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Abstract

To obtain observable physical or molecular properties like ionization potential and fluo-

rescent wavelength with quantum chemical (QC) computation, multi-step computation manip-

ulated by a human is required. Hence, automating the multi-step computational process and

making it a black box that can be handled by anybody, are important for effective database con-

struction and fast realistic material design through the framework of black-box optimization

where machine learning algorithms are introduced as a predictor. Here, we propose a python

library, QCforever, to automate the computation of some molecular properties and chemical

phenomena induced by molecules. This tool just requires a molecule file for providing its ob-

servable properties, automating the computation process of molecular properties (for ionization

potential, fluorescence, etc) and output analysis for providing their multi-values for evaluating

a molecule. Incorporating the tool in black-box optimization, we can explore molecules that

have properties we desired within the limitation of QC.
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Introduction

In recent years, black-box optimization using machine learning (ML) algorithms as a predictor

has achieved significant results in chemistry and materials science.1,2 ML itself is not limited to

these disciplines and can be applicable in many disciplines by changing the evaluating system

(evaluator). Similarly, the evaluator in black-box optimization decides what kind of materials and

molecules we desired. If we can install experiments like synthesizing materials and measuring their

chemical or physical values as the evaluator, we can obtain the desired materials. Surely, several

examples of black-box optimization with the experiments as the evaluators appear in inorganic

materials because synthesizing inorganic materials is more efficient than the simulation depending

on the target properties.3–5 However, organic synthesis is not the case.

Organic synthesis is a time-consuming and formidable task including the characterization of

synthesized molecules.6 Hence, several simulation methods are developed as the preliminary meth-

ods that are expected to lower the experimental cost to find the expected molecules before the

organic synthesis. Quantum chemical computation (QC)7,8 is also one of them. In contrast to

the expectation, QC has been mainly used as a tool to clarify chemical phenomena9 through QC

software packages.10–12 Although QC is still based on an incomplete theory, tons of chemical

phenomena are explained through theoretical chemistry, which can give some speculations to phe-

nomena where the experimental information is not available. To make black-box optimization

efficient by incorporating QC instead of chemical experiments, we should develop an automated

QC system whose input is a molecule and output is its properties.

Although the QC is a powerful tool to obtain the electronic structures of molecules or materi-

als, multi-step computation is required to obtain the practically meaningful physical or chemical

values because most theories of QC are developed based on the orthogonal one-electron states,13

which are not experimentally observable. Hence, to incorporate QC in black-box optimization,

it is necessary to perform QC in a black box by automating the multi-step calculations and the

analysis of the obtained results (usually text files). There are several tools for constructing inputs

to perform complex computations and parsing output files like cclib,14 ASE,15 and QChASM.16
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However, these tools are still far from the black box that is ready to incorporate QC in black-

box optimization because their target is operating structure, distilling the total energy of the sys-

tem, and one-electron-state based values. Furthermore, multi-objective optimization (optimizing

multi-molecular properties) is necessary to obtain the practical materials through black-box opti-

mization. Hence, the black box of QC should be a system that produces physically meaningful

multi-properties.

In this paper, we propose a black box of QC that is ready to be incorporated in black-box

optimization, QCforever whose input is a well-known sdf file and output is a physically meaning

multi-properties, like ionization potential, electronic affinity, absorption wavelength, fluorescent

wavelength, etc (surely, one-electron-orbital based properties like HOMO/LUMO gap are also

available) because evaluating materials with multi-properties is important for their practical use.

In addition, QCforever is useful to exclude the arbitrariness due to the different process in the com-

putation of the physical values with QC. Excluding the arbitrariness, QCforever is also useful for

building a database with standardized computational processes. Our implementation is available

on GitHub at https://github.com/molecule-generator-collection/QCforever.

Method

Although there are several theories in QC, we employed density functional theory (DFT) 17 im-

plemented in Gaussian16 10 because of its easiness to use and versatility. Suitable processes for

computing molecular properties are important for computational efficiency and reproducing chem-

ical phenomena. Excluding the arbitrariness of computation process is also important for building

a reliable database.

Because Gaussian16 supports multi-step jobs, we can summarize multi-step jobs to one input

file and facilitate the computational process by reading previous electronic structures (orbitals).

Figure 1 shows the computational flow to compute the several molecular properties and phenomena

at one time. Different structures are saved as the different formatted checkpoint files. Currently
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supported input is a common sdf file of one molecule, which is widely used in chemoinformatics,

Gaussian chk, and Gaussian fchk files. When an sdf file is used as input, the number of radical

electrons and charge are counted by the tool of RDkit .18

Figure 1: Computational flow of available properties of a molecule in QCforever. An sdf file
of one molecule or Gaussian chk/fchk files are accepted as input. Solid arrows indicate reading
atomic and electronic structures from the origin of an arrow. The broken arrow indicates that only
atomic arrangement is obtained from the state at the origin of the arrow. The base for all computing
is the ground state. Same geometries are represented by the same color.

