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Abstract 

A silver-catalyzed deuteration of nitroaromatics had been achieved employing D2O as deuterium source. Distinct from 
the well-established directing group guided hydrogen-isotope exchange, the protocol showed an interesting 
deuteration pattern, where considerable deuterium accumulation was observed around the aromatic ring. Control 
experiment indicated the deuteration was initiated by a silver-promoted C-H activation, and a tentative two-stage 
deuteration mechanism involving aryl-silver species was proposed to explain the deuteration on meta- and para-sites. 

 

Introduction 

With the increasing demands of deuterium labelling in pharmaceutical and material science,1 the development of novel 
strategies had been urged to provide deuterated compounds with various structures and divergent labelling sites. 
Among the methods established,2 hydrogen-isotope exchange (HIE) had attracted considerable attention as an ideal 
and intuitive route, which in-situ replacing the protium with deuterium. With the recent booming of C-H activation,3 
the HIE had been boosted by transition metal catalysis,4 especially with the assistance of directing groups such as 
carbonyl, pyridyl, and amide.2c In contrast, the selective deuteration of compounds without strong directing groups 
remain challenging due to lack of anchoring position.  

Nitroaromatics, with a strong electro-withdrawing NO2 group, had acted as an important chemical source,5 and had 
been subjected by the  modern cross-couplings as a leaving group in the past years.6 However, the substrate suggests 
an unfavored feature for prevailing electrophilic C-H activation: 1) the low electro-density retards the C-H activation, 
and 2) the weak coordinating ability makes the pre-activation intermediate unstable. Despite the recent achievements 
of their C-H functionalization,7 only rare cases had been reported for the direct deuteration of nitroaromatics. 8 Besides 
its first disclosure from Kerr using electron-rich Iridium complex (Scheme 1A),9 a recent mechanistic study indicated the 
potential of higher deuteration activity of AgO than Pd(OAc)2.8b The subsequent test with K2CO3 suggested the exchange 
may be conducted via a SNAr pathway. This interesting finding encouraged us to hypothesize the electron-rich silver-
complex could facilitate the HIE of electro-deficient nitroaromatics. Noticeably, similar strategy of silver-catalysis had 
been proven by Zhang in the selective deuteration of electro-deficient substrates such as fluoro-, bromo-, and 
heteroaromatics (Scheme 1B),10 whose catalytic species was elucidated by Hartwig recently.11 Herein, we wish to unveil 
our recent progress in the HIE of nitroaromatics, as one of our long term goal to build-up the arsenal for deuteration. 
12 



Scheme 1. The deuteration of nitroaromatic compounds and the recent development of silver-mediated deuteration. 

 

Our investigation was commenced with nitrobenzene (1) as model substate, and the initial attempt showed an 
encouraging deuterium incorporation of 0.54D using the combination of Ag2CO3/SPhos/K2CO3 (Figure 1A, entry 1). After 
the confirmation of the necessary of the catalyst, ligand, and base (Figure 1A, entries 2-3), the performance of different 
ligands was evaluated firstly. Biaryl phosphines failed to yield any better results. Meanwhile, the simple phosphines 
ligands such as PPh3, CyPPh2, and PCy3 pushed the deuterium accumulation over 1.5D within 2 hours (Figure 1A, entries 
5-7). A survey of pre-catalyst showed Ag2CO3 as the optimal choice, while other silver, copper, or gold salts didn’t render 
any better results (Figure 1A, entries 8-11). Although the exchange was expected to conduct at ortho-sites, deuterium 
incorporation over 2.0D was observed when prolonging the reaction time (Figure S1). The subsequent NMR analysis 
showed the meta-positions also suffered the deuteration, which indicates an underlying relationship with Zhang’s 
deuteration of bromoaromatics.10c Meanwhile, the accumulation of aniline and phosphine oxide in this long time 
exchange also led us to question the stability of the catalytic system.  

After the confirmation of non-catalytic activity of triphenylphosphine oxide (Figure 1A, entry 12), an accelerated 
experiment was conducted under 140 °C to evaluate the influence between ligand oxidation and deuteration rate. As 
shown in Figure 1B, the most electron-rich PCy3 rendered a rapid deuterium accumulation in its first hours’ exchange. 
But the following exchange was stagnated due to the ligand consuming. Similar deceleration was also observed in the 
cases of PCyPh2 and PPh3, where the former also rendered an extremely poor recovery less than 30%. Thus, further 
optimization was conducted based on PPh3 as ligand, and rendered an optimal condition for nitrobenzene with a 
deuterium distribution of 98%D, 31%D, and 19%D at ortho-, meta-, and para-positions, respectively.1314 
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Figure 1. (A) Evaluation of HIE Condition for Nitrobenzene, and (B) relationship of ligand oxidation and deuteration 
progression. a The reaction was conducted with 1a (2.0 mmol) under specified conditions; b %D determined by GC-MS; 
c Accelerating reaction conducted under 140 °C. See Table S2 for detailed experiment data; d See Table S5 for detailed 
experiment data. 

