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Abstract

Experimental studies of charge transport through single molecules often rely on

break junction setups, where molecular junctions are repeatedly formed and broken

while measuring the conductance, leading to a statistical distribution of conductance

values. Modeling this experimental situation and the resulting conductance histograms

is challenging for theoretical methods, as computations need to capture structural

changes in experiments, including the statistics of junction formation and rupture.

This type of extensive structural sampling implies that even when evaluating con-

ductance from computationally e�cient electronic structure methods, which typically

are of reduced accuracy, the evaluation of conductance histograms is too expensive to

be a routine task. Highly accurate quantum transport computations are only com-

putationally feasible for a few selected conformations and thus necessarily ignore the
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rich conformational space probed in experiments. To overcome these limitations, we

investigate the potential of machine learning for modeling conductance histograms, in

particular by Gaussian process regression. We show that by selecting speci�c structural

parameters as features, Gaussian process regression can be used to e�ciently predict

the zero-bias conductance from molecular structures, reducing the computational cost

of simulating conductance histograms by an order of magnitude. This enables the

e�cient calculation of conductance histograms even on the basis of computationally

expensive �rst-principles approaches by e�ectively reducing the number of necessary

charge transport calculations, paving the way towards their routine evaluation.

1 Introduction

In molecular electronics a single molecule bridges the gap between two metallic electrodes.

Understanding and exploiting the unique electron transport properties of these molecular

junctions o�ers insights into fundamental physical processes such as quantum interference1�3

or the behavior of molecules under non-equilibrium conditions4, helps to improve the per-

formance of solar cells5�10 and enables new approaches to designing molecular-based devices

such as sensors11�13. Another intriguing idea is to exploit the spin degree of freedom of

molecules to overcome current challenges in the semiconductor industry, such as heat dis-

sipation14�17. Studying these systems has implications not only for molecules as electronic

building blocks18,19, but also for the �elds of colloidal nanoparticles and nanoparticle ar-

rays20�23, electrochemistry24�27 or electrocatalysis28.

After �rst discussions dating back to the 1950s, the proposal of a diode based on a single

molecule demonstrated the potential of the �eld of molecular electronics29,30. With experi-

mental techniques such as scanning tunneling microscopy or mechanically-controlled break

junction (MCBJ) setups, measurements of the charge transport through single molecules,

connected by two macroscopic electrodes, have become widely accessible31. In break junc-
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tion experiments32,33, nanoscopic electrodes are formed by pulling and eventually breaking

a thin gold wire, or by crashing and retracting the STM tip into and from the substrate.

When performing this in a solution of molecules of interest (or having molecules deposited

on the electrodes beforehand), these molecules can bridge the gap between the two elec-

trodes forming a molecular junction. Once the junction is formed, a bias voltage is applied

and the current is measured as the junction is elongated, leading to a so-called conductance

trace. Eventually, the junction breaks and the process is repeated 1000s of times to gather

a statistically signi�cant data set.

Each individual conductance trace is distinct, as the electrode structures, molecule�

electrode binding and molecular conformation vary and �uctuate in and in between ex-

periments34�36. Usually, these traces are reported in a conductance histogram, from which

the most probable conductance of the molecule in the junction can be identi�ed. These

histograms are commonly broad, as the conductance of a molecular junction can vary over

several orders of magnitude. The shape of the conductance histogram can potentially be

used to identify di�erent con�gurations of the junction, gain information about the tunnel-

ing process or to unveil cooperative e�ects37�41.

The shape of the conductance histograms cannot be obtained from calculations of a static

junction in a minimum energy conformation, as these calculations do not take into account

the conformational variability encountered in experiments. To capture the histograms, it is

necessary to perform molecular dynamics (MD) simulations of junction formation and evo-

lution using techniques such as classical force �elds42�46, reactive force �elds47,48, or ab-initio

MD techniques49�54. Even for such simulations, complete sampling of the experimental situ-

ation remains challenging55. This is partly because of the signi�cant increase in the number

of necessary conductance calculations compared to the static case. In the coherent tunneling

regime, such electron transport calculations are usually performed based on electronic struc-

ture calculations such as the Landauer approach and the non-equilibrium Green's function

formalism56�58. Thus, to obtain meaningful histograms it is necessary to perform conduc-
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tance calculations for several hundred to thousand snapshots and for relatively large systems,

since parts of the gold electrodes have to be included in the calculations in order to correctly

describe their interactions with the molecules under study. This comes with a signi�cant

computational cost, so, for simulating histograms, one usually has to rely on cheaper and

simpler methods of limited accuracy to obtain information about the electron transport,

such as (extended) Hückel-based calculations48,59.