QCforever computes the ground state at the first step. For conformation search, QCforever

should rely on the other software.19 It is possible to perform geometry optimization by option.

At the present, the force constant estimation method (Gaussian default) is employed. If geometry

optimization is performed, one maximum bond length is printed for checking geometry. After

computation of the ground state, several molecular properties based on the orthogonal orbitals

are obtained. HOMO/LUMO gap, and their relative energies to some references, and atomization

energy are of importance to give speculation to the stability of a molecule in the ground state

and its application to several materials. As the reference to compare the HOMO/LUMO level,

their relative energies to the SOMO/LUMO energy of an oxygen molecule are computed as the

following definition.

Ox = EO2(LUMO)−Et(HOMO) (1)

Rd = Et(LUMO)−EO2(SOMO) (2)
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where, EO2(LUMO) and EO2(SOMO) are the LUMO and SOMO energies of O2 respectively.

Et(HOMO) and Et(LUMO) are the HOMO and LUMO energies of the target molecule respec-

tively. Hence, Ox represents the proximity between HOMO of the target molecule and LUMO

of O2, resulting in the oxidation of the target molecule by O2. On the other hand, because Rd

represents the energetic proximity between LUMO of the target molecule and SOMO of O2, Rd

indicates the possibility of the reduction of target molecules by O2. QCforever has the data of

the SOMO and LUMO energies of O2 that are computed with each combination of basis sets and

functionals in advance. Hence, QCforever gives the values to the stability to O2, which would be

useful to compare the orbital levels to the band level of semiconductors.20–22 Similarly, because

QCforever has the energy of each atom which is computed with several basis sets and functionals,

the atomization energy of the target molecule is computed.

Normal vibration modes of a molecule are computed by the vibrational analysis including

intensities of frequency infrared (IR) and Raman spectra. Based on the normal mode, Gaussian

calculates several thermochemical properties like Gibbs free energy, heat capacity, entropy, etc.

QCforever dilutes these values from the log file. Peak positions in nuclear magnetic resonance

(NMR) spectrum to the tetramethylsilane (TMS) of the target molecule are also computed using

the GIAO method.

QCforever automatically computes the values that are relevant to photochemical properties/phe-

nomena as shown in Figure 2, using the time dependent density functional theory (TD-DFT). Ver-

tical excitation energies to other electronic structures from the ground state, which are observable

as ultra-violet visible (UV) absorption measurement, can be computed at single point calculation.

By using the TD-DFT, expected fluorescence is computed by optimizing the geometry in the tar-

get excited state as shown in Fig. 2.23 The value (the Delta(S-T); energetic delta between singlet

and triplet excited states in Fig. 2) for estimating the probability of thermally activated delayed

fluorescence (TADF) 24 is computed through geometry optimization in the triplet state.

Computation for estimating vertical/adiabatic ionization potential (IP) and electronic affinity

(EA)25 is also automated in QCforever through the method called as ∆SCF. Vertical IP (V IP)
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Figure 2: Schematics of potential energy surfaces of the singlet ground state (S0), singlet excited
state (S1), and first triplet state (T1) of a molecule. Blue arrows indicate the optimization process
starting from the atomic and electronic structures at the origin of the arrows.

and EA (V EA) are the energetic difference between the ground state and the positively/negatively

charged state (assuming the ground state is a neutral and singlet state) at the same structure as

shown in Figure 3 by using the following equations.

V IP = ED0vertical −ES0minimum (3)

AIP = ED0minimum −ES0minimum (4)

V EA = ES0minimum −ED0vertical (5)

AEA = ES0minimum −ED0minimum (6)

Here, ES0minimum is the ground state energy of the target molecule in Figure 3 (assuming that

the ground state optimization is performed). ED0vertical is the total energy of an electron donated

or removed molecule in Figure 3. The values of adiabatic IP (AIP) and adiabatic EA (AEA) are

calculated as eq. 4 and 6, where D0minimum is the energy obtained by preforming geometry

optimization from D0vertical (Figure 3).

Currently available values are summarized in Table 1 and the keys of the dictionary are also as

6



Figure 3: Schematics of potential energy surfaces of a neutral molecule (S0) and its positively/neg-
atively charged one (D0), assuming a neutral molecule is in singlet state. A blue arrow indicates
the optimization process starting from the structure and electronic structure of origin of the arrow.

the computed values are outputted as the dictionary format of python.
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Dependences

QCforever needs external quantum chemical computation package but mainly written in Python 3.