With optimal condition established, the performance of the deuteration system was examined on various 
nitroaromatics (Figure 2A). The halogen containing substrates was tested firstly (2 – 6), which had been reported to be 
deuterated efficiently under the similar system.10c As expected, both chloro- and bromo-substituted nitrobenzene 
rendered product with high deuterium incorporation, where nitro group showed a slight higher inducive effect in 
deuteration. Other substrates bearing electron-withdrawing groups were also subjected (7 – 11), which rendered a 
confusing division with different substitution pattern. When the functional group located at meta-position, all the 
compounds rendered acceptable results with moderate to excellent deuterium incorporation (7 – 9). However, the 
para-substituted ones showed a dramatic decrease in meta-deuteration. 1,4-Dinitrobenzene even failed in deuteration. 
Interestingly, similar result was observed in methyl substituted ones (12 – 14). For the ortho- and para-methyl 
nitrobenzenes, only a moderate ortho-deuteration was observed on the phenyl ring, meanwhile the methyl was 
deuterated completely (12 and 13).15 In contrast, a satisfying deuterium incorporation was found with the substrates 
with meta-methyl substitution (14 and 15), which left methyl untouched. Interference from steric hindrance was 
obsereved on 3-tert-butyl and 3-phenyl nitrobenzenes. Substrates bearing electro-donating groups were also tested 
(19 – 24), where ether substitution rendered good to excellent results. A poor result of 19%D was obtained with 4-
dimethylamino substitution, whose enhanced electro density may retard the initial C-H bond insertion. Subsequent 
testing of 1-nitronaphthalene (26) showed an interesting deuteration sequence long the 2 to 5 positions. We also tested  
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Figure 2. Substrate scope, gram-scale preparation, ortho-selective exchange, and synthetic application of deuterated nitroaromatics. 
aReaction condition (unless noted otherwise): nitroaromatics (1 mmol), Ag2CO3 (20 mol%), PPh3 (60 mol%), K2CO3 (1.0 equiv.), MTBE (0.2 
mL), and D2O (1.0 mL), 120 °C, 24 hr. bYield for volatile compounds was calculated by HPLC with external standard. cDeuterium incorporation 
is detected by GCMS (denoted in parenthesis as DMS) and deuterium distribution (denoted in square brackets at the specific site) was 
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calculated by the peak integrity of 1H-NMR based on GC-MS result, for symmetric positions only one %D shown; dYield after column 
separation. 

a series of nitro-heterocycles. For the case of methyl pyridines (27 – 29), nitro located at 5-position failed to render any 
expected ortho-deuteration result, while the others only afford a middle level %D. Quinoline, benzothiophene, and N-
methyl indole (30 – 32), with nitro located at the para-site of heteroatoms, showed moderate deuterium incorporation 
around the aromatic system. However, 6-nitro quinoxaline (33) failed to render an acceptable result, which may be due 
to the increased electro-density from 4-nitrogen. Metronidazole (34), an antibiotic and anti-protozoal reagent, also 
tolerated the condition, incorporating the deuterium on both ortho and methyl positions.   

Further examination of the utility of this Ag-catalyzed HIE was commenced with a gram-scale experiment. As expected, 
the reaction rendered a quantitate recovery after distillation, with a slightly elevation deuterium incorporation (Figure 
2B). We also found the rate of meta-deuteration could be suppressed by introducing acid salts, where PCy3·HBF4 
rendered the highest selectivity of 94:5 (Figure 2C). Subsequently, chemical transformation of deuterated 
nitroaromatics was conducted to show its potential as a deutero-building block for further functionalization. As 
expected, cross-coupling reaction with nitrobenzenes, including C-O, C-S, and C-C bond couplings,16 didn't affect the 
deuterium distribution (Figure 2D), all the transformation left labelled sites intact. A Bartori indole synthesis was also 
performed with ortho-deuterated nitrobezene,17 which also kept the %D after the treatment of Grignard reagent (see 
supporting information for details).  

Despite the above results showed a promising application of the reaction, the unexpected deuterium distribution still 
triggered our curiosity. Especially the failing of deuteration on para- and ortho-methyl nitrobenzenes (12 and 14). To 
wipe out the potential base-promoted deuteration with substituted nitrobenzenes, a background test subjecting 4-
methyl nitrobenzene with K2CO3 was conducted (Scheme 3A), suggesting the exchange was occurred under the 
presence of silver (Scheme 3A). Meanwhile, 4-bromo- and 4-methoxy- substrates also led to the similar results. Thus, 
we postulate the meta-deuteration was conducted after the initial C-H activation, where the aryl-silver species 
enhanced the aromatic ring’s electron density, especially at the meta-sites. Based on this postulation and previous 
mechanistic works,10a, 11 a two-stage mechanism was proposed tentatively to explain the phenomenon (Scheme 3B): 
The initial rapid C-H activation is conducted by an electro-enriched Ag-species (I) via a SNAr process on ortho-position. 
The intermediate (II) lead to an enhancement of electro-density on meta-position, as well as other positions, facilitating 
the H/D exchange under the framework of SEAr pathway. The second-stage deuteration may conduct at a much slower 
rate, and is influenced by the aryl-silver species’ stability, which lead to a little lower deuterium incorporation at meta-
position. This also explained the suppression from acid salts to the meta-deuteration (Figure 3C). To support the 
postulation, a preliminary theoretical analysis of HOMO indicated an enhanced nucleophilicity at meta- and para-
positions for this aryl-silver species (Figure 3C). Furthermore, an additional analysis was conducted with bromo and 
fluorobenzene, where the former showed a similar nucleophilicity enhancement at meta-site. Meanwhile no elevation 
was found in fluorobenzene, which also matched the experimental results well.10b, 10c 

Scheme 3. Control Experiments and Proposed Mechanism  



 

 

Conclusion 

In summary, a deuteration protocol was developed for nitroaromatics via a silver-catalyzed hydrogen-isotope exchange 
employing D2O as deuterium source. Preliminary substrate examination rendered a series nitroaromatics with good to 
excellent deuterium incorporation around the aromatic rings. The deuterated products were proved as reliable 
deuterium modules for synthesis without disturbing the deuterium distribution. A two-stage deuteration process was 
proposed to explain the unexpected H/D exchange on meta and para-sites, where the process may conduct after the 
initial formation of aryl-silver species at ortho-position. Further mechanistic study is now under investigation. 
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