Recently, machine learning (ML) approaches have become an alternative to traditional

quantum chemical calculations, which can bring down computational cost by an order of mag-

nitude or more60�69. Examples involve the generation of force �elds for MD simulations70�75,

prediction of charge transfer integrals76,77 or even trying to directly solve the Schrödinger

equation78. While neural networks are attractive in situations, where large datasets are avail-

able for training, other methods such as Gaussian process regression (GPR) or kernel ridge

regression (KRR) can cope with smaller data sets61 and have been applied successfully to

predict, e.g., interatomic potentials79. Others have shown the applicability of GPR for stud-

ies of molecular vibrations80,81 or molecular structure optimization82�84, the improvement of

dispersion corrections85, and some of us have lately applied GPR to predict exchange spin

couplings in transition metal complexes86. A valuable feature of GPR is the straightforward

accessibility of expected errors on the predictions.

The e�ciency of ML methods can be exploited in two ways: To accelerate the compu-

tation of conductance histograms with a given (low-accuracy) conductance method, or to

enable the construction of conductance histograms with more sophisticated (yet more expen-

sive) approaches to conductance, which so far were reserved for calculations on individual

molecular junction structures (such as GW87). Here, we focus on the �rst aspect, since we

need the full �traditionally evaluated� conductance histograms as references. Related ML

approaches have recently been proposed, which focus on transport through model systems

(e.g. representing DNA)88�90 or atomic wires91. The latter demonstrates the application

of a neural network in combination with the smooth overlap of atomic positions (SOAP)92
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descriptor (among others) to encode the structural information for the prediction of con-

ductance values for atomic wires. Such systems are simpler than molecular ones, as the

conductance is a multiple of the quantum of conductance G0 =
2e2

h
, with e as the elementary

charge and h as the Planck constant. Topolnicki et al.93 employ a neural network to predict

the conductance of a biphenyl dithiol junction. Their neural network is trained with struc-

tural parameters as well as with parameters obtained from electronic structure calculations,

with its performance demonstrated by predicting the change of conductance histograms with

temperature.

We show that Gaussian process regression can predict the transport properties of a molec-

ular junction and can be used to reliably construct conductance histograms from simulated

break junction experiments, yielding a speed-up by one order of magnitude. With problem-

tailored descriptors, advantages in speed and performance can be achieved compared with

selected general-purpose descriptors. We aim for a method-agnostic approach concerning the

MD and transport calculations, which can be applied to small and medium sized data sets,

including situations in which the generation of large data sets is computationally unfeasi-

ble. While we chose reactive force �elds94,95 and density functional tight�binding (DFTB)96

calculations for our simulations, any method which performs the structural sampling of a

molecular junction and provides transport properties for selected snapshots may provide the

basis for our machine learning approach. MD simulations employing reactive force �elds

have been successfully used in the past to compute trajectories of MCBJ experiments for the

same molecule used here or similar systems47,48,97. Since electronic structure calculations are

the most expensive component in the construction of the conductance histograms, we aim

to predict conductance solely on structural information.
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2 Simulation of Break Junction Experiments

To simulate the break junction setup, 296 gold atoms are arranged in 24 layers along the

fcc(111) direction to form a gold wire. Ten octanedimethylsul�de (C8H16(SMe)2) molecules

are added randomly close to the wire. This system is well characterized by previous exper-

imental and theoretical studies47,98 and poses a challenge for machine learning approaches,

since a huge variety of conformations or electrode-molecule binding con�guration can be en-

countered. Since we try to capture the full evolution of the junction from the initial forming

to rupture, we can sample situations where, e.g., multiple molecules form a junction, which is

not included in MD simulations based on already-formed molecular junctions. Using reactive

force �elds as implemented in LAMMPS94,95, an initial MD simulation is then performed

, so that the molecules can adsorb onto the gold wire. Reactive Force �elds are required

to capture bond breaking and formation, processes inherent to the experiment. Molecules

which desorb from the wire are removed from the simulation box.

To simulate the break-junction experiment, three MD simulations are performed while

pulling on one end of the gold wire with speed of 1× 10−4Å fs−1, and three more with a

speed of 5× 10−5Å fs−1, yielding a total simulation time of 2.4 ns. Structures were dumped

every 500 fs resulting in a total of 9600 structures, for which transport calculations were

performed.

