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ABSTRACT

The recently developed AlphaFold2 (AF2) algorithm predicts proteins’ 3D structures from amino acid

sequences. The open AlphaFold Protein Structure Database covers the complete human proteome. It

shows great potential to provide structural information to enable and enhance existing and new drug

discovery projects. Using an industry-leading molecular docking method (Glide), we benchmarked the

virtual screening performance of 28 common drug targets each with an AF2 structure and known holo

and apo structures from the DUD-E dataset. The AF2 structures show comparable early enrichment of

known active compounds (avg. EF 1%: 13.16) to apo structures (avg. EF 1%: 11.56), while falling behind

early enrichment of the holo structures (avg. EF 1%: 24.81). We also demonstrated that with the IFD-MD

induced-fit docking approach, we can refine the AF2 structures using a known binding ligand to improve

the performance in structure-based virtual screening (avg. EF 1%: 19.25). Thus, with proper preparation

and refinement, AF2 structures show considerable promise for in silico hit identification.
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1. INTRODUCTION

Computational methods play an increasingly important role in the hit discovery phase of the drug

discovery process. Historically, these methods could be broadly categorized into two distinct classes:

structure-based and ligand-based methods. The choice of method is constrained by the data available at

the start of a new hit identification campaign. Structure-based approaches can be enabled with a single

high quality 3D atomistic model of the protein of interest. These methods can typically leverage

additional ligand information, when available, for model validation or parameterization, but such data is

not generally required. Ligand-based approaches are enabled with one or more ligands with sufficient

on-target potency and functional activity (‘actives’). Features are extracted from the set of actives and can

be used to identify virtual hit compounds. Where no previous ligands have been reported, structure-based

approaches such as molecular docking allow for identification of hits, generation of putative binding

modes, and insights into important interactions that can be leveraged to guide optimization of these hits.

Docking-based studies have been used to great effect recently to identify hit compounds against

COVID-19 protein targets1–5 and have a long track record of identifying hit and tool compounds to

progress projects6,7. For projects pursuing a best-in-class approach in a crowded competitive environment,

structure-based approaches offer a way to explore new areas of chemical space, without being constrained

by the space of known actives. The advent of ultra-large, make-on-demand libraries has opened new

chemical space for molecular docking6,8–11. As such, structure-based hit identification methods are a

critical component of the modern in-silico toolkit. Here, we focus on the structural enablement of

physics-based molecular docking in drug discovery.

The domain of applicability of molecular docking has been increasing rapidly as new structures

are reported, aided considerably in recent years by the emergence of high quality cryo-EM structures12–14

and refinement protocols11,15 According to one analysis16 nearly 74% of the human proteome has at least

one representative structure in the public domain. While this represents significant progress, there remain

categories of targets, chiefly GPCRs, where coverage remains low. Structural enablement of “dark”

regions of the proteome may evade current techniques or require considerable experimental expense over

a long period of time. For such targets, validated computational models can facilitate successful hit

discovery campaigns in place, or in advance of, an experimentally derived structure. Thankfully, the

difficulty of this problem can be significantly reduced using template proteins, mined from public or

structural private repositories. Structural elements of template sequences can be incorporated into the

initial model, leaving only “gap-regions” or regions of sequence space without a nearby homologue, to be

predicted using physics-based or data-based approaches. The number and size of gap regions will depend

on the availability of suitable templates for the target. The selection of templates by an expert is a

time-consuming process and must be repeated for each new target sequence.17 The number of templates a
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human expert can reasonably handle is another limitation of this approach. Skolnick and coworkers

suggested18 in 2005, that the problem of protein structure prediction could be solved by the structural

information in the PDB at the time – one simply needed an algorithm capable of identifying the optimal

protein fold from among all possible templates and the optimal alignment to the target. This algorithm

would need to be able to consider many more potential templates than a human expert could reasonably

handle and produce a capable scoring model for evaluating potential alignments.

A deep learning-based approach could, in principle, efficiently make use of all structural

information available to solve the problem. Rather than predict each new structure as an entirely separate

problem, a single pass of training could optimize parameters assignment for thousands of model

predictions simultaneously. DeepMind’s AlphaFold2 (AF2)19 provided powerful validation of this

approach, setting a new standard for protein structure prediction in the biennial CASP14 competition.

AF2 combines multiple sequence alignments (MSA) with a novel attention mechanism, called

EvoFormer, to focus the training on portions of the sequence. These components are connected to a

structure prediction module that considers rotations and translations of individual residues and a custom

loss function that places special emphasis on the correct orientation of residues in order to capture

important interatomic interactions. The authors used the fully trained AF2 network to make predictions on

a set of ~350,000 proteins, which were subsequently made available free of charge to researchers. The

success of AF2 has generated considerable excitement in the community as evidenced by the nearly 2,000

citations garnered by the 2021 Nature publication. We expect iterations of the methodology and

competing approaches to improve the performance of deep-learning based approaches. Baker and

coworkers, inspired by AlphaFold2, proposed a “three-track” method that more tightly integrated

sequence (1D), distance-matrix (2D) and cartesian coordinates (3D) information during training.20 The

authors note that the performance of the method is currently limited by available computational power. It

remains for the community to validate the use of these deep-learning derived structures in drug discovery

applications. In this work, we explore the potential of AF2 specifically to enable “dark” protein targets for

structure-based virtual screening.

