity 



deep within a protein without any physical pathway outlets is unreachable, but could score very high or 

elsewhere in a distribution of scores via docking calculations.   

These points are relevant to using a computational docking tool that measures conformational poses 

based on modeled energy calculations, i.e., scores.  As an example, Figure 3 shows two conformations of 

Nirmatrelvir/Mpro, both in the highest distribution peak of a large set docking calculations with random 

initial dihedral angles.  (It is important to emphasize the use of a molecular viewer such as Chimera [10], 

PyMol [11], VMD [12], or Nanome [13] to get a proper understanding of the 3-d protein-ligand 

complex.) These 2 superimposed exampliary docking ligands have PLP scores of 65.75 and 68.04 and 

sample the peak at 68 in Figure 2(a).  In Figure 2(b) the 2 represent the local peaks at 65.8 and 68.0, a 

difference in score of 2.2 or 2.2/6.5=.3 kcal.  The spatial difference of the two, i.e. conformations, is due 

primarily to a single dihedral angle in the molecule which rotates the 5-member heterocyclic ring by 90 

degrees.  The overall peak distribution from 65 to 70 comes from small conformational changes at 69, in 

rotations of the pyrrolidine dihedral angle Figure 3(b,c), and rotations of another at 68 that place it in a 

different valley of the site, Figure 3(a).  The poses are found and quantified by the GOLD docking 

software and come from the random initial conditions in a calculation.  Most wiggles and small energy 

differences in the local peaks of a distribution come from small perturbations of geometric shape and 

orientation.  For comparison, the x-ray structure with Nirmatrelvir [7] is compared with the highest 

scoring modeled conformation of 72.64, with an RMSD of 2.8 Angstroms, in Figure 3(c); note that in the 

distribution in Figure 2(a,b), the binding states above 70 are isolated and not continuously connected to 

the smooth distribution.  There are 8 docked ligands out of 20000 with scores ≥ 70.14 and a dense set 

beginning at ≤ 69.63, a score gap of .51 . 

Figure 2: Histogram of GOLD docking job scores of Nirmatrelvir to Mpro.  (a) distribution from 20000 

docking jobs, (b) a zoom in the range score ≥55, (c) 4-exp|| curve fit to the 55 to 72 distribution, and (d) 

fit parameters. 

(a)       (b)      

 

(c)       (d) 



   

Figure 3: (a) Two superimposed conformations of Nirmatrelvir/Mpro which differ by a rotation of one 

dihedral angle and scores 68.04 and 65.75.  These scores are in the peaks at 65.8 and 68.0 of Figure 2, 

blue and pink.  There is a 90 degree rotation about the outward 5-member heterocycle and minor 

location differences elsewhere.  (b) Score 70.15 conformation blue and x-ray structure in pink.  (c) 

Highest scoring conformation 72.64 in blue, which is an isolated state.  

(a)            (b) 

  

(c)            

  

Atomic level interaction analysis reveals points of contact and no contact of a ligand in its binding mode.  

Consider the highest resolved binding modes of Nirmatrelvir to Mpro with scores >66.  There are 1434 

poses out of 20000, or 7%, and there is thermal wiggle room for the docked ligand.  GOLD is used with 

the option to keep individual atomic scoring information for the different 20000 runs, and distributions 

are generated in this case for total atomic modeled binding strength.  A color-coded image of 

Multi-exp|| fit, 75 bins in scores [65.0,70.0] 

4 binding modes, 

∑ 𝑎𝑖

4

𝑖=1

𝑒−|𝑥−𝑏𝑖|/𝑐𝑖   

a = 69.0, 69.0, 73.3, 14.0 

b = 65.8, 67.8, 68.0, 69.0      max 72.64 

c = .3, .3, .1, .2 

 

 



Nirmatrelvir is given in Figure 4, and this shows the interaction strength of the individual atoms.  Most of 

the ‘backbone’ of Nirmatrelvir is light blue or green which means not very interacting.  However, the 

outward endpoints and functional groups contain red and purple and act as anchor points for the 

molecule in the first binding conformation.  Visual generation of an informative figure like this is easily 

automated and can aid molecular work.   