This extensive structural sampling limits the choice of methods, which is why we em-

ploy non-scc DFTB calculations as implemented in DFTB+96. Still, the calculation of the

conductance for a single structure takes more than six times the time of a calculation of a

MD trajectory of 50000 time steps, which needs around 13 minutes on a single core of an

Intel Xeon Silver 4110 CPU with a clock speed of 2.10 GHz. The resulting conductance

traces and histograms are shown in Figure 1. They show a most probable conductance of

around 10−5 G0, which is in line with previous calculations and experiments47,98.

Several key properties of MCBJ experiments are captured in our simulations. The

stochastic nature of successful junction formation is shown, as two out of our six trajec-
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Figure 1: a) Individual conductance traces and b) corresponding stacked histograms for six
di�erent MD trajectories. Some peaks with higher or lower conductance than the molecules'
main conductance peak are marked with arrows. In two simulations (red and blue curves),
no stable junction was formed. c)-d) Representative snapshots of the MD trajectories are
shown, representing c) the intact wire, d) a successfully formed molecular junction, and e)
a broken junction. The corresponding areas are marked by colored bars at the axes. The
inset shows a zoom-in to demonstrate the e�ect of the gold wire adjusting to the increasing
tension by structural rearrangements to release stress.
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tories do not result in a stable junction (red and blue line in Figure 1). They both show

a small peak between 10−6 and 10−7G0), which stems from a short period of time when a

molecule is between the two electrodes, but not properly bound to the electrodes via the

anchoring group. One particular trajectory shows a distinct peak at high conductance values

between 10−2 to 10−3 G0, which is caused by two molecules bridging the junction at the same

time. This was attributed before to a distinct shape of a conductance histogram38, but in our

case it leads to two separable peaks. The elongation at which the molecular junction breaks

depends on how the gold atoms on the electrode tip are rearranged while pulling and occurs

after an elongation of 18 to 25Å in our simulations. For the successfully created junctions,

low-conductance shoulders (10−6 to 10−7 G0) can be observed in the histogram. In these

shoulders, gauche defects in the molecules decrease the conductance of the system, compared

to structures without such e�ects. These molecules rearrange to anti-conformation, as they

are further elongated.

Even though our approach performs structural sampling of a break junction experiment,

it does not take into account that experiments average conductance over microseconds. Av-

eraging over all molecular conformations accessible at every point during the elongation.

This aspect and its e�ects on the shape of the resulting conductance histograms has been

studied by Li et al.47,48. Importantly, the methods introduced below can also be used when

time-averaged conductances are employed to construct histograms.

3 Molecular Descriptors for Charge Transport Properties

The molecular Cartesian coordinates obtained from the MD simulations have to be converted

into a representation suited for a machine learning algorithm92,99�103. These representations

are called descriptors, as they translate structural information into a so-called feature space.

In that way, each molecular structure is represented by a feature vector, with the size of the

vector depending on the chosen descriptor.
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For di�erent descriptors, the size of the resulting feature vector, the performance for

di�erent problems, and the concepts underlying their construction can di�er drastically, as

discussed in a recent review 103. To predict the conductance for molecular junctions, we use

established and broadly applicable approaches like the ACSF104, SOAP92 or F2B105 descrip-

tors, and construct new, custom descriptors, which aim at establishing structure�property

relationships based on our understanding of charge transport through short molecules. As

shown in a previous study, the usage of such problem-tailored descriptors can achieve similar

or even better performance than established descriptors at decreased computational cost86.

As ingredients for our custom descriptors, we explore di�erent structural parameters, as

detailed in Table 1. The chosen parameters represent information about the local chemical

environment of the anchoring groups of the molecules (such as the distance to the closest gold

atom), the molecular conformation (by, e.g., measuring the molecular end-to-end distance),

and global properties which represent the state of the junction, such as the total length of

the system or a histogram of the occurrences of the di�erent atom types along the transport-

direction. This histogram counts the number of atoms of a speci�c type in bins, representing

an approximation of an atomic density. In that way, a continuous density of gold atoms

represents an intact gold wire, while a gap in the gold density combined with a certain

density of carbon atoms in that gap hints at a successfully formed molecular junction (see

Figure S3 for an example). The di�erent parameters can be combined to �nd the best

performing ML model while retaining a small feature vector.