Rigid receptor docking protocols (e.g. GOLD, Glide, AutoDock Vina)21–23 perform essentially no

sampling or refinement of the binding site structure during the docking calculation, ignoring induced fit

effects. We have argued previously that these limitations can be addressed by docking into an ensemble of

protein conformations24,25. AF2 predictions are essentially apo structures of the complete protein

sequence. As there is no explicit information included of ligands or cofactors, these structures often have

unstructured regions of low predicted confidence occluding potential binding sites. AF2 offers no way to

use a bioactive conformation of a known binder to induce an alternative conformation of the protein,

creating an opening for induced fit docking protocols. Im and coworkers recently demonstrated modest
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improvements in virtual screening performance using an initial template-based alignment combined with

restrained MD in order to refine apo structures25. This approach increased enrichment from EF 1% of 3.5

to 6.2 on a 40 target subset of DUD-E, a well known dataset for benchmarking molecular docking

programs26. This compares with an EF 1% of 10.0 for holo structures in the same study. Performance is

likely to be limited by the availability of an adjacent holo template in the PDB.

In this work, we assess the docking performance of Glide across a range of targets using the

DUD-E dataset. We compare enrichment performance with truncated AF2 structures to experimental apo

and holo structures. As seen in Table 1, native Glide SP delivers considerably higher enrichment over the

DUD-E dataset using holo structures as compared to the enrichments reported in the study of Im and

coworkers25, where AutoDock21 was used to generate the docked poses. Next, we use our recently

released induced-fit docking program (IFD-MD)26,27 to induce a more holo-like structure suitable for

docking using the holo ligand provided in the DUD-E dataset and repeat the docking calculations on this

structure. IFD-MD is a rigorous, template-free physics-based protocol that combines traditional docking

calculations, pharmacophore-based analysis of the active site, detailed analysis of the active site water

network using WScore, side chain sampling, and MD-based refinement, to capture induced fit effects

upon ligand binding27. IFD-MD structures have been validated for use in free energy calculations across a

wide range of targets27,28. The current IFD-MD protocol was targeted toward systems where cross-docking

can succeed without the need for large backbone motions. For applications where large backbone motions

are needed, the authors of the IFD-MD publication suggest that further development of the method to

include accurate prediction of loop-regions would be necessary to broaden the domain of the method to

these cases. Here, we assess the potential to induce more holo-like structures for molecular docking from

the AF2 apo predictions using IFD-MD. Given the limitations noted above, this approach is likely to be

successful only if the protein backbone in the active site is essentially in a correct conformation. Our

preliminary findings are promising, showing performance of the IFD-MD refined AF2 structure coming

close to the holo structure. Docking into an ensemble composed of the top 5 poses from IFD-MD refined

AF2 structures, we see a roughly 45% improvement in early enrichment, as measured by BEDROC

(α=160.9). No fitting or reparameterization of the IFD-MD protocol was required. It is also important to

acknowledge the limitations of this work. All the targets in the DUD-E dataset have representative

structures deposited in the PDB prior to the training data of the AF2 model used to generate the structure

predictions. In a future work, we will investigate this approach with additional targets that would not have

been included in the training of the AlphaFold model. Nonetheless, these preliminary results show great

promise for the use of AF2 to structurally enable additional targets for molecular docking campaigns26,27.
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2. METHODS

We used a set of well validated methods from the Schrödinger Suite29 (2021-4 release) for this

benchmark study. To reduce any potential bias introduced by different settings in each method, we chose

to use the default settings for most of the applications unless otherwise specified. It’s important to note

that this sets a baseline for early enrichment that is likely to be lower than that achievable by judicious use

of experimental observations or expert intuition in the docking experiment.

2.1 Dataset

The DUD-E set is a dataset widely used for benchmarking virtual screening methods. The

DUD-E set has 102 targets from diverse protein classes including kinases, nuclear receptors, proteases

and several other protein classes. For each target, DUD-E provides a set of diverse active ligands and a set

of decoy ligands within a similar chemical space26. In the DUD-E set there are 40 targets from the original

DUD set with an assigned apo structure. Among the 40 targets, there are two HIV viral protein targets

where there is no native prediction in the AlphaFold Database as of April, 2022. Among the remaining 38

targets, there are 6 targets (ALDR, CAH2, COMT, DEF, DYR, and PA2GA) with cofactors in the binding

site of the associated holo structure in the dataset, which can be crucial for protein-ligand interactions.

Three targets contain metals, two have organic cofactors, and one has both. AF2 structures do not have

any metal atoms or cofactors modeled in the native predictions, thus we analyzed these 6 targets

separately. CASP3 is a target with a covalently bound inhibitor and is beyond the scope of this study. We

also remove three other targets, CSF1R, KIT, and RENI, from the main analysis as there are severe clashes

between the holo ligand and the AF2 structures in the binding site. After this filtering, 28 targets from the

DUD-E dataset were the focus of our analysis. Please refer to the Supplementary Information Table S1 for

a full list of the targets investigated.