Currently, only Gaussian16 is supported. Although Gaussian16 users may separate the computa-

tional scratch folder and data folder, current QCforever requires that data folder is the same as the

scratch. Because Gaussian tools, formchk and unfchk, are used for making fchk or chk files, the

path to Gaussian should be suitably set before using QCforever. To count the number of radical

electrons and the value of total charge from a sdf file, RDKit18 are required. Other required python

libraries are Numpy. To make the data for computing atomization energy, chemical shift from

TMS, and oxygen orbital level, bash scripts are used.

Example usage

It is necessary to make an instance because the main of QCforever is written as a class of python.

QCforever needs the kind of functional and basis set, number of cores for Gaussian, and options,

and input file names at least as the arguments. If one wants to compute molecular properties in

solvent, one can specify the kind of solvents listed in Gaussian.10 The memory and computational

time can be specified by giving the values as the instance variables. The example of code (main.py)

for QCforever is shown in List 1.

import os, sys

import GaussianRunPack

usage =’Usage; %s infile ’ % sys.argv [0]

try:

infilename = sys.argv [1]

except:

print (usage); sys.exit()
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option = "opt homolumo energy dipole deen stable2o2 fluor =3" # option

separated by more than one space

test = GaussianRunPack.GaussianDFTRun(’B3LYP ’, ’STO -3G’, 8, option ,

infilename)

test.mem = ’5GB’ # specify the value of memory

test.timexe = 60*60 # specify the maximum time of running Gaussian

outdic = test.run_gaussian ()

print (outdic)

Listing 1: Example code for QCforever ( main.py)

In the example of List 1, QCforever tries to compute the HOMO/LUMO gap, the ground state

energy, dipole moment, atomization energy, the stability to O2 based on the optimized structure

of the target molecule in the ground state, and the fluorescence from the third excited state at the

B3LYP/STO-3G level.

This code can be executed as the command as shown in List 2

$ python main.py ch2o.sdf

Listing 2: Example for ch2O.sdf (a sdf file of formaldehyde)

The result can be obtained as shown in List 3, which is the dictionary style of python code with

the keys in Table 1. In the "uv" key, four lists are included. The first list indicates the excitation

energy to each excited state in nm, the second is the intensity (oscillator strength) to them, the third

indicates the length of circular dichroism (CD), and the fourth is the intensity of CD spectrum.

Because we use unrestricted DFT calculation, spin allowed and forbidden excited state are mixed.

Hence, the indices of spin allowed states are enclosed in the first list of "state_index" key, and

those of spin forbidden states are in the second list. The excitation energies to spin allowed states

are printed in the "uv" key. In the similar to "uv" key, "fluor" key includes the information of CD

emission.
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$ {’GS_MaxBondLength ’: 1.2503700019074353 , ’homolumo ’: [6.018801089999999 ,

6.018801089999999] , ’dipole ’: [1.3513 , -0.0, -0.0001, 1.3513] , ’Energy

’: -112.957313479 , ’deen’: -0.6349892466540155 , ’stable2o2 ’: [0.18606 ,

0.23448] , ’uv’: [[334.14 , 137.25 , 112.51 , 110.82 , 92.45, 77.16 , 75.95,

70.19, 69.06] , [0.0, 0.0085 , 0.1006 , 0.0, 0.0956 , 0.0347 , 0.131 ,

0.0231 , 0.293] , [-0.0, 0.0, -0.0, 0.0, 0.0, -0.0, 0.0, -0.0, 0.0],

[0.0, 0.0232 , 0.0486 , 0.0, 0.0765 , 0.0488 , 0.0348 , -0.0039, 0.1926]] , ’

state_index ’: [[2, 5, 7, 8, 10, 14, 16, 18, 20], [1, 3, 4, 6, 9, 11,

12, 13, 15, 17, 19]], ’MinEtarget ’: -112.63357 , ’Min_MaxBondLength ’:

1.6029200006740822 , ’fluor ’: [[864.49 , 211.87 , 203.81 , 171.15 , 137.36 ,

135.12 , 94.51] , [0.0, 0.0039 , 0.0539 , 0.0002 , 0.0078 , 0.0, 0.0219] ,

[-0.0, 0.0, -0.0, 0.0, -0.0, -0.0, 0.0], [0.0, 0.0151 , 0.0055 , 0.0019 ,

0.002, 0.0, 0.0082]] , ’log’: ’normal ’}

Listing 3: Example of obtained results

Applications

Using QCforever combined the black box optimization algorithms for discovering and design-

ing materials, we have already reported the several results. Combining a deep learning based de

novo molecule generator (DNMG)26 with machine learning and QCforever, we have successfully

demonstrated that molecules designed in silico for optical absorption/emission can be realized ex-

perimentally.27–29 In addition, the DNMG proposed to use an material that had never received

attention as an electret material.30 The DNMG becomes a molecular identifier by setting the com-

puted property by QCforever NMR spectrum.31 In addition to the collaboration with DNMG,

QCforever is useful for screening database. We have also employed QCforever with bound-

Less Objective-free eXploration (BLOX) for searching out-of-trend materials from the database.32

Here, we demonstrate the database screening as an example of the use of QCforever. Recent devel-

opment of material informatics increases the importance of experimental33–35 and computational

databases36,37 of molecules. Although PubChemQC36 provides the observable molecular prop-
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erties like absorption wavelength, computational databases basically provides total energies and

properties based on one electron states.38–40 They are might be important features but not practi-

cal properties. QCforever might be useful to translate another database to computational one with

practical properties.

From the ZINC database,35 we picked up 100 molecules available from vendors. For these

molecules, we have computed the molecular properties, using QCforever with the following op-

tions listed in Table 1:

opt ,freq ,nmr ,energy ,homolumo ,dipole ,deen ,stable2o2 ,cden ,uv ,fluor ,tadf ,vip ,

vea ,aip ,aea ,symm

The success ratios for optimization in ground state (GS), fluorescence (Fluor), TADF, and AIP

computations are 91, 97, 69, and 90% respectively as tabulated in Table 2. The average compu-

tational time per one molecule is about 9 hours for 20 cores. This computation is not definitely

light. However, we can build the database for several molecular properties based on the electronic

structure theory automatically. Because the multi properties can be simultaneously obtained, the

correlation heat map among the computed molecular properties as shown in Fig. 4 is also easily

obtained.

This correlation heat map shows the importance of the static analysis based on the database in

spite of data of 100 molecules. The HOMO/LUMO gap shows the negative correlation with the

absorption wavelength (Abs_wl), VEA, and AEA strongly. Furthermore, the gap has the positive

correlation with Stable2o2 (oxidation by O2), VIP, and AIP. Hence, the HOMO/LUMO gap is a

molecular property that dominates not only photochemical properties but also electronic properties.

On the other hand, Energy and E_free have no difference (this means that the contribution of the

free energy is small in the small molecular size) and other properties (Delta(S-T), Fluor_wl, Freq,

IR, Abs_it, Fluor_it) are not interrelated with the HOMO/LUMO gap. This results indicate the

difficulty to make prediction model of these properties.
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Table 2: Success ratio (%) for 100 molecules with QCforever at the B3LYP/6-31G* level

GSa Fluoreb TADFc AIPd

91 97 69 90
a Ground state optimization without any negative vibrational mode; b Geometry optimization in
the first excited state valuable for evaluating fluorescence emitting; c Computation for evaluating
thermally activated delayed fluorescence (TADF); dGeometry optimization ionized state to obtain

adiabatic ionization potential.

Conclusion

In this paper, we demonstrated a tool automating the process to compute several observable molec-

ular properties through QC; QCforever, which is ready to be equipped with black-box optimization.

When QC calculations are used to calculate various physical and chemical properties or phenom-

ena, arbitrary values might be obtained even for the same molecule due to the different computation

processes. To avoid this, a standard computation process should be provided. Especially, standard-

ized computation process as is in QCforever would be important for building a database based on

QC calculation. As the demonstration of QCforever, we computed 100 molecules picked up from

ZINC database.35 Although the current QCforever could not exclude the several failures including

the molecules that have the negative vibrational modes, the computation of 90% of molecules suc-

ceeded. In the near future, we will develop QCforever to deal with the negative vibrational mode

and several failures like AiiDA.41

Simulation tools are expected to reduce the difficulty to develop new materials. QC computa-

tion was also one of them. In practice, however, QC is mainly used as a tool giving speculation to

chemical phenomena. The history of QC proves that it is a powerful tool to get plausible answers to

the forward problems where input is molecules. On the other hand, QC is also used for finding the

expected molecules for chemical synthesis in experimental chemistry laboratories. This process

corresponds to an inverse problem42,43 where we should deal with the diversity of the chemical

compounds. Surely, the search space is restricted within professional knowledge and favor. Com-

bining QCforever with the black-box optimization algorithm, we can remove this restriction and

bias and expand the search space.27–32
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