The dimensions feature vectors generated by descriptors like SOAP or F2B depend on

the chosen settings and types of elements included, not on the system size or number of

molecules and electrode atoms. Therefore, they can be used to compare di�erent systems or

system sizes. By contrast, the dimension of most of our descriptors scale with the number of

molecules (as this relates to the number of anchoring groups/sulfur atoms) included in the

simulation, except for the density histogram-based approach. Since we aim to predict the

conductance histogram based on MD simulations for a speci�c molecular junction, this does
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Table 1: Structural parameters for constructing custom descriptors for molecular junctions
with SMe2 anchoring groups. N is the number of molecules included in the MD simulation,
in our case 7. The size of the feature vector for the density histogram depends on the number
of bins per atom, and on the included atom types.

Name De�nition Dimension

junction length size of the system in transport direction,
measured by the distance between the out-
ermost atoms

1

intra-molecular S�S
distances

distances between the terminal sulfur
atoms of each molecule

N

Au�S distance distance of each sulfur atom to the closest
gold atom

2N

sulfur coordination number of gold atoms in the vicinity of
each sulfur atom within a radius of 3Å

2N

S�S distances distances between all sulfur atoms 2N2 −N
density histogram histogram of the atom types along the

transport direction. Histograms can dif-
fer in bin size, smoothing (denoted by
�(smoothed)�) or whether hydrogen atoms
were included (�+H�) (see SI for more de-
tails)

∼90-160
(mainly de-
pending on
bin size)
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not pose any limits to our approach.

The dimension of the feature vector generated by the SOAP descriptor is 2640 for our

system, signi�cantly larger than all of the custom descriptors (only surpassed by ACSF with

13328 feature dimensions). The F2B descriptors with 150 dimensions is comparable in size

to the custom descriptors.

4 Evaluating Regression Models

We focus on Gaussian process regression (GPR) for predicting the conductance for the

molecular junction and use Ridge Regression (RR) as a (regularized) linear baseline model

against which we compare GPR performance. Excellent introductions to these methods

can be found, e.g., in Refs.60,62,79,85,106. GPR performs predictions based on similarities

between the feature vectors x1 and x2 (see Section 3) of di�erent datapoints. A Gaussian

Process represents a probability distribution of possible functions which �t to a set of given

datapoints, thus providing the opportunity to calculate the mean and associated variance

for a prediction. These calculations are not directly performed on the feature vectors, but

by a kernel, which provides a measure to obtain similarities between datapoints in a higher

dimensional space, into which the features are mapped by the kernel. Ridge Regression on

the other hand is a linear model which includes regularization to be able deal with, e.g.,

highly correlated predictor variables.

Predictions are made employing the SOAP, ACSF, F2B descriptors, and di�erent com-

binations of the ingredients for our custom descriptors. The coe�cient of determination

(R2) as well as the mean absolute error (MAE) are used as measures for the performance of

our approach, while plots for the root-mean-squared error (RMSE) and the mean absolute

percentage error (MAPE) as well as a discussion of error measures for machine learning can

be found in the SI. As a target for the learning algorithm we use the log-conductance instead

of the conductance, since otherwise the target would span several orders of magnitudes,
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arti�cially increasing R2 and decreasing the MAE and RMSE.

As a kernel-based method, the performance of GPR can signi�cantly depend on the choice

of the kernel84,107. We found the Matérn(1
2
) kernel,

kν= 1
2
(x1,x2) = σ2

f exp

(
−|x1 − x2|

l

)
(1)

to deliver a stable and good performance for all our descriptors (see SI). The hyperparameters

σ2
f (signal variance) and l (length scale) are optimized in the �tting process.

For all features, 25 random splits of the data set into training and test sets are made (a

procedure called �random permutations cross-validation� or �shu�e & split�). The obtained

values are used to calculate the mean and the standard deviation for MAE and R2. The

results for a training set size of 10% are summarized in Figure 2. These evaluations are

performed for unscaled features as well as for data sets, for which each feature dimension is

standardized (i.e., shifted to a mean of zero and divided by its standard deviation).

For all descriptors, the GPR approach outperforms the linear RR model. Very simple

custom descriptors with few feature dimensions perform similar or even better than estab-

lished descriptors such as SOAP. For a training set size of 10 %, SOAP reaches a MAE of

0.45 log(G/G0), while simply taking the distances between all sulfur atoms (d(S-S)) yields a

MAE of 0.34 log(G/G0). The performance can be improved by combining di�erent ingredi-

ents for the custom descriptors, such as adding the total length to the distance between each

sulfur atom and its closest gold atom, d(S-Au): In fact, using only d(S-Au) yields a MAE of

1.4 log(G/G0), while combining this measure with the length of the whole system (in order to

capture the elongation of the break junction) further decreases the error to 0.35 log(G/G0).