2.2 Structure preparation

For each target, we downloaded the DUD-E specified holo and apo structures from the PDB30 and

the AF2 structure from the AlphaFold Protein Structure Database 31. The AF2 model predicts a structure

for the complete sequence of a genome and the resulting structure may exist in a different bio-unit

composition as compared to the relevant holo or apo structures from the PDB. Fig. 1 shows the example

of BRAF, where the AF2 structure contains almost three times more amino acids than the holo structure.

More importantly, the excess sequence can interfere with the binding site, either by preventing docking or

by introducing artificial interactions between the protein and docked ligands.
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Figure 1. AF2 predicted BRAF structure (blue and orange ribbon) aligned to the holo structure (green

ribbon, PDB: 3D4Q). The ligand in the relevant binding site is shown in magenta. The AF2 structure has

a sequence length of 766, while the holo structure has 264 amino acids in the structure. The extra amino

acids (orange ribbon) from the AF2 structure severely block the binding site, preventing Glide from

obtaining reasonable docked poses. The orange region of the AF2 structure was truncated to recover the

binding site.

To recover the AF2 binding site blocked by the excess amino acids, we performed a sequence

alignment between the AF2 structure and the holo structure. Then, we removed the excess amino acids

within the AF2 structure before the first and after the last amino acid in the sequence of the associated

holo structure. After the removal of these amino acids, we recovered a reasonably sized binding site for

BRAF, EGFR, IGF1R, ITAL, RXRA, and THRB. Three targets removed from the main analysis, CSF1R,

RENI, and KIT, still had additional loops occupying the binding sites, which are not present in the holo

structure. These AF2 structures after removal of excess amino acids are referred to as the “AF2 truncated

structures”.
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The holo, apo, AF2 full, and AF2 truncated structures were prepared with the Protein Preparation

Wizard28,32 from the Schrödinger Suite. The protein protonation state is assigned with PROPKA33,34 at pH

7.4. DUD-E actives and decoys were processed using the LigPrep program of Schrödinger Suite starting

from a SMILES representation of each molecule, using the following settings: (1) Tautomers were

generated using Schrödinger’s Epik with a target pH of 7.0 +/- 1.0 and (2) a maximum of 32

stereoisomers were generated for each molecule.

For the cofactor containing targets (ALDR, CAH2, COMT, DEF, DYR, and PA2GA), the cofactors

were transposed from the holo structure to the truncated AF2 structure after alignment of the two protein

structures. Severe steric clashes were resolved by selecting a different rotamer of the clashing residue. For

CAH2 the metal binding histidines were in the HID94, HID96, HIE119 tautomer states, and for DEF the

metal binding histidines were in the HID133 and HID137 tautomeric states, and Cys91 was deprotonated.

Other residues were unchanged and metal coordinating waters were not added. Investigation of the

accuracy of de novo cofactor placement methods was outside of the scope of this study. The manually

transposed structures were used directly in docking to evaluate the effect of the presence of the cofactors

on VS performance of the AF2 structures, and were also used as starting structures for IFD-MD

calculations. The IFD-MD output was used for docking either with the cofactors present (to compare to

the holo structure) or with the cofactors removed (to compare with the truncated AF2 structure). For the

CAH2 target, metal binding states in ligand preparation were added and the grid size was increased due to

a very small reference ligand in the holo structure.

2.3 IFD-MD refinement of the AF2 structures

To refine and optimize the AF2 structures, we used the recently developed IFD-MD program in

the Schrödinger Suite. IFD-MD combines shape-based ligand alignment with QSAR atom typing 35, rigid

receptor docking (Glide23 and WScore24), and energy-guided protein structure refinement (Prime36) with

explicit solvent molecular dynamics simulations to address the induced-fit effect27. IFD-MD requires a

protein-ligand complex as the template. In this study, we investigated using different templates as

described in section 3.3.

With the refined poses obtained from IFD-MD, we removed the docked ligand and solvents and

followed the steps described in section 2.5 to generate the grid and perform the docking. We also

evaluated the VS enrichments using an ensemble docking approach. For each target, we generated 5

docking grids using the receptor structures from the top 5 IFD-MD refined poses. The actives and decoys

are docked into each of the 5 grids and later combined where only the pose with the best docking score is

kept for each ligand.
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2.4 Binding site analysis

We used SiteMap37 in the Schrödinger Suite to evaluate and compare the binding site quality of

the apo, holo, AF2 full structure, AF2 truncated structure, and IFD-MD structure of each target. For each

target, the five structures were first aligned based on the whole protein structure. The alignment was

refined by the binding site residues which were defined by the co-crystalized ligand in the holo structure.

The refined alignment was used to have a consistent definition of the binding site. Next, we analyzed the

binding site properties (volume and SiteScore properties) of each structure with SiteMap37,38 using the

ligand in the holo structure as the reference ligand and a 5 Å distance threshold. For structures where

multiple sites were identified in the 5 Å box around the ligand, the site with the largest SiteScore was

selected. SiteScore was calculated via Equation 1 below, where n is the number of site points, e is the

enclosure score, and p is the hydrophilic score.

𝑆𝑖𝑡𝑒𝑆𝑐𝑜𝑟𝑒 =  0. 0733 𝑛 + 0. 6688𝑒 − 0. 2𝑝
Equation 1. Equation for SiteScore.

We also compare the binding site residue conformations in the five structures by calculating the

pairwise all atom RMSD between binding site residues.