As an application, the atomic distributions of the N28,C26,O27,C7,N9,C5 atoms are presented in Figure 

5(a).  This is a not so highly interacting region of the ligand with the oxygen having no interaction at all.  

The 2 nitrogens N9 and N28 have average scores of 1 with the peak of N28 being significantly wider.  

The noticeable width difference is most likely due to one not being a ring atom and having more 

flexibility. Nitrogens have the ability to be in hydrogen bonds and 1 is a very small score, given the 

exploitable features of N or O in interaction.  The carbonyl oxygen (=O) has no interaction at all in this 

mode but does add to solubility of the entire molecule.  The penetration of the fused bicyclo-[3.1.0]-

azahexane ring in the Mpro cavity can be noticed in the atomic interaction by the increase in C7 to C5 

and then to the purple C2 and C41.  Atomic distributional analysis provides detailed and useful 

information in computational molecular design.   

In the Nirmatrelvir development the presence of the nitrile and pyrrolodine moieties was selected over 

a similar inhibitor with a benzothiazol-2-yl group to aid a reaction with cysteine 145.  The pyrrolodine 

ring with the =O38 group and N36 is characteristic of both and the 2 high scores of O38 and nitrile N41 

are characteristic of this mode.  The nitrile shown in Figure 5 forms a reversible covalent thioimidate 

adduct with CYS 145.  In order for this covalent bond to form, the non-covalent binding has to be strong 

enough to draw the inhibitor into the pocket and also orient it to initiate the covalent reaction.  The 

docking distribution of the total scoring has much to say about this and the states near the maximum 

binding. 

Figure 5(b) has the N36 nitrile and O38 distributions from the highest scoring mode, ≥ 66.  O38 is an 

acceptor in a strong (1.00) hydrogen bond with CYS 145 and a weak (.32, .22) acceptor to GLY 143 and 

SER 144.  The binding is high with narrowness in the distributions, except for a small bi-modal 

component with O38.  The neighboring pyrrolodine N36 is hydrogen bonded (1.0, donor) to PHE 140.  

Figure 5(d) has the O38 hydrogen bonded  (.77) to CYS 145 and weakly (.37) to SER 144.  The pyrrolidine 

rotating about and the rest of the molecule fixed does occupy the highly interacting modes with 

hydrogen bonding that helps a covalent reaction with CYS 145.  The ligands in this highest non-covalent 

binding mode set either have hydrogen bonds with the O38 or N36, but not both simultaneously.  N19 

and O12 are typically hydrogen bonded throughout in this mode, adding to the overall total interaction 

for pre-covalent binding. 

Figure 4: Interaction strength of individual atoms of Nirmatrelvir and Mpro.  There are several contacts 

across the ligand that function as anchors. 



                                       

 

Figure 5:  (a) Atom score distributions in a weakly bound region.  (b) Atom N40 and O38 score 

distribution. 

  (a) 

 

 



(b)            (c) 

 

The motive of this work is to explain the docking protocol.  Nirmatrelvir is a reversible covalent binder to 

Mpro, with energy of 7.17 kcal.  A detailed study of the Nirmatrelvir interaction with Mpro, using this 

docking method, is presented elsewhere, but to complete the brief analysis of non-covalent Nirmatrelvir 

binding, an analogous 20000 dockings were calculated with the sulfur in CYS 145 covalently bonded to 

Nirmatrelvir,  

CC1([C@@H]2[C@H]1[C@H](N(C2)C(=O)[C@H](C(C)(C)C)NC(=O)C(F)(F)F)C(=O)N[C@@H](C[C@@H]3CC

NC3=O)C(S)=N)C          eqn 1 

This forms a thioimidate adduct, -C(=N)S-, through the reaction  

-C(C#N)- + S-  - ->  -C(C(=N)S-145)-     eqn 2 

The distribution of scores and an image of the highest scoring conformation, 116.32, is given in Figure 

6(a,b).  Note that 116 is an isolated state and anomalous, as in the case of 72.64 in the non-covalently 

bonded ligand.  The orientation of the covalently bound Nirmatrelvir in the highest scoring region of 

>100 follows the non-covalent wobbling of the pyrrolodine by the dihedral angle.   