Since the combination of di�erent structural parameters improves the performance of GPR,

this represents a modular approach where structural information can be combined to achieve

the desired performance.

For a more detailed look, we plot the ML-predicted vs. the target conductance in Figure 3
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Figure 2: Comparison of the performance of the di�erent descriptors (scaled and unscaled),
as well as Ridge Regression (RR) and Gaussian Process Regression (GPR) in terms of a)
the mean absolute error and b) coe�cient of correlation. A small training set size of 10 %
was used. The mean performance and standard deviation was obtained from 25 repetitions
of shu�e and split. The standard deviation is usually very small, making it only visible for
some cases. Colored bars between plots aim to be a guide to the eye for the composition of
the di�erent custom descriptors, e.g. the red bar denotes the d(S�Au) descriptors, and the
red and the long magenta bar show the usage of the d(S�A) descriptors together with the
total length.
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for selected descriptors. All chosen descriptors show the correlation between the original

and calculated conductance, but di�erences become especially evident when comparing the

RMSE: For the SOAP as well as for the F2B descriptor, the predicted conductance deviates

slightly more stronger from the target for structures where the junction is nearly broken

or the molecule is detaching (< 10−7 G0). The custom descriptors employing the distances

between sulfur atoms (d(S�S)) and d(S�S) combined the distances between the sulfur atoms

and the closest gold atom (d(S�Au)) and the length of the total systems (length) show

correlation plots very similar to each other (Figure 3), with only slight di�erences in the

MAE and RMSE and a clearly an improved performance compared to SOAP and F2B.

The conductance histograms in Figure 3 constructed from the predictions all resemble the

histograms constructed from the targets. Building a histogram involves intrinsic averaging,

since di�erent conductance values are grouped together in bins. This a�ects the �nal shape of

the histogram and clouds minor errors, so that the resulting histograms all show a satisfying

agreement with the target.

As discussed above, a signi�cant di�erence between the descriptors is the size of the

feature vector, which a�ects the �tting times of the GPR. More precisely, it a�ects the

evaluation of the norm inside the kernel (Eq. 1), as it scales linearly with the length of the

feature vector. However, it also a�ects the number of evaluations during the hyperparameter

optimization in an unpredictable manner. While the custom and F2B descriptors represent

vectors of similar size (size of the feature vector: 100-150), and the resulting computational

time for �tting the GPR with a training set size of 10% is usually around two minutes on

an Intel Xeon Silver 4110 CPU with a clock speed of 2.10 GHz, �tting times of the GPR for

the SOAP descriptor (size of the feature vector: 2640) are greatly increased by a factor of

up to six.

To see whether the number of feature dimensions for, e.g., the SOAP descriptor can be

reduced to a similar number as for the other descriptors, we perform Principal Component

Analysis (PCA) and evaluate the performance of our approach for di�erent numbers of
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Principal Components, with a training set size of 10%. Figure 4a) shows the MAE and

the explained variance for the SOAP, the F2B, the d(S-S), length+d(S-S)+d(S-Au) and the

density (smoothed)1 descriptor for increasing number of PCA dimensions. (The �explained

variance� re�ects how much of the total variance in the dataset is explained by the selected

number of PCA dimensions.)

When the feature dimensions are reduced via PCA to 20 (for SOAP), 10 (for F2B) or 5 (for

our custom descriptors), the performance of GPR becomes comparable to the performance of

the full feature vectors. In that way, the di�erences between the descriptors with respect to

computational cost become marginal. It is interesting to note how di�erent our two custom

descriptors perform: Even though slightly worse in the �nal performance, only three PCA

dimensions are enough for the density-based descriptor to reach the same MAE as for the

full feature vector, while for the distance-based one, we need around �ve dimensions. The

PCA of the distance�based descriptor also explains less variance than the other descriptors

when only few dimensions are used. Thus, signi�cant feature reduction by PCA is possible

here, generating predictions with comparable errors as the original features.