2.5 Molecular docking and enrichment metrics

Glide23,39 is a leading molecular docking program. Here, we use the enrichment results derived

from Glide docking as an indication of the usefulness of different structures for virtual screening. Like

other docking methods, Glide utilizes a docking grid to increase throughput. In our experiments, the grid

box center is defined as the center of mass of the reference ligand in the holo structure. The gridbox size

is defined as , where is the maximum distance between any two16 Å +  0. 8 ×𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

atoms in the holo ligand.

Glide docking was performed in the SP (standard precision) mode. We calculated the area under

the receiver-operator characteristic (ROC) curve, Boltzmann-enhanced discrimination of receiver

operating characteristic (BEDROC)40 with α=160.9, and EF 1% using the enrichment.py script within the

Schrödinger Suite to evaluate the performance of the virtual screening. Virtual screening has been

described as an early enrichment problem40 as true positives recovered early in the ranked list are more

valuable given the costs associated with compound acquisition and validation. The BEDROC and EF 1%

metrics are more sensitive to early enrichment performance, as compared to popular enrichment measures

used in other contexts such as ROC and are better suited for evaluating virtual screening performance.

9

https://paperpile.com/c/0I8N1P/05ZVn
https://paperpile.com/c/0I8N1P/05ZVn+JOHyu
https://paperpile.com/c/0I8N1P/qKrCc+9zre6
https://paperpile.com/c/0I8N1P/fhtDW
https://paperpile.com/c/0I8N1P/fhtDW


3. RESULTS and DISCUSSIONS:

AlphaFold2 predicted structures cover most common drug targets. Here, we benchmark the

virtual screening performance using AF2 structures in structure-based virtual screening methods, a

common approach for hit identification in a drug discovery project. In the following sections, we will

describe: (1) binding site quality comparison between holo, apo, and AF2 structures; (2) molecular

docking-based enrichment using AF2 structures; (3) molecular docking enrichment for IFD-MD refined

AF2 structures, and (4) challenges and limitations of using AF2 structures.

3.1 Binding site assessment

We analyzed the binding site properties and conformations of holo, apo, and AF2 structures of

each target. Key binding site properties (volume and SiteScore) were evaluated using SiteMap. The

SiteScore evaluates whether a site is likely to produce high-affinity ligands, and larger scores correspond

to higher probability of having tighter binders.

Fig. 2 shows the comparison of SiteScores and volumes of binding sites on AF2 full, AF2

truncated, apo, and holo structures. Overall, the holo structures have slightly higher SiteScores and larger

volumes. We have previously shown that Glide enrichment performance can be improved by

minimization of the input receptors for docking, generally increasing the binding site volume. An increase

in the available space for docking may explain the superior enrichments derived from docking into holo

structures. This hypothesis would need to be further investigated to demonstrate generality. The SiteScore

and volumes of binding sites on AF2 structures generally lie between the apo and holo structures,

possibly because both holo and apo structures were included in the training of the AF2 model. As shown

in Fig. 2, the full AF2 structures have slightly better SiteScore than the truncated AF2 structures. One

plausible explanation is that in the full structure the presence of a terminus structure near the binding site

may create a more enclosed or better defined binding site. A more complete prediction of the structure of

the binding site may not necessarily produce a more useful structure for virtual screening. After IFD-MD,

the AF2 structures show comparable SiteScores and volumes as the holo structures.
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Figure 2. Comparison of SiteScores and volumes of binding sites on AF2 full, AF2 truncated, apo, holo,

and the top poses of IFD-MD refined AF2 structures. The AF2 binding sites have SiteScores in between

holo and apo binding sites, while the IFD-MD refinement improves the SiteScore of the AF2 structures.

A similar trend was observed in the volume comparison. A target-specific volume comparison is

shown in Fig. S1. For most of the targets, the AF2 full and truncated structures have binding sites with

similar sizes, as the terminus structures in the AF2 full structure are far from the binding sites. For

structures where the terminus structures are inside the binding sites, one would expect that truncating

them would make the binding sites larger, which is the case for THRB and BRAF. Three targets (CSF1R,

KIT, and RENI) on our list have additional loops occupying the binding site, leading to significantly lower

volumes than the apo and holo structures (Fig. S2), therefore we removed these from the main analysis

and virtual screening study.

3.2 Benchmark of VS performance of AF2 structures

With the active/decoy ligand collections from the DUD-E dataset, we tested the molecular

docking enrichment for holo, apo, full AF2, and truncated AF2 structures. The results are summarized in

Table 1. On average, the truncated AF2 structures have higher enrichments than the apo structures, while

being lower than the holo structures where ligands are present. The apo structures have the lowest

enrichment overall. This is consistent with our expectations as binding sites can reorganize with no ligand

present, often folding into different binding site environments. AF2 models are trained on the entire PDB

database (as of 30 April 2018) with both holo and apo structures present, and we expect the AF2 binding
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sites to have features resembling those of both the holo and apo structures. More active ligands can be

docked into the truncated AF2 structures than the original AF2 structures as shown in Table 1. From these

results the AF2 structures appear to have more apo than holo characteristics in binding site structural

prediction.

Table 1. Average molecular docking enrichment on holo, apo, full AF2, and truncated AF2 structures.