Figure 6: (a) Covalent score distribution from 71 to 114 with CYS 145 Sulfur.  (b) Highest scoring pose, in 

blue at 116.32 and the x-ray structure, tan is protein and pink is the ligand.  RMSD 2.64 Angstroms. 

 

 



BAM-15 in non-covalent binding to CYP 3A4 

As a further demonstration of the capabilities of the method BAM-15, a mitochondrial uncoupler which 

functions as a proton transporter across the inner membrane [14], I now examined.  BAM-15 is a 

mitochondrial protonophore which alters the EMF across the mitochondrial membrane during proton 

transport.  It is an unusual molecule for several reasons: it is fully conjugated and any charge deposited 

on a ring (all being arene) will be distributed across it, it is 𝑍2 symmetric, has a high number of hydrogen 

bond acceptors, and it has 2 amines rendered less basic by conjugation to fluoroarenes.  It observed that 

it stimulates weight loss in mice without adverse effects and without degradation of the plasma 

membrane [15,16], unlike other mitochondrial uncouplers DNP or TFFB.  Although effective in vivo in 

mice studies for weight loss, the molecule has too short a half-life to be effective, on the order of 1.5 hrs 

in mice for a treatment and an equivalent 1 g a day for humans.  Development as an obesity and related 

comorbidities treatment requires a molecular alteration that would reduce the binding to a primary 

drug extractor such as the liver enzyme CYP 3A4 [17], the primary enzyme for pharmaceutical extraction 

in the body.  This is difficult because the aromatic and charge transporter properties have to be 

maintained.  Many derivatives of BAM-15 are found in PubChem, but not the molecular modifications 

from a single atom perspective presented here. 

The molecule is drawn in Figure 7(a) and its highest binding conformation to CYP 3A4, x-ray structure 

from [18] with ritonavir stripped, is shown in Figure 7(b). 

BAM-15 N1N=C2N=C(NC3=CC=CC=C3(F))C(NC4=CC=CC=C4(F))=NC2=N1   eqn 3 

The CYP 3A4 cavity is a large featureless hole with a planar heme iron network on one side.  The thought 

to lessen the interaction with the enzyme is to push the bound ligand farther away from the heme iron 

which is a point of higher interaction.  This can be done somewhat at the cost of reducing the extent of 

the conjugation, and the arene rings are desired for their electronic properties in holding a deposited 

charge. Detailed examination of the ligand and atomic distributions of scores to CYP 3A4 point to a good 

area of modification.  The scores of 20000 docking runs are given in Figure 8(a) together with a multi 

a*exp(-|x-b|/c) curve fit highlighting the 4 primary binding modes.  Note that the multi-peak 

distribution, which can be modeled by a 4-exp||, Figure 8(a).  A slightly better fit which includes the 

bump at high score is modeled by a 5-exp|| curve in Figure 8(b).  The fit parameters of the latter are 

given in Figure 8(c).  The highest interacting binding modes at 82.9 and 85.8 start approximately at 78.3 

where the 3 others are approximately centered at 70.8 and 73.5, 75.1.  For a curve fitting comparison, a 

4 Gaussian fit is presented in Figure 8(d); this fit shows the differences in using a multi-a*exp(-|x-b|/c)  

versus a multi-normal distribution. 

Figure 7: (a) BAM-15, (b) BAM-15 in highest conformational pose. 