Finally, to show how the predictions improve with increasing training set size, we plot

learning curves for selected descriptors. The plots in Figure 4b) clearly demonstrate that,

as expected, the performance improves by including more data points into the training

set. However, training sets bigger than 10% yield only minor improvement while increasing

computational cost, as the �tting time for GPR scales cubically with the training set size

(neglecting the unpredictable timing regarding hyperparameter optimization). Signi�cant

di�erences between the learning curves for the original or PCA-reduced descriptors could

not be observed.
1density histogram smoothed by a moving average �lter
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Figure 4: a) GPR performance (as measured by the MAE) depending on the number of
dimensions of the Principal Component Analysis for the SOAP, F2B, d(S-S), length+d(S-
S)+d(S-Au) and the density (smoothed) descriptors. The dashed-dotted horizontal lines
show the performance for the original features. The dashed lines give the explained variance
(second y-axis). For F2B and the custom descriptors, only 10 PCA dimensions are su�cient
to reach a similar performance as for the original features. The SOAP descriptor requires
more dimensions (≥ 20), which is still signi�cantly less than the original dimension of the
SOAP feature vector (2640). The explained variance does not directly correlate with how
close the performance is to the �nal performance/performance using the original feature
vector. b) Learning curves for the same descriptors. The shape of the curves is similar for
all descriptors; the di�erences in the performance basically manifest as a shift on the y-axis.
As also shown in Figure 3, a training set size of 10% is reasonable in our case. Increasing
the size of the training set gains only minor improvements on the predictions, but comes
at a higher computational cost. A training set size of 10% equals a reduction of necessary
electronic structure computations to 10%, which are the bottleneck for the calculation of
our conductance histograms. Learning curves for PCA-reduced versions of the descriptors
are shown in the SI.
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5 Summary

This study explores the application of Gaussian Process Regression (GPR) for the calculation

of conductance histograms based on molecular dynamics simulations of molecular junctions.

We show that we can construct such histograms by interpolating between quantum chemical

transport calculations for only around 10% of the MD snapshots via GPR. Calculating the

conductance of a single structure by quantum chemical methods takes 80 minutes on a single

core on our CPUs, while �tting the GPR and predicting the conductance for the remain-

ing data points in conjunction with our custom descriptors is performed within minutes.

Given the comparatively small cost of the molecular dynamics simulations and the machine

learning, this �nally results in a speed-up by one order of magnitude. Predictions based

on established molecular descriptors such as SOAP and F2B yield mean absolute errors of

about 0.45 log(G/G0) and 0.42 log(G/G0), respectively, but are narrowly outperformed by

custom descriptors in terms of speed and performance (down to 0.34 log(G/G0)). These

custom descriptors aim to capture structural information, which we think are determining

the essentials of the conductance of the molecular junction. Reducing the number of feature

dimensions via Principal Component Analysis can be used to reduce the feature vector such,

that the di�erences between the di�erent descriptors are negligible in terms of computational

e�ciency.

Our approach is method-agnostic, so every combination of a (hopefully cheap) method

to perform structural sampling and a (potentially expensive) way to calculate electron trans-

port can bene�t and be used to construct conductance histograms based on a multitude of

structures. For future work, intelligent schemes to cluster the datapoints or, e.g., �lter out

the ones representing a broken junction may push the boundaries for this approach.
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6 Methods

Molecular Dynamics simulations

For all MD simulations, LAMMPS with reactive force �elds (ReaxFF) was employed94,95.

The force �eld parameters for gold, sulfur, carbon and hydrogen by Bae & Aikens108 were

used. The simulation time step was 0.5 fs, snapshots were generated every 500 steps and the

temperature was set to 300K using an NVT ensemble. Even though all simulations �nally

stem from the same starting structure, di�erent seeds for the velocities and a equilibration

period of before the pulling simulation ensures divergence of the structures. The outermost

six layers were frozen in all simulations, due to the requirements of the subsequent transport

calculations.

Electron transport calculations

Due to the high number of necessary transport calculations, non-self-consistent electron

transport calculations using DFTB+96 were performed. 386 atoms are included in the central

region, and the remaining gold atoms are distributed to the electrodes in six layers each. The

auorg-1-1 parameter set was used109. After the calculation of the transmission function in a

non-SCC approximation and using the wide band approximation, the zero-bias conductance

was evaluated at a Fermi energy of −5 eV by G = G0T (EF ).

Feature generation/descriptor

The SOAP and ACSF descriptor was used as implemented in dscribe library110. For SOAP,

the Rcut, nmax and lmax parameter were optimized, further information can be found in the

SI. ACSF was employed using the default settings, the symmetry functions were evaluated at

the positions of the carbon and sulfur atoms. The custom and F2B descriptors were created

using custom python scripts.
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Gaussian Process Regression

For the training of Ridge and Gaussian Process Regression as well as the Kernel functions,

the sklearn library was employed. The training of the GPR was repeated 40 times (using

the gpr_optimizer_restarts parameter) to ensure the optimization to a global minimum.
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