Averaged over 28 targets ROC BEDROC (α=160.9) EF 1%

Percentage of

Actives docked

holo 0.814 0.451 24.81 98.8%

apo 0.722 0.218 11.56 96.4%

AF2 full 0.647 0.245 13.16 84.1%

AF2 truncated 0.715 0.239 13.16 94.5%

Fig. 3 shows the BEDROC (α=160.9) for the 28 targets. There are a few targets where the

truncated AF2 structure enrichment is significantly lower than the holo structure. A plausible explanation

for this observation is that the binding sites in these AF2 structures have different loop conformations

and/or side chain conformations compared to the holo receptors. In such cases, an induced-fit docking

approach should be able to refine the AF2 structures to physically relevant holo-like conformations and

lead to potential improvements in enrichments as described in the following section. Another possible

reason is that the target protein can be found in different states in holo/apo and AF2 structures, like

DFG-in and DFG-out states for kinases. In the example of MET, the holo structure has a DFG-out

conformation and the AF2 structure is in DFG-in conformation. In such cases, a better strategy could be

to apply the knowledge of the protein class and perform a partial homology modeling on the binding site

as discussed in section 3.4.

3.3 Refining AF2 structures with IFD-MD

The results in the previous section suggest that refining the AF2 structures is desired to reach

their full potential for virtual screening. IFD-MD combines pharmacophore modeling, molecular docking,

and molecular dynamics to predict the induced-fit binding pose. Here we ran IFD-MD on the 28 targets

and investigated the VS performance of using the top-ranked IFD-MD pose as well as an ensemble

docking approach with the top 5 IFD-MD poses.
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IFD-MD requires a complex structure as the template for the refinement. While there is no

obvious way to generate a protein-ligand complex with the AF2 structures, we tested two approaches,

superimposing the holo ligand in its bound coordinates onto the AF2 structures and using the docked pose

of the holo ligand into the AF2 structure. The first approach generates a complex template that resembles

the holo binding pattern, which makes it the best scenario for IFD-MD. The latter approach is less biased

and represents a scenario where the binding patterns are completely unknown.

For the first approach, we placed the holo ligand into the truncated AF2 structures using the

coordinates in the aligned holo receptor. Such ligand placements often result in clashes between the ligand

and the AF2 structures, which can be resolved later in the IFD-MD refinement. Using either the single

top-ranked refined structure, or the five top-scoring refined structures from IFD-MD, we performed

molecular docking with the active and decoy ligands from the DUD-E dataset. The results are shown in

Table 2. If we use the top-ranked pose from IFD-MD, the average ROC improved from 0.715 to 0.798

and BEDROC (α=160.9) and EF 1% improved as well. To fully utilize the IFD-MD results, we also tested

an ensemble docking approach where ligands are docked independently into the top 5 receptor

conformations from the IFD-MD. Previously we have reported the benefit of ensemble docking when care

is taken to balance docking scores across the ensemble.24 Then the 5 docking results are merged and

ranked based on the best docking score per ligand. These results are shown in Table 2. The average ROC

further improved to 0.826, better than the average ROC for the holo structures. We show the target

specific BEDROC comparison in Fig. 3 and discuss a case study of EGFR in the following paragraph.

Table 2. Comparison of VS enrichments for IFD-MD refined AF2 structures with holo and the truncated

AF2 structures.

Averaged over 28 targets ROC BEDROC (α=160.9) EF 1%

holo 0.814 0.451 24.81

AF2 truncated 0.715 0.239 13.16

IFD-MD refined AF2 (top pose) 0.798 0.310 17.23

IFD-MD refined AF2 (5 poses) 0.826 0.348 19.25
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Figure 3. Target specific BEDROC comparison. IFD-MD refined structures have significantly improved

enrichments over the original AF2 structures. Group I on the left side shows targets where the IFD-MD

refinement (red) improves the VS enrichment over the truncated AF2 structures (blue). For targets in

Group II in the middle, the truncated AF2 structures have comparable enrichments with the holo

structures (green) and the IFD-MD refined structures perform similarly. Targets in Group III on the right

are targets where the truncated AF2 structures have low enrichments and the IFD-MD refinement is not

able to improve the VS performance. Apo structures are also included for reference (yellow).

EGFR was one of the targets in our data set where binding site refinement by IFD-MD had a

significant effect on virtual screening performance of the AF2 structure. The apo, holo, and AF2

structures exhibited several structural differences affecting the performance (see Fig. 4). In the apo

structure the C-helix is in a different orientation relative to the holo structure, with Glu762 and Met766

clashing with the ligand position seen in the holo structure. The activation loop is also in a different

conformation in these structures, and Phe856 of the DFG motif in the apo structure is also clashing with

the ligand position, hence the observed lower enrichment (BEDROC = 0.262). The C-helix and activation

loop in the AF2 structure occupy an intermediate position between those in the apo and holo structures,

with the same residues and additionally Cys775 and Thr790 forming suboptimal contacts with the ligand

pose from the holo structure, hence a similar enrichment to the apo structure (BEDROC = 0.185). In the

full AF2 structure, the low confidence C-terminal also overlaps with the piperidine moiety of the ligand in

the binding site, rendering the enrichment very low (BEDROC = 0.023).