(a)         (b) 



            

 

Figure 8: (a,b,d) Total atom score interaction distribution, (a) includes 4 modes, (b) has 5, and (d) is the 

fit with 4 Gaussians for comparison.  Highest mode cutoff is 78.3 .  (c) Has the fit parameters. 

(a)         (b) 

     

(c)       (d)  

 

Multi-Gaussian fit, 50 bins in scores 

[65.1,87.3] 

5 binding modes, 

∑ 𝑎𝑖

5

𝑖=1

𝑒−|𝑥−𝑏𝑖|/𝑐𝑖   

a = 414.6, 673.4, 724.3, 193.3, 64.1 

b = 70.8, 73.5, 75.1, 82.9, 85.8      max 87.3 

c = 1.3, .7, 1.1, 2.3, .3 

 

 



 

The oxygen atom O1 is central to the metabolic binding of BAM-15 to the liver enzyme CYP 3A4 and is a 

significant point of symmetry in the small molecule.  The atomic score distributions of the 3 atoms in the 

N-O-N region contributing to the 1st binding mode, i.e., in Figure 8(a,b) those with total scores >78.3, are 

shown in Figure 9.  The oxygen O1 has a very high average score of >4 due to the iron network, but its 2 

connected neighbors N2 and N25 are exceptionally high in score with 1 of the 2 strongly bound to the 

heme iron.  This high interaction is due to the proximity to the heme iron network, the presence of 

hydrogen bonds, and the modeled interaction between the  Fe atom and a nitrogen.  The distributions 

of N2 and N25 are the same, reflective of BAM-15’s symmetry. 

A point substitution of the oxygen is selected to weaken the interaction of the N-O-N neighborhood.  To 

preserve the electronic structure of BAM-15 and its lone pairs a sulfur atom is used.  This preserves the 

proton transport properties coming from the homogenous and heterogenous aromatic rings and the 

amines.  The sulfur substitution knocks out the presence of the 1st highest binding mode completely, as 

seen in Figure 10(a).  There are visibly 3 major conformational binding modes now, centered at 

73.1,73.8 and 77.4 and the range between is messy; this messiness is coming from flexibility of BAMS-15 

in the conformations there.  The highest scoring peak in Figure 10(b) has a better fit in terms of two 

close exp(-|x-x0|) of 2 widths, 1.1 and 1.4.  The messiness of the 74 to 76 region is somewhat cleaner 

with an additional exp peak at 76.4 which broadens the l.h.s. of the initial highest scoring one at 77.4.   

Physically, an image of the highest scoring pose of BAMS-15 at 79.5, Figure 10(c) explains that the S-

tipped fused ring now points away from the heme iron plane, and is flipped 180 degrees in relation to 

BAM-15.  The N-O-N very highly binding region of BAM-15 is gone and also its contribution.  In its place 

is one of the weaker interacting 2 benzene rings, and the figure shows the stacking with the planar 

network.   

The sulfur substitution lowers the highest interaction score of BAM-15, 87.3, to that of BAMS-15, 79.5, a 

difference of 7.8.  This corresponds to a decrease of 1.2 kcal, or 101.2=16.  BAMS-15 has roughly x16 less 

affinity in a 𝑘𝐷 or IC50 measurement than BAM-15, and has the same aromatic, functional groups, and 

protonophore molecular structure as BAM-15.   

Figure 9: Atomic score distributions of the highest binding mode, conformationally docked BAM-15 with 

scores ≥ 78.3 .  The mode is visible in Figure 7(a,b).  Because the ligand is symmetric, the distribution in 

(a) is statistically the same as (c). 

(a)      (b)    (c) 

 



Figure 10: BAMS-15 has a sulfur substituting the only oxygen.  (a) Score distribution and 4-exp fit.  (b) 5-

exp fit.  (c) The highest scoring conformation pose with CYP 3A4.  Note the flip in orientation and ring 

stacking from BAM-15.  (d) Fit parameters of 5-exp fit.   

(a)              (b) 

  

(c)         (d) 

 

 

Substitution of the oxygen with an N nitrogen (a triazoline type molecule) includes the addition of a 

hydrogen and generates 2 tautomers.  One of the tautomers eliminates the highest binding mode and 

generates a lower binding than substitution with sulfur.  Its score distribution is shown in Figure 11(a).  

This example was selected to present because it shows a common phenomenon in interaction 

distributions: The states between 73.7 and it’s highest score of 79.3 (a wide 5.6 separation) are sparsely 

populated.  This comes from high specificity in the binding potential for the ligand to dynamically move 

into.  In extreme conditions with long relaxation times such as in crystal structure formation for x-ray 

measurements, or at very low temperature, these states may be populated in a protein-ligand bound 

complex.  In general conditions, however, the specificity of the potential is too restrictive and on 

biochemical time scales the highest thermally populated state is physically ~73.7.  This still seems very 

good as the score is much smaller and BAMN-15 has much decreased interaction, a score difference of 

13.6 or 2.1 kcal (x100).   

Multi-exp|| fit, 100 bins in scores [66,79.3] 

5 binding modes, 

∑ 𝑎𝑖

5

𝑖=1

𝑒−|𝑥−𝑏𝑖|/𝑐𝑖   

a = 163.3, 312.8, 325.4, 275.6, 251.5  

b = 71.6, 73.1, 73.8, 76.4, 77.6           max 79.5 

c = .8, 1.1, 1.4, 1.0, .4 

 

 



However, there is a tautomer of this molecule of lower internal bond energy and it binds with the 

approximate strength of BAM-15, Figure 11(b). 

       Tautomer 1   N1N=C2N=C(NC3=CC=CC=C3(F))C(NC4=CC=CC=C4(F))=NC2=N1 eqn 4 

Tautomer 2   N1=NC=2N=C(NC3=CC=CC=C3(F))C(NC4=CC=CC=C4(F))=NC2N1 eqn 5 

There is a 10 kcal energy difference in the total bond energy between the 2 tautomers with the 2nd , 

more interacting with CYP 3A4 than BAM-15, and more favorable energetically in interconversion.  The 

BAMN-15 molecule is then more interacting than BAM-15. 

The occurrence of a set of states that are sparse is important to note because a non-distributional 

typical docking analysis would miss the fact that realistically these are less populated.  These sparse 

states with high modeled interaction scores, are not unusual to find in protein-ligand studies.  The 

example of Nirmatrelvir with Mpro has its highest state of 72.64 an isolated state with the nearest 

continuous set beginning at 70 and decreasing. 

Figure 11: BAM-N15.  The score distribution from O1-substituted BAM-15 with a nitrogen.  (a) and (b) 

are 2 tautomers, given by eqns 1 and 2. 

(a)        (b) 

       

Statistical interpretation 

Given the nature of using distributions to analyze the molecular binding interaction of a ligand to a 

protein it is appropriate to comment on the thermal statistical interpretation [19].  Many protein ligand 

experimental IC50 results, correlated with GOLD scores as well as energy estimates from AutoDock and 

AutoDock Vina, show that a GOLD PLP score difference of 6.5 translates to about 1 kcal, with 1 kcal 

generating a x10 in binding affinity.   

The use of large numbers of docking jobs gives a well-defined recipe for a numerically derived density of 

states, score distributions, for the ligand to occupy.  The density of non-covalent binding states of a 

ligand to a protein cavity can be derived in principle from fundamental atomic and molecular orbital 

interactions, or estimated in energetic regimes, but in this work the density is straightforwardly 

numerically calculable using protein-ligand docking software.  With a density of states available, the 



machinery of statistical mechanics can be used.  This is in the context of molecular modeling at the 

atomic and molecular level, modeled for a given protein conformation (although amino acid side-chains 

are treated as flexible in GOLD docking).  The density of states can be calculated for both non-covalent 

and covalent binding (covalently bonded is expected to have less and more specific flexibility coming 

from the rotatable bonds).  The modeled calculable density of states can be used in a general context, 

and because the binding breaks the ligand into conformational modes, modes are more physically 

intuitive to express in the equations especially in curve fitting. 