During IFD-MD refinement Met766 in the C-helix moves to a different rotamer state to create

space for the ligand and Glu762 is pushed further away from the binding site in a similar rotamer. Phe856

in the DFG motif moves away as a rigid body, while Asp855 assumes a different rotamer position. The

Thr790 gatekeeper residue and Cys775 are both moved into the rotamer state observed in the holo
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structure. IFD-MD refinement brings about both an expansion of the binding site and rotamer state

changes of multiple residues. The top pose from IFD-MD shows a flipped indazole ring relative to the

experimental binding mode and a moderately increased early enrichment (BEDROC = 0.379), while the

second IFD-MD pose corresponds to the experimental binding mode. Thus ensemble docking into

multiple IFD-MD structures brings the virtual screening enrichment of the AF2 structure (BEDROC =

0.541) to a similar level to that of the holo structure (BEDROC = 0.526).

Figure 4. Binding site comparison and early enrichments of the apo (yellow), holo (green), AF2 (blue,

truncated region shown as orange ribbon), and IFD-MD refined AF2 structures (red) for EGFR. Ligand

shown as magenta sticks in the experimental binding mode in the holo structure, and the top predicted

binding mode in the IFD-MD refined AF2 structure. Residues with significantly different orientations

affecting the ligand binding mode are highlighted as gray sticks.
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In the second approach using IFD-MD to refine AF2 structures, we docked the holo ligand into

the AF2 structures with Glide and used the resulting pose as the template for IFD-MD. AF2 structures of

ESR1 failed to dock with the respective holo ligand with Glide due to dramatic binding site differences.

Enrichment improvements in IFD-MD refined AF2 structures are similar to the first approach described

earlier as shown in Table S2. When comparing the docked poses and the original holo ligand binding

mode, the docked ligands do not always recover the same binding mode as in the holo structures. The

docked ligands have RMSD lower than 3.0 Å with the reference holo ligand in only 5 targets. The pose

accuracy is lower than a typical redocking experiment of a native ligand back into its native receptor. This

suggests that for the purpose of refining the protein structure to enable virtual screenings in hit discovery,

the enrichment performance is not sensitive to the choice of template complex used in IFD-MD.

To eliminate the selection bias introduced by the holo ligand, we tested the IFD-MD refinement

workflow with an active ligand that is dissimilar to the holo ligand. A subset of targets was selected for

this additional analysis, to limit computational costs. We developed a simple protocol for identifying a

subset where holo structures were available in the PDB with a co-crystallized ligand dissimilar to active

ligands in the DUD-E dataset. Using PLDB, a component of the Schrodinger Suite, we queried the entire

PDB with the following query settings: (1) holo structures only, (2) ligand binding affinity better than

1µM, and (3) electron density map(s) available. The results of this query were processed in the following

way: First, the PLDB-identified ligand was extracted. Next, RDKit fingerprints41 were generated using

default settings. The ligand choices would likely have been impacted by the choice of fingerprint

featurization. Nevertheless, no attempt was made to optimize the fingerprint type. Default RDKit

fingerprints are used for convenience, given the popularity of the open source cheminformatics package.

RDKit fingerprints are related to Daylight-style fingerprints, but incorporate several significant changes.

Then the maximum Tanimoto similarity between the query and the set of all DUD-E active ligands

available for a given target was calculated. Targets where the maximum similarity to any ligand of the

DUD-E actives set was less than 0.5 were considered. Finally, a selection of these targets were made to

ensure target diversity. We selected MK10, PPARD, and TYRB. Together, they comprise the “diversity

subset” for subsequent analysis. For the targets in the diversity subset, we searched the PDB for complex

structures where the ligands are dissimilar to the assigned holo ligand from the DUD-E dataset. We

repeated the IFD-MD refinement workflow using the alternative PDB structure. The results are shown in

Table 3. This analysis suggests that the improved enrichments using IFD-MD refined structures are not

merely a result of fitting to specific ligands in the DUD-E dataset.
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Table 3. VS enrichment for AF2 structures refined by IFD-MD using reference ligands topologically

dissimilar from the DUD-E ligands.

Averaged over MK10, PPARD, and TYRB ROC BEDROC (α=160.9) EF 1%

holo 0.831 0.296 16.33

apo 0.809 0.341 17.33

AF2 truncated 0.788 0.253 12.67

IFD-MD refined AF2 (top pose) 0.864 0.421 22.00

IFD-MD refined AF2 (5 poses) 0.888 0.517 27.67

IFD-MD refined AF2 (top pose) with DUD-E ligand 0.814 0.307 14.33

IFD-MD refined AF2 (5 poses) with DUD-E ligand 0.847 0.406 14.67

AF2 structures showed great potential for hit discovery after IFD-MD refinement. We wanted to

estimate whether IFD-MD refinement can also enhance the performance of virtual screening of the apo

structures. Deposited PDB structures often have missing segments and sometimes those missing segments

prevent the application of all-atom molecular dynamics methods, such as IFD-MD. Among the 28 targets

in this study, we found 9 targets without such missing segments: AMPC, DPP4, IGF1R, ITAL, PPARG,

PTN1, TRY1, and TRYB1. We superimposed the holo ligand in its bound coordinates onto the apo

structures as the template for IFD-MD. The virtual screening results from this experiment are shown in

Table 4. Relative to the apo structures for these 9 targets, IFD-MD refinement improves the average EF

1% from 7.31 to 10.34 if only the top-ranked IFD-MD pose is used, and to 13.44 if the best-performing of

top 5 IFD-MD poses are considered. Meanwhile, the IFD-MD refined AF2 structures have an average EF

1% of 15.59 with the top pose and 19.00 with top 5 poses, surpassing the average EF 1% of the holo

structures for these 9 targets.
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Table 4. Comparison of the VS enrichment for IFD-MD refined apo structures with holo, apo and AF2

structures.