There are a collection of states at each internal non-covalent or covalent protein-ligand interaction 

energy, the density of states in energy, N(𝐸𝑖).  It is numerically calculated as 𝑁(𝑍𝑖), a function of docking 

scores, e.g., binned.  The protein-ligand system is a canonical ensemble.  The thermal population of 

states is then weighted with a Boltzmann factor, where ‘i’ is a bin of the distribution,  

              𝑁𝑡𝑜𝑡 = ∑ 𝑁(𝑍𝑖)  = ∑ ∑ 𝑁𝑚𝑜𝑑𝑒 𝑚𝑖𝑚 (𝑍𝑖) 𝑏𝑖𝑛𝑠 𝑖   ,       𝑝(𝑍𝑖)  = 𝑁(𝑍𝑖) 𝑒−𝛽𝐸(𝑍𝑖)/𝑁(𝛽)    

 N(𝛽) = ∑ 𝑁(𝑍𝑖) e−βE(Zi)
𝑖      eqn 6 

and 𝛽 = 1
𝑘𝐵𝑇⁄  .  The distributions in this work used 100 bins, so i=1,2,…,100, with a bin width in score,  

dependent on the calculated distribution limits.  The continuous form of the density of states from n 

modes has been modeled by,  

𝑁(𝑍) = ∑ 𝑎𝑖
𝑛
𝑖=1 𝑒−|𝑍−𝑏𝑖|/𝑐𝑖       eqn 7  

The energy of the protein-ligand binding over all states or a mode m is found from the binned numerical 

distribution,  

              〈𝐸〉 = ∑ 𝑝(𝑍𝑖) 𝐸(𝑍𝑖) 𝑖         〈𝐸𝑚𝑜𝑑𝑒 𝑚〉 = ∑ 𝑝𝑚(𝑍𝑖)𝐸(𝑍𝑖) 𝑗     eqn 8 

Binding mode occupancy for a mode out of the set is  

          𝑃𝑚 = ∑ 𝑁𝑚𝑜𝑑𝑒 𝑚(𝑍𝑖)𝑒−𝛽𝐸(𝑍𝑖)/𝑁(𝛽)𝑖          eqn 9 

These are for a specified ligand and protein cavity.   

The relevant rotatable bonds and their angular ranges of the bound ligand show in the distribution 

through the height and weight of the individual peaks.  Which bonds specifically and how much is in 

their range can be determined by examining the states of the mode determined.  The common question 

about the contribution to binding energy from entropy loss, from free ligand to bound, can be answered 

by counting over the states from the distribution,  

                 𝑆 = −𝑘𝐵 ∑  𝑝𝑠 𝑙𝑜𝑔 𝑝𝑠𝑠𝑡𝑎𝑡𝑒𝑠  = -𝑘𝐵 ∑  𝑝(𝑍𝑖) 𝑙𝑜𝑔 𝑝(𝑍𝑖) 𝑏𝑖𝑛𝑠 𝑖   eqn 10 

or for a given conformational mode,  

    𝑆𝑚𝑜𝑑𝑒 =  −𝑘𝐵  ∑  𝑝𝑚(𝑍𝑖) 𝑙𝑜𝑔 𝑝𝑚(𝑍𝑖) 𝑏𝑖𝑛𝑠 𝑖    eqn 11  

with 𝑝𝑚 in eqn 5.  Given the peak widths and heights in the distribution it is clear that the 

conformational binding modes of the ligand will have different values.  These are calculable in this 

docking protocol. 