Averaged over 9 targets ROC BEDROC (α=160.9) EF 1%

holo 0.786 0.318 17.31

apo 0.724 0.142 7.31

IFD-MD refined apo (top pose) 0.736 0.190 10.34

IFD-MD refined apo (5 poses) 0.802 0.247 13.44

AF2 truncated 0.692 0.171 9.10

IFD-MD refined AF2 (top pose) 0.824 0.287 15.59

IFD-MD refined AF2 (5 poses) 0.832 0.333 19.00

So far, we have focused on the 28 targets discussed above where refinement can be automated.

We also tested the IFD-MD workflow on the six targets containing organic cofactor(s) or metal(s) in the

binding site. Manual preparation of these structures was needed to place the cofactor or metal properly

back into the AF2 structures as described in section 2.2. Virtual screening results shown in Table 5

indicate that the addition of the cofactors to the AF2 structures generally slightly improved virtual

screening performance both overall and in terms of early enrichment. This is not surprising, since the

cofactors are often involved in essential ligand interactions. In this limited data set the presence of metals

was more important for good virtual screening performance than the presence of organic cofactors. It

should also be noted that for COMT the transposition of the magnesium ion and the SAM cofactor

decreased performance. Possibly in this case the simple transposition without refinement was not a good

enough placement protocol for the cofactors. The IFD-MD refined structures stripped of cofactors

exhibited already improved results relative to the original AF2 structures, but could not recapitulate the

performance of the holo structures. However, the IFD-MD refined structures with the cofactors had

similar or even improved performance relative to the holo structures especially in terms of early

enrichment metrics. The seemingly higher performance of the IFD-MD refined structures over the holo

structures originates from the DYR target, where the holo structure selected by DUD-E has a small

co-crystallised ligand and a more enclosed binding site than some other holo structures of the target. For

the COMT target the presence of cofactors improved virtual screening performance for the IFD-MD
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structure as opposed to the AF2 structure, underlining the importance of refinement after cofactor

transposition in this case.

Table 5. Comparison of the VS enrichment for metal- and cofactor- containing targets.

Averaged over 6 targets ROC BEDROC (α=160.9) EF 1%

apo 0.643 0.087 5.27

holo 0.846 0.312 17.47

AF2 truncated 0.641 0.100 5.48

AF2 truncated +

cofactor(s)

0.675 0.167 8.50

IFD-MD refined AF2 (top

pose)

0.752 0.203 10.13

IFD-MD refined AF2 (top

pose) + cofactor(s)

0.840 0.367 21.50

3.4 Limitations

Encouraging results were obtained for these well-established targets in the DUD-E data set,

however, some challenges in the application of AlphaFold2 to virtual screening against novel targets merit

consideration: 1) uncertainty in relative domain orientation prediction, 2) predictions limited to a single

protein conformation for each input sequence, 3) binding site modifications by other entities such as

homo- and hetero-multimers, cofactors, mutations, post-translational modifications, and additionally 4)

unknown structure-function relationships for truly novel protein targets.

When coevolutionary information between two domains of a protein is low, the relative

orientation of these domains in the AF2 predicted structures can be uncertain, as shown by the predicted

aligned error (PAE) maps provided by AF2 predictions42. In our data set AKT2, BRAF, EGFR, and VGFR2

were all multi-domain kinases, where the additional domains folded onto the surface of the kinase

domain, however, judging from the predicted aligned error map these were uncertain predictions. For
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BRAF, this completely abolished the virtual screening performance. Incorrect relative domain orientations

appear to be a fairly common issue for AF2 structures spanning the cell membrane. To alleviate this issue,

one might select only the domain of interest from the AF2 structures and perform truncation using both

the per residue confidence values and the predicted aligned error maps. However, if the binding site is

only transiently formed at flexible domain interfaces, the modeling of such an interface may still be a

challenging task.

Besides flexible domain movements, proteins also often exhibit multiple conformational states.

Sometimes this is inherently related to the function of the protein, such as the activation of GPCRs and

the gating mechanism of ion channels, or may serve as a regulatory mechanism such as DFG-in and out

conformations of kinases. In our data set the MET target was in the DFG-in conformation in the AF2

structure, while in the DFG-out conformation was present in the holo structure, resulting in markedly

different virtual screening performance. IFD-MD was not designed to generate vastly different

conformations of the protein backbone, but to refine the binding pockets and predict binding poses of

non-native ligands. To model such larger rearrangements, different methods are needed. The open source

AF2 implementation may be used to generate multiple model predictions. For example, it has been used

to predict active and inactive state GPCR structures using annotated structure templates43. This, however,

relies on ample characterization of conformational states of the protein family, which is still lacking for

many drug target classes. Ab initio loop prediction and molecular dynamics simulations may also be used

to re-predict or to generate multiple conformational states of proteins, however, depending on the time

scale of these rearrangements, some states may be practically inaccessible in unbiased simulations. It is

also expected that coupled prediction of folded protein and ligand structure in a complex by machine

learning methods will be an intensive research area in the future. In this case ligand induced

conformational changes may be inherently predicted by the machine learning algorithm.