Modeled interaction score translates roughly to energy, and this is calculated from quantum mechanical 

orbital interactions and solvent effects in order to maximize (negative interaction energy).  

𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐸0  +  𝛾(𝑍 − 𝑍0) + 𝜀(𝑍 − 𝑍0)2+ . ..                   eqn 12  

with 𝜀 estimated small over a finite range of scores Z.  Maybe the higher order terms are non-negligible.  

However, in the protein inhibitors on well-structured cavities, eqn 10 performs well in modeling peaks in 

the score distribution.  Given that 1 kcal translates to x10 in observed room temperature binding affinity 

to via 10−Δ𝑆𝑐𝑜𝑟𝑒/6.5, 1 kcal is 6.5 difference in GOLD PLP score, 𝛾 = 1
6.5⁄ = .15 kcal. 

In cavities with much less structure, such as in CYP 3A4, the resolved peaks are less in number and 

wider.  This is also true when the molecule has more rotatable bonds and is more flexible.  In these 

cases it appears that the density of states is more Gaussian like.  There would be an expansion in the 

exponent about the exp(-||) form primarily used in this work analogous to eqn 10.  There is no exact 

relation between binding energy and score, however. 

From the internal binding energy and entropy, the Hemholtz free energy F=E-TS can be calculated and 

also broken into conformational modes using the distribution of states.  In molecular simulations [4], 

pressure or volume is of interest because the box type and size can be fixed and subject to constant in 

either.  In this case, Gibbs energy and enthalpy have to be addressed, and the statistical formulae apply 

there. 

Two example calculations are given, non-covalently bound Nirmatrelvir and covalently bound.  The zero 

energy state is referred to as free ligand and the linear relation in eqn 12 is used across all scores.  The 

entropic energy nill contribution of ground state is made by assuming a unique ground bound state.  The 

numerically calculated distribution is used, and no curve is used or required.  An example calculation of 

E and S is given from the distribution in Figure 2(a), Nirmatrelvir to Mpro.  The constants are  

k_B = 1.38 10^-23 J/K      eqn 13 

      mole = 6.02 10^23      eqn 14 

      1 J = 2.3901 10^-4 kcal       eqn 15 

and at T=298 K,  

   1/𝑘𝐵𝑇 = 1.86 mol/kcal,     exp(1/𝑘𝐵𝑇 ) = 6.45    eqn 16 

The 6.45 is a surprise given that 6.5 is the heuristic coefficient between score and energy given x10 for 1 

kcal in various IC50 measurement comparisons.  This is at room temperature.  Equations 6 and 8 are, 

using the numerical distribution with 200 bins,  

    〈𝐸(298 𝐾)〉 = -10.19 kcal/mol      eqn 17 

−𝑇〈𝑆〉  =  1.56 kcal/mol      eqn 18 

for a total of -8.63 kcal/mol.  Binding estimates of Nirmatrelvir to the main protease from MD 

simulations range in the -7.7 to -9.0 range. 

The probabilities of the states less than about 58 are negligibly populated, being about 12/6.5=1.84 kcal, 

or one width of 1 𝑘𝑐𝑎𝑙/𝑘𝐵𝑇 and this is seen in the calculated distribution and thermally weighted 𝑝(𝑍𝑖) 



values.  The mean of the distribution is score 49 and to get that from an expected energy requires T well 

beyond the boiling point of water, in the tens of thousands of Kelvins.  Nirmatrelvir does have 9 

rotatable bonds, is somewhat flexible even when bound, and these aspects show in the distributions of 

Figures 2(a) and 6(a); this shows up in the size of the entropic term, which is still much smaller but non-

negligible in the total free energy. 

In the case of covalently bound Nirmatrelvir and using its numerical distribution,  

    〈𝐸(298 𝐾)〉 = -16.53 kcal/mol      eqn 19 

−𝑇〈𝑆〉  =  2.17 kcal/mol     eqn 20 

for a total of -14.36 kcal/mol.  The covalent in-bond energy change from eqn 2 is 7.17 kcal/mol.  There 

are 2 additional rotatable bonds in the covalent coming from the thiodinate; the entropy is slightly more 

and the distribution in Figure 6 less defined.  The entropic contribution of the covalently bound 

Nirmatrelvir is 13% of the internal binding energy, and in the non-covalently bound molecule it is 15.3%. 

It remains to determine if the large docking and distributional analysis can be used more in an 

interpretation of binding data to provide additional statistical information from the numerical density of 

states.  Although the energy and linearity (or approximate linearity) of score is clear from many protein-

ligand comparisons with modeling, the details of modeling to actual binding measurements are 

involved.  The approach is general to molecular modeling and force fields, but the GOLD PLP scoring 

model is used. 

Conclusions 

A practical method is presented using the docking software CCDC GOLD, and the latter’s molecular 

protein-ligand interaction model, to extract detailed computationally modeled information about 

protein-ligand binding.  Large numbers of docking runs from different initial starting points randomly 

samples the space of ligand binding.  Interaction scores and conformations can be extracted from the 

resulting distributions.  This method extends docking into dynamics. 

The method gives information about the total interaction of a ligand to a protein in addition to 

individual atomic interaction, and per bound conformational mode or epitope.  In addition, the free 

energy calculations extend from solely protein-ligand interactions to entropic contributions coming from 

the degrees of freedom of the bound molecule, both from distributions.  Molecular interactions are 

fundamental to understanding biochemical processes.  Molecular design and hit-to-lead optimization 

benefit much from this detailed information. 

The random sampling of bound ligands gives a numerical method for calculating a density of ligand 

binding states in energy (or score).  This distribution is required in formulating a statistical derivation of 

expectation values of various quantities such as 1) expected binding free energy, 2) protein-ligand 

intermolecular energy, 2) entropy of bound ligand, 3) the breakdown of the former into conformational 

modes, into atoms, and 4) the reduction of a free ligand to a set of energetically different 

conformational bound modes with fewer degrees of freedom.  These calculated quantities, albeit from a 

molecular model, can be measured in NMR and x-ray experiments or compared energetically against 

different experiments, as in a screening of compounds.   



The number 6.5 in GOLD PLP score difference appears several times in this work.  First, amongst a broad 

range of IC50 experiments, the binding affinity changes by a factor of approximately 10, and given a 1 

kcal difference generating leads to 6.5 to 1 kcal.  The value at room temperature 298 K of exp(1/𝑘𝐵𝑇 ) is 

also 6.5.  Docking score is dimensionless and not energy, but a linear interpolation is made using this 

heuristic relation. 

The results presented here for a given small molecule binder can be calculated in minutes to several 

hours, depending on the number of independent docking jobs, number of available cpu, and complexity 

of the ligand and protein.  It is certainly much faster than generating a 1 microsecond molecular 

dynamics trajectory of a protein-ligand complex with 500,000,000 frames at 2 fs apart.  Efficiency 

increase is estimated at x1000 or more.  The calculations and making succinct reports can be automated, 

and due both to the efficiency and detailed information coming from it, the approach is suited to 

implement in a large screening of molecules. 

The statistics is briefly discussed and a protein-ligand interaction, conformational, and entropic, analysis 

is given for two molecules in particular from the method.  The 2 molecules are: 1) Nirmatrelvir 

covalently and non-covalently (pre-covalent) bound to SARS-Cov-2 Mpro, and 2) BAM-15, a 

protonophore mitochondrial uncoupler with the enzyme CYP 3A4.  The first is in a non-covalent and 

covalent ligand interaction analysis at the atomic level, and the second is in a small modification to 

obtain a less liver interacting, and potentially longer lasting in the body, variation.  The free energy 

calculation was demonstrated for the first in both the inter-molecular interaction and the bound ligand 

entropy. 
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