The binding site of proteins may not only consist of standard amino acids of a single chain. They

may be located on interfaces of homo- or hetero-multimers, interfaces of proteins with DNA or RNA,

they may contain metals or organic cofactors, mutations, and post-translational modifications at PPIs and

ligand binding sites, all of which may affect the properties of such pockets. Some advances have already

been made to alleviate these shortcomings with the initially published AF2 structures, such as

AlphaFold-Multimer for the prediction of multimeric structures44. As cofactor-containing targets were

present in our data set, we were able to study the effect of these on hit identification. It is estimated that

30-40% of enzymes in the proteome require metal ions to perform their biological function in cells, and

more than 10% of the human proteome requires organic cofactors for its function. Although cofactor

binding sites are not automatically predicted in AF2 structures, the model is trained to predict the

structures of proteins as they might appear in PDB, therefore backbone and side chain coordinates are
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frequently consistent with the presence of cofactors19. Based on sequence and structural similarity the

AlphaFill database provides modified AF2 structures with transposed cofactors needed for the structural

integrity of proteins45. For completely novel protein classes, however, the identification of cofactor sites

from sequence or predicted 3D structure and their placement is a challenging task, but several de novo

algorithms and web servers do exist for this purpose46,47. A proof-of-concept study for grafting on

post-translational modifications has also been published47. Effects of mutations on the structure seem not

to be well predicted by AF2, although it is important to note that it was not trained to do so48,49. To

uncover changes to binding site structures due to mutations, MD-based methods, such as protein FEP50

and protein stability prediction methods may be used.

The current study focused on well-established targets with multiple crystal structures, both apo

and holo, from well characterized target classes. However, the true transformative potential of AF2 lies in

the prediction of protein structures that were previously understudied or elusive to structure determination

methods. AF2 structures show great potential for enabling crystallography and cryo-EM structure

determination, therefore the structural coverage of the human proteome is expected to increase. If no

experimental structure of these novel targets exists, however, the previously discussed challenges are

exacerbated. Domain organization, existence of multiple conformational states, complexing partners, the

presence, stoichiometry, and location of cofactors and even ligand binding sites may be completely

unknown. Here again we expect bioinformatics, molecular dynamics, and new machine learning-based

methods to provide valuable insights for structure refinement, conformational sampling, binding site

detection, placement of cofactors and ligands, and uncovering induced fit effects.

4. Data and Software Availability

The modeling in this work was carried out against two publicly available datasets: The DUD-E

(http://dude.docking.org) and the AF2 database (https://alphafold.ebi.ac.uk). AF2 structures were

modified from their raw state using the simple truncation protocol described in Section 2. Calculations

were performed using the 2021-4 release of the Schrödinger Core Modeling Suite. Any non-default

settings related to modeling calculations are described in Section 2. Supporting Information comprising

(1) The prepared apo, holo, AF2 and truncated AF2 structures (2) set of IFD-MD refined AF2 models,

and (3) complete virtual screening results is available, free of charge, here:

https://schrodinger.com/other_downloads
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5. CONCLUSION

The AlphaFold2 technology and publicly available database of predicted structures by many

available metrics represent the current benchmark for protein structure prediction. However, it remains to

be seen whether improvements in CASP-style metrics will translate to consistent success in drug

discovery applications where experimentally derived structures are unavailable. As a step toward

answering this critical question, we investigated virtual screening performance using AF2 structures in

place of experimental structures. Out of the box, many AF2 structures produce low enrichment in our

testing. They may contain low confidence loops occluding part of the binding site, missing co-factors, and

uncertainty in relative domain orientation. We investigated some of these limitations here. Where a

comparison could be made, we find that unrefined AF2 structures deliver similar enrichments to that of an

apo experimentally derived structure, significantly below the enrichments using an experimentally

derived holo structure. Meanwhile, the application of IFD-MD can induce a binding site conformation

that delivers enrichments much closer to the holo structure. This is also supported by our finding that the

average binding site volume of the IFD-MD refined AF2 structure is closer to a holo structure than the

raw AF2 structure. This represents a repurposing of the IFD-MD protocol which was originally developed

to model induced fit effects to improve cross docking accuracy. To achieve optimal enrichment, we use

the top 5 models generated by IFD-MD, as opposed to considering the top 2 models as recommended in

the usual application. Otherwise, no parameter adjustments are needed for IFD-MD. In prospective

applications pilot screening with known actives could be used to identify the specific IFD-MD model to

take forward into a production screen. To achieve optimal enrichment, all 5 IFD-MD models could be

carried forward in an ensemble docking workflow.

Further work will be needed to determine whether the protocol we describe here could be used to

coax additional accessible protein conformations given a single AF2 structure. It also remains to be seen

whether this approach could enable successful hit discovery campaigns against a target without a

representative in the AF2 training set. We plan for subsequent efforts to further explore the potentials and

limitations of AF2 structures for hit identification, including the application for targets not represented in

the PDB at the time of AF2 model